
Efficient Storage and Retrieval of XML Documents Using XQuery

Huei-Huang Chen Chu-Yen Liu
Department of Computer Science and Engineering

Tatung University
40 Chungshan N. Road, 3rd sec.,Taipei, 104, Taiwan, R.O.C.

hhchen@ttu.edu.tw g9106033@ms2.ttu.edu.tw

Abstract- In the last decade of the 20th century,
because of the popularity of Internet, the trend is
towards e-solutions for businesses. Not only apply on
the electronic commerce but also on the information
exchange to decrease time from material in the
manufacturer to products brought by customers.
However, the problem we confront today is that
there are full of e-documents in businesses.

XML has already been the standard of data
interchange on the Internet. In the future, a large
amount of data will be represented in XML format.
However, most of the critical data in businesses are
still stored in relational database management
systems. It is difficult to query XML databases
because of its textual format. In this paper we
proposed a system to manage XML documents that
could be queried by the query language XQuery.
XML documents are stored in relational format and
the XQuery expressions are translated into
appropriate SQL queries. The results of the SQL
queries are transformed into XML documents.

1. Introduction

With the growing popularity of the Internet, more
and more transactions are carried out on-line [1] [2].
So far, businesses have adopted XML as de facto
format for document communications. The increasing
frequency of transactions between and within
enterprises produces a huge amount of XML
documents. There are two approaches to save and
process XML documents: One is to save them in
relational databases; the other is to save them in
recently-developed native XML databases.

XML (eXtensible Markup Language) [11] [12] is
now a universal standard for information exchanging
because of a simple and flexible text format. A XML
storage system must provide efficient manipulations
(e.g., data storing and retrieval) of a large number of
XML documents. Many researchers have proposed
various strategies in implementing XML storage
systems. In this paper, we investigated the translation
and manipulation of XML documents in relational
database systems. We propose an efficient algorithm
to translate XML documents into tables in a
relational database. The essential issues on query

processing are included. The data manipulations can
be translated into a set of simple SQL commands. In
terms of those SQL commands, we can easily
manipulate XML data in relational database systems.
Figure 1 sketches the XML-to-relational mappings
[4]. First we focus on the XML part on the right side
of the figure. From a user's point of view, XML
documents are stored as pairs of Uniform Resource
Identifiers (URIs) and black-box XML documents,
which may only be accessed through XQuery but not
SQL. Internally, the documents are stored in a
shredded schema that allows fast associative access
with the relational algebra of the SQL engine; to
achieve this we chose to implement the approach of
[3] [10]. Additionally, the native SQL tables on the
left side of the figure are exported as XML views and
may be queried in XQuery just like the XML
documents on the right side.

Figure 1: XML-to-relational mappings

2. Related Works

Many technologies have been developed to query
documents that take advantage of XML’s loose, yet
incredibly flexible structure rules. One such language,
XQuery, is quickly being accepted as the standard
XML Query language because of its ability to format
the resulting output. As powerful and popular as
XML currently is, it is still a new language that is
constantly evolving. This, coupled with the fact that
most businesses’ data is stored in the well-established
relational database format, creates the need for a
system that can combine the best of both

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

565

mailto:hhchen@ttu.edu.tw
mailto:g9106033@ms2.ttu.edu.tw

technologies [5]. XQuery languages execute
database-style queries over XML files. The first
language for querying XML documents was Quilt but
XQuery is the W3C standard language [14] [15] for
querying XML documents. XQuery is a functional
language this means that the queries are expressions.
XQuery is powerful and easy to use when querying
and retrieving XML data [6]. There are 7 expressions
in XQuery, examples are: Path Expression, FLWR
Expression, Primary Expression, Arithmetic
Expression, Element Constructor, Conditional.
Expression, Quantified Expression. The path
expression is the simplest expression which is based
on the syntax of the XPath language [13]. A path
expression selects a part of the XML document and it
is used in many other expressions like the FLWR
expression. The FLWR expression, also called
flower expression, consists of the clauses FOR-LET-
WHERE-RETURN. It is the most used expression
and it selects fragments from a specified XML
document. The overall flow of information through
an FLWR expression is illustrated in Figure 2.

Figure 2: Flow of data in an FLWR
expression

A FLWR expression [5] [6] iterates over a sequence
of items and binds variables that can be used in the
scope of the current expression. If the item sequence
is empty, the result of the FLWR expression is an
empty sequence. A FLWR expression consists of one
or more for and let clauses in any combination,
followed by an optional where clause, and a return
clause. Briefly, these clauses are interpreted as
follows:
l A “for” clause binds one or more variables to

each value of the result of the following
expression.

l A “let” clause binds one or more variables to
the complete result of the expression.

l A “where” clause retains only those
intermediate results that satisfy the following
condition.

l A “return” clause evaluates the following
expression and returns the result.

3. Storage and Retrieval System
Architecture

Our system is a prototype implemented with the
architecture of LegoDB [8] [9] and Silkroute [7] at
mind. It does not follow the architecture of LegoDB
and Silkroute to a point, but the main components
and basic tasks are similar. The architecture will be
discussed in section 3.1. In section 3.2 an XML
example will be introduced, there will also be
discussion about what type of documents the system
can handle. Our system, as part of a larger
combination system, translates Xqueries made by the
user over XML documents into SQL queries to be
run on a local relational database. The results are
then formatted according to the XQuery.

3.1 System Architecture

The system architecture diagram is presented in
Figure 3. The boxes represent the modules in our
system and the text outside the boxes represents the
data that flows on the edges between the respective
modules.

Figure 3: System Architecture

The architecture has two components that consist of
four different modules. From the Figure 3, the system
components are also depicted in Table 1.

Table 1: Storage and Retrieval System
components

Components Function
Storage Components
Schema
Generation

This module takes as input an
XML schema and outputs a
physical schema.

Schema In this module the physical

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

566

Transformation schema which was output from
the Schema generation module
will be used as input. The
physical schema will be
transformed into a create table
statement written in SQL.

DB Loader This module takes apart the
XML document/XML Schema,
creates insert statements using
the information in the
document and loads the
statement/statements into the
tables.

Retrieval Components
Query Translation The Query Translation module

is used to translate XQuery
questions to SQL and the result
of the SQL queries to XML
document. The document is
then returned to the user.

3.2 Scenario XML Example and Limitations

3.2.1 The XML example

When describing the different modules of our
system a simple example consisting of an XML
schema and an XML document will be used. The
XML example is a simple cars data. In this section it
will also be discussed what type of documents the
system can handle. The XML schema which follows
bellow is called cars.xsd show in Figure 4.
<?xml version=”1.0” encoding=”ISO-8859-1” ?>
<xs:schema
xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
<xs:element name=”cars”>
<xs:complexType>
<xs:sequence>
<xs:element name=”car” maxOccurs=”unbounded”>
<xs:complexType>
<xs:sequence>

<xs:element name=”owner” type=”xs:string”/>
<xs:element name=”model” type=”xs:string”/>
<xs:element name=”color” type=”xs:string”/>
<xs:element name=”displacement”
type=”xs:integer”/ >

<xs:element name=”seats” type=”xs:integer”/>
<xs:element name=”year” type=”xs:integer”/>

</xs:sequence>
<xs:attribute name=”license” type=”xs:string”/>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>
Figure 4: cars.xsd

The XML document which follows is called car.xml
(see in Figure 7) and corresponds to the schema
above.

3.2.2 Limitations on the input documents

Limitations have been made on what type of XML
schemas in our system can handle. There are many
different types of semantic and syntax in the W3C
standard for XML schemas but for now the system
only handles the simplest forms of XML schemas.
The system can not handle user defined data types,
the only data types that are implemented is text/string,
date and integer. When you transform the XML
schema into a create table statement the data types in
the statement must be compatible with the data types
in the database, MS SQL server 2000. The user
defined data types and the simple data types do not
correspond to any of the data types in the database
and therefore can not be used in the create statement.
Complex types create the levels in the XML
documents and the root element is a complex type
that all the other types are included in. Attributes are
included and they can be used at different levels.
Limitations on what types of XML documents
handled are set by the limitations on the XML
schemas.

3.3 Overview the Components

3.3.1 Storage Components

In this subsection, we describe how the fixed
mapping is implemented. Our system generates a
space of possible schema mappings by repeatedly
transforming the original XML Schema, and for each
transformed schema, applying a fixed mapping from
XML Schema into relations. In order to guarantee the
existence of a fixed mapping, we define the notation
of “Physical schema”. In a physical schema, each
type name defines a structure that can be directly
mapped to a relation. We now sketch the fixed-
mapping algorithm used to generate a physical
schema from an XML Schema. The algorithm is
applied top-down on the structure of the type, and for
each type in the original schema. For a type
definition define type X { T }, where X is the name
of the type, and T is the structure defining that type,
the fixed-mapping algorithm is first applied on T.
This returns a new type T’ along with a set of new
type definitions define type X1 { T1 } ... define type
Xn { Tn }, where all of the type T’, T1, ..., Tn are
normalized. A given type structure T is normalized,
recursively, as follows:
l If the type is an atomic type (e.g., string),

return the type unchanged.
l If the type is an (optional) element declaration,

then return the element declaration with its
content normalized.

l If the type is a sequence of two types, return
the sequence of their normalized types.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

567

http://www.w3.org/2001/XMLSchema

l If the type is a repetition (e.g., element a*),
then insert a new type name with the
normalized content of the original type (e.g.,
X1* with define type X1 { element a }).

l If the type is a union (e.g., element a | element
b), then create a new type name for each
component of the union with the contents of
the original type normalized (e.g., X1 | X2 with
define type X1 { element a } and define type
X2 {element b }).

After the original schema is normalized,
transformations can be applied on the resulting
physical schema. These transformations always result
in a physical schema which can then be mapped into
a relational table. The algorithm to map a physical
schema into a set of relations is as follows:
l Create one relation RX for each type name X;
l For each relation RX, create a key that stores

the id of the corresponding element;
l For each relation RX, create a foreign key

parent PX to all the relations RPX such that
PX is a parent type of X;

l Create a column in Ra for each element a
inside the type X that contains a value;

l If the data type is contained within an optional
type then the corresponding column can
contain a null value.

The mapping procedure follows the type
stratification: elements in the physical type layer are
mapped to columns, elements within the optional
types layer are mapped to columns that allow null
values, and named types are used only to keep track
of the child-parent relationship and for the generation
of foreign keys.

3.3.1.1 Schema Generation

The Schema Generation module takes an XML
schema (see Figure 4) as input and transforms it into
a physical schema. When the XML schema was input
into our system it resulted in the following physical
schema is show in Figure 5:
type cars = car [owner [string], model [string],
color [string], displacement [integer], seats
[integer], year [integer], license [integer]] ;
Figure 5: Physical schema

The root of the XML schema cars.xsd is cars and
therefore car becomes the type in the physical
schema. Later on it will be shown that car will also
be the name of the table that the XML document will
be translated into.

3.3.1.2 Schema Transformation

In this module the physical schema which was
output from the Schema generation module will be
used as input. The physical schema will be
transformed into a create table statement written in
SQL. When using the Physical Schema (see Figure 5)
created in the Schema generation module as input.

The following Create table statement (see Figure 6)
will be the output of the Schema transformation
module.
CREATE TABLE cars (car id serial PRIMARY
KEY, owner STRING, model STRING, color
STRING, displacement INTEGER, seats
INTEGER, license INTEGER) ;
Figure 6: Create table statement

When the create table statement is successfully
created it will be passed to the database and the
following module will start working on filling the
table with information.

3.3.1.3 DB Loader

The DB loader takes the XML document that
corresponds to the XML schema used in earlier
modules as input and creates one or several insert
statements written in SQL. This depends on the
structure of the XML document (see Figure 8). When
using the XML document as input the result is only
one insert statement which will be passed to the
database. This is the case when the document car.xml
(see Figure 7) is loaded to the database, because the
document contains several cars with information
about their owners and other details. A part of the car
XML document with two car elements are here
presented:
<?xml version=”1.0” encoding=”ISO-8859-1” ?>
<cars
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-
instance”xsi:noNamespaceSchemaLocation=”cars.xsd”>
<car license=”AA-1111”>

<owner>Kevin </owner>
<model>Peugeot</model>
<color>Silver</color>
<displacement>2000</displacement>
<seats>4</seats>
<year>2002</year>

</car>
<car license=”BB-2222”>

<owner> Helen</owner>
<model>Jeep</model>
<color>Black</color>
<displacement>3000</displacement>
<seats>4</seats>
<year>2003</year>

</car>
…

</cars>
Figure 7: car.xml (A part of the car XML
document)

Consider a DOM tree fragment rooted at the cars
element. The DOM tree is illustrated by Figure 8.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

568

http://www.w3.org/2001/XMLSchema-

Figure 8: Document Object Model (DOM)
representation of a simple XML document
The output, with two car elements, is the following
two insert statements (see Figure 9):
Insert into cars (car_owner, car_model, car_color,
car_displacement, car_seats, car_license)
values (’Kevin ’, ’Peugeout’, ’Silver’, ‘2000’ ,
‘4’, ’AA-1111’, ‘2002’);
Insert into cars (car_owner, car_model, car_color,
car_displacement, car_seats, car_license)
values (’ Helen’, ’Jeep’, ’Black’, ‘3000’ , ‘4’, ’BB-
2222’, ‘2003’);
Figure 9: Insert statements

The DB Loader also uses the create table statement
which was output from the Physical schema
transformation module. The reason for this is to find
out what data types the elements are to be able to
build correct insert statements. Some elements
require around them because the data type requires it
in SQL like the string and date data types. The
system is restricted to manage only the data types
string and integer.

3.3.2 Retrieval Components

In this subsection, we describe how the user
submits an XQuery question as input, translates it
into the SQL query and sends it to the database. The
result set returned from the database is then
converted into an XML document and returned to the
user.

3.3.2.1 Query Translation

The Query Translation module takes an XQuery
question as input, translates it into the corresponding
SQL query and sends it to the database. The result set
returned from the database is then converted into an
XML document which is the output of the module.

Figure 10: Query Translation Diagram

3.3.2.1.1 XQuery to SQL translation

In our system, the mapping of XQuery to SQL
(see Figure 10) is done in two phase. The first phase
user submits an XQuery question (see Figure 11) to

the Query Nomoralizer then rewriting an XQuery XQ
in a normal form XQnf is shown in Figure 12.
For $cars in document ("car.xml")/cars
Where $cars/license = “AA-1111” and “BB-2222”
Return $cars/owner, $cars/model, $car/color ;
Figure 11: XQuery question

Let $cardb := document ("car.xml")/cars
For $cars in cardb/cars, $v_owner in $cars/owner,
$v_color in $cars/color, $v_license in $cars/license,
$v_model in $cars/model
Where $v_license = “AA-1111” and “BB-2222”
Return ($v_owner, $v_model, $v_color);
Figure 12: XQuery normal form XQnf

The second phase XQnf is passed to the SQL
Generator to create SQL queries for the given
Physical schema:
-SELECT clause. For each varable v in the XQuery
return clause, if v refer to a type in the Physical
schema, all attributes of the corresponding table are
added to the clause. Otherwise, if v refers to an
element with no associated type, the corresponding
attribute is added to the clause.
-FROM clause. For each variable v mentioned in the
XQuery (in both where and return clauses), if v refer
to a type T in the physical schema, the corresponding
table RT is added to the clause.
-WHERE clause. Conditions in where clause are
translated in a straightforward manner, by replacing
variable occurrences with the appropriate column
name. In addition, for each variable in the XQuery, if
the path expression defining the variable includes
elements in that are mapped into separate tables, a
condition must be added to enforce the key/foreign-
key constraint. The query mapping algorithm
generates the SQL Query shown in Figure 13:
SELECT car_license, car_owner, car_model,

car_color
FROM cars
WHERE car_license = ‘AA-1111’ AND ‘BB-2222’;
Figure 13: SQL Query

3.3.2.1.2 SQL result to XML conversion

Runs the SQL query on the RDBMS and passes
the resulting tuples (see Figure 14) to the XML
Tagger. Finally the XML Tagger will be converted
into an XML documents (see Figure 15) based on
resulting tuples; XML documents will be returned to
the user.
Cars
car_license car_owner car_model car_color
AA-1111 Kevin Peugeout Silver
BB-2222 Helen Jeep Black

Figure 14: Resulting tuple

<car licence=”AA-1111”>

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

569

<owner>Kevin </owner>
<model>Peugeot</model>
<color>Silver</color>
</car>
<car licence=”BB-2222”>
<owner> Helen</owner>
<model>Jeep</model>
<color>Black</color>
</car>

Figure 15: Query Results of XML documents

4. System Implementation

A prototype system, called XQPD, has been
designed for this research (see Figure 16). We
implement the XQPD on the client-server
environment and use MS SQL Server 2000 as the
development tools. Users can submit an XQuery
question as input. The results returned from the
database server is then converted into an XML
document and returned to the user.

Figure 16: System Implementation

5. Conclusions and Future Works

In this paper, we propose a structure to build a
storage and retrieval integrated architecture for
XQuery. The contributions of this paper are related
to the following aspects:
l Using fixed-mapping algorithm to store XML

document/XML Schema into RDBMS.
l Using XQuery to retrieve XML document from

RDBMS.
There are still some problems unsolved or not

well solved:
l In our paper, we limit the scope of document in

semi-structured. As we know, documents
which could include documents images
spreadsheets, voice or video, etc. How about
these types of document to management are the
topic to discuss.

l We proposed is focusing on Storage and
Retrieval. Deletion and revision function will

be added in our system if the future versions of
XQuery support deleting and revising.

l Our future version of system can support all
XML schema and user-defined document.

6. References

[1] James H. Cook, “XML Sets Stage for Efficient

Knowledge Management”, IT Professional, pp.55-57,
May –June 2000.

[2] Takeya Kasukawa, Hideo Matsuda, Michio Nakanishi,
and Akihiro Hashimoto, “A New Method for
Maintaining Semi-Structured Data Described in
XML”, Proceedings of IEEE Pacific Rim Conference
on Communications, Computers, and Signal
Processing, pp.258-261, August 1999.

[3] Elisa Bertino, and Barbara Catania, “Integrating XML
and Databases”, IEEE Internet Computing, Vol: 5
Issue: 4, pp.84-88, July-Aug, 2001.

[4] R. Bourret, C. Bornhövd, and A. Buchmann, “A
Generic Load/Extract Utility for Data Transfer
between XML Documents and Relational Databases”,
Second International Workshop on Advance Issues of
E-Commerce and Web-Based Information Systems
(WECWIS 2000), pp.134-143, June 2000.

[5] James McGovern, Per Bothner, Kurt Cagle, James
Linn, and Vaidyanathan Nagarajan, XQuery Kick Start,
ISBN: 0672324792, SAMS, 2003.

[6] Don Chamberlin, Jonathan Robie, and Daniela
Florescu, “Quilt: An XML Query Language for
Heterogeneous Data Sources”, Proceedings of WebDB
2000 Conference, in Lecture Notes in Computer
Science, Springer-Verlag, 2000.

[7] Mary Fernandez, Wang-Chiew Tan, and Suciu Dan.
“SilkRoute: Trading between Relations and XML”,
Proceedings of the Ninth International World-wide
Web Conference (WWW'9), Amsterdam, May 2000.

[8] P. Bohannon, J. Freire, J. R. Haritsa, M. Ramanath, P.
Roy, and J. Simeon, “LegoDB: Customizing
Relational Storage for XML Documents”,
Proceedings of the 28th VLDB Conference, Hong
Kong, China, 2002.

[9] P. Roy, J. Simeon, P. Bohannon, and J. Freire, “From
XML schema to relations: A cost-based approach to
XML storage”, Proceedings of the 18th International
Conference on Data Engineering, pp 64 - 75, Feb-
March 2002.

[10] I. Manolescu, D. Florescu, and D. Kossmann.
“Answering XML queries on heterogeneous data
sources. In Proc. of the 27th Int. Conf. on Very Large
Data Bases (VLDB 2001), pages 241–250, 2001.

[11] W3C, XML, http://www.w3.org/XML, 1998.
[12] W3C, XQuery 1.0 and XPath 2.0 Formal Semantics,

W3C Working Draft, http://www.w3.org/TR/xquery-
semantics/, February 2004.

[13] W3C, XML Path Language (XPath) Version 1.0.
http://www.w3.org/TR/xpath, November 1999.

[14] W3C, XML Query Data Model, W3C Working Draft,
http://www.w3.org/TR/xpath-datamodel/, November
2003.

[15] W3C, XQuery 1.0: An XML Query Language, W3C
Working Draft, http://www.w3.org/TR/xquery/,
November 2003.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

570

http://www.w3.org/XML
http://www.w3.org/TR/xquery-
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xquery/

