
1 

Design and Implementation of the CCC Parallel Programming Language 
 
 

Nai-Wei Lin 
Department of Computer Science and Information Engineering 

National Chung Cheng University 
Chiayi, Taiwan 621, R.O.C. 

naiwei@cs.ccu.edu.tw 
 

Abstract- CCC is a high-level parallel 
programming language that aims to provide a 
coherent integration of various parallel 
programming paradigms. CCC supports both data 
and task parallelism. In CCC, data parallelism is 
specified in SIMD model, while task parallelism is 
specified in MIMD model. Task parallelism in CCC 
supports both message-passing communication 
abstraction and shared-variables synchronization 
abstraction. The CCC parallel programming system 
aims to provide a unified implementation on top of 
various parallel machines. CCC has been 
implemented on both SMPs and SMP clusters. The 
implementation is mainly based on a virtual shared 
memory machine interface that supports both shared 
memory and dynamic task creation. This paper 
describes the design and implementation details of 
CCC. 
 
Keywords: Parallel programming languages, data 
parallelism, task parallelism. 
 

1. Introduction 
 

 The CCC parallel programming language aims to 
provide a coherent integration of various parallel 
programming paradigms. The features of the CCC 
parallel programming language are illustrated in 
Figure 1. CCC supports both data and task 
parallelism. A CCC program consists of a collection 
of coordinated concurrent data-parallel or task-
parallel tasks. Data parallelism in CCC is specified in 
single-instruction-multiple-data (SIMD) model; In 
other words, data-parallel tasks are executed 

synchronously and perform the same operations on 
different data. Shared-memory abstraction is 
provided to support remote read, remote write, and 
reduction operations among data-parallel tasks.  

In contrast, task parallelism in CCC is specified in 
multiple-instruction-multiple-data (MIMD) model; In 
other words, task-parallel tasks are executed 
asynchronously and usually perform different 
operations on different data. Both message-passing 
communication abstraction and shared-variables 
synchronization abstraction are provided to facilitate 
various interaction patterns among task-parallel tasks. 
These salient features make CCC a simple and 
modular language for studying various parallel 
programming paradigms. 

The CCC parallel programming system aims to 
provide a unified implementation on top of various 
parallel machines. CCC has been implemented on 
both symmetric multiprocessors (SMPs) and SMP 
clusters. The structure of the CCC parallel 
programming system is illustrated in Figure 2. The 
CCC programming system can be divided into five 
layers.  

The first layer is the machine layer. The rapid 
advance of very large silicon integration (VLSI) and 
communication technologies has recently made 
SMPs or multithreaded processors (MTPs) and SMP 
or MTP clusters easily available. The CCC 
programming system is designed to target on these 
machines. Since CCC programs may contain both 
task and data parallelism, and task parallelism is 
more general than data parallelism, our 
implementation is mainly based on a virtual shared 
memory machine interface that supports both shared 

 
CCC applications 

CCC compiler 
CCC runtime library 

Virtual shared memory machine interface 
Pthread Millipede 

SMP or MTP SMP or MTP cluster 
 
Figure 2. The structure of the CCC parallel 
programming system. 

             Data 
 
Parallelism 
    Message-passing 
             Task 
    

Shared-variables 
 

  Figure 1. The features of the CCC parallel 
programming language. 

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

944



2 

memory and dynamic task creation. For SMPs, these 
functionalities are supported directly by the 
underlying machines. To provide better portability, 
we will use the standard library Pthread that supports 
these functionalities [8]. For SMP clusters, the 
mechanisms for distributed shared memory and 
dynamic remote task creation are required. The 
millipede library is one library that supports such 
mechanisms on SMP clusters [9]. The second layer 
of the CCC programming system is the library that 
supports shared memory and dynamic task creation 
on top of the underlying machines.  

The third layer of the CCC programming system 
provides a common interface on top of various 
libraries that supports shared memory and dynamic 
task creation. This interface makes the CCC compiler 
and runtime library highly retargetable. To retarget 
CCC compiler on a different library or machine, this 
layer is the only layer that needs to modify and the 
modification is very easy.  

To simplify the code generator of the compiler, a 
collection of functions that supports the salient 
features of CCC on top of the virtual shared memory 
machine interface is composed into a runtime library. 
This runtime library serves as the fourth layer of the 
CCC programming system. The fifth layer is the 
CCC compiler and the sixth layer is the CCC 
applications. This structure makes the 
implementation of CCC simple and retargetable. 

The remainder of this paper is organized as 
follows. Section 2 describes the design details of 
CCC. Section 3 describes the implementation details 
of CCC. Section 4 reviews related work. Finally, 
conclusions are given in Section 5. 

 

2. The Design of CCC 
 

The language CCC is designed as a small 
extension of the language C. This small extension of 
C mainly provides abstractions for specifying the 
concurrency, communication, and synchronization of 
parallel tasks. The main aim of CCC design is to 
provide a coherent integration of various parallel 
programming paradigms to facilitate instruction and 
research of parallel computing. Hence, we strive to 
integrate both data and task parallelism, and both 
message-passing communication abstraction and 
shared-variables synchronization abstraction. Both 
data and task parallelism will be specified as task-
level parallelism in terms of data-parallel and task-
parallel tasks. Channels are used as the message-
passing communication abstraction and monitors are 
used as the shared-variables synchronization 
abstraction. Both channels and monitors will be 
viewed as objects. 
 
2.1. Data parallelism 
 

We consider the data parallelism first. The 
concurrency abstraction for the data parallelism is 
specified by the definition of the domain construct 
and the invocation of the data-parallel functions 
defined in domain construct.  

domain name [size] { 
         data_declarations; 
         data_parallel_functions; 
     } 
Each data-parallel function definition here represents 
a collection of size parallel tasks. An invocation of a 
data-parallel function will concurrently create size 
tasks. The synchronization abstraction is implicitly 
specified by the synchronous semantics of the SIMD 
model. The communication abstraction is implicitly 
specified by a global name space that provides 
remote read, remote write, and reduction operations 
on the variables defined within the domain construct. 
The data distribution specifications can be given in 
the parameter specifications in the data-parallel 
function definitions. 

This design has several merits. First, the domain 
construct provides a virtual task abstraction. Usually, 
the best performance occurs when the number of 
tasks is the same as the number of processors 
available. The mapping of virtual tasks to physical 
tasks is handled by the compiler. This allows the 
programmers to specify the parallelism degree of the 
applications independent of the number of processors 
on the underlying machines. Second, the SIMD 
model ensures a deterministic semantics for data 
parallelism. This significantly helps the 
understanding of the program behaviors. Third, the 
global name space provides a shared-memory 
abstraction. This greatly simplifies the non-local 
accesses of variables on different virtual tasks. These 
merits make CCC a simple and modular language for 
specifying data parallelism. 
 
2.1. Task parallelism 
 

We now consider the task parallelism. The 
concurrency abstraction for the task parallelism is 
specified via the definition of task-parallel functions 
and the parallel section constructs. A task-parallel 
function 

task task_parallel_function(); 
is declared by putting the keyword task before its 
function definition. There are two forms of parallel 
sections. The par construct is used to concurrently 
invoke a group of task-parallel functions.  

par { 
        func_1; 
        func_2; 
           … 
        func_n; 
    } 
This example will execute the n task-parallel 
functions func_1, func_2, …, and func_n as n tasks 

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

945



3 

in parallel. Parallel sections are executed in fork-join 
form; that is, the parallel section exits only when all 
created tasks exit. The parfor construct is used to 
concurrently invoke multiple instances of a group of 
task-parallel functions. 

parfor (init_expr; exit_expr; step_expr) { 
        func_1; 
        func_2; 
          … 
        func_n; 
     } 
This example will execute multiple instances of the n 
task-parallel functions func_1, func_2, …, and 
func_n as tasks in parallel. The semantics for the 
control expressions init_expr; exit_expr; and 
step_expr in the parfor construct is the same as that 
in the for construct in C. The par and parfor 
constructs are more structured than the fork and join 
constructs in most libraries. 

The communication abstraction for the task 
parallelism is specified via channels or asynchronous 
message queues. The messages in the channels can 
be accessed via the following two functions 

msg = receive(channel); 
send(channel, msg); 

There are four types of channels: pipes, spliters, 
mergers, and multiplexers. Pipes are for one-to-one 
communication. They are the most basic channels. 
The other three types of channels can be 
implemented using pipes. Spliters are for one-to-
many communication. These channels are useful for 
producer-consumer applications with single producer. 
Mergers are for many-to-one communication. These 
channels are useful for client-server applications with 
a single server. Multiplexers are many-to-many 
communication. These channels are useful for 
producer-consumer applications with multiple 
producers or client-server applications with multiple 
servers. Channels provide a simple abstraction for 
implementing communication in message-passing 
programming model. 

The abundance of channel types gives several 
merits. First, communication structures among 
parallel tasks are more comprehensive. Second, the 
specification of communication structures is easier. 
Third, the implementation of communication 
structures is more efficient. Fourth, the static analysis 
of communication structures is more effective. 

The synchronization abstraction for the task 
parallelism is specified via active monitors.  

monitor name { 
       data_declarations; 
       condition_variable_declarations; 
       function_definitions; 
     } 
Monitors are structured and efficient constructs for 
implementing both the mutual exclusion and 
condition synchronization in shared-variable 
programming model. The functions defined in 

monitors are mutually exclusive by default. A read 
keyword can be put before the definition of a 
function if that function only reads the variables in 
the monitors. Multiple such functions can be invoked 
concurrently. Three functions wait(cond), 
signal(cond), and signalall(cond) are provided to 
manipulate condition variables. The signal functions 
have the semantics that they will continue to execute 
after signaling. Nested monitor calls are allowed in 
the language. A task releases monitor exclusion when 
it makes a nested monitor calls, and it needs to 
reacquire monitor exclusion when it returns from the 
call. 

 

3. The Implementation of CCC 
 

The CCC parallel programming system aims to 
provide a unified implementation on top of various 
parallel machines. CCC has been implemented on 
both SMPs and SMP clusters. The implementation 
consists of a virtual shared memory machine 
interface, a runtime library, and a compiler. 
 
3.1. The virtual shared memory machine 
interface 
 

The virtual shared memory machine interface 
provides a common interface that supports both 
shared memory and dynamic task creation on top of 
both SMPs and SMP clusters. We now describe the 
functions provided in the interface. 

The virtual shared memory machine is initialized 
with the VSMM_init() function and is finalized with 
the VSMM_final() function. The VSMM_init() 
function also sets the number of processors in the 
machine. The VSMM_num_of_procs() function 
queries the number of processors in the machine. The 
VSMM_my_pid() function returns the identifier of 
the processor on which the current task is executing. 
The VSMM_min_load_proc() function returns the 
identifier of the processor that has the minimal 
number of tasks. This function provides useful 
information for load balancing. The VSMM_share() 
function allocates a section of storages from the 
shared memory. 

The tasks in the virtual shared memory machine 
are created using the VSMM_create() function. Each 
created task is assigned to execute on one of the 
processors in the machine. The VSMM_my_tid() 
function returns the identifier of the current task. The 
VSMM_exit() function terminates the current task. 
The VSMM_join() function waits for the termination 
of a specific task. 

The tasks in the virtual shared memory machine 
can be synchronized with four types of 
synchronization objects: mutex locks, read-write 
locks, condition variables, and barriers. The 
functions VSMM_lock_init(), VSMM_lock(), 

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

946



4 

VSMM_unlock(), and VSMM_lock_destroy() 
support the functionalities of mutex locks. The 
functions VSMM_rwlock_init(), VSMM_rdlock(), 
VSMM_wrlock(), VSMM_rwunlock(), and 
VSMM_rwlock_destroy() support the functionalities 
of read-write locks. The functions 
VSMM_cond_init(), VSMM_wait_lock(), 
VSMM_wait_rdlock(), VSMM_wait_wrlock(), 
VSMM_signal(), and VSMM_cond_destroy() 
support the functionalities of condition variables. The 
functions VSMM_barrier_init(), VSMM_barrier(), 
and VSMM_barrier_destroy() support the 
functionalities of barriers. 

The implementations of the virtual shared memory 
machine interface using Pthread and Millipede are 
both very straightforward. These two libraries have 
very similar functions to the ones in the virtual 
shared memory machine interface. Hence, most of 
the implementations are just macro definitions. 

The remarkable details in the implementation 
using Pthread are as follows. First, since the library is 
running on a single SMP, the function 
VSMM_num_of_procs() is defined as 1 and both 
functions VSMM_my_pid() and 
VSMM_min_load_proc() are defined as 0. Second, 
read-write locks and barriers are not implemented in 
Pthread. The set of functions for read-write locks and 
barriers are implemented using mutex locks and 
condition variables in Pthread. 

The remarkable details in the implementation 
using Millipede are as follows. First, to implement 
the function VSMM_min_load_proc(), an array 
VSMM_num_of_tasks[] is declared as shared that 
maintains the number of active tasks on each SMP. 
This array is updated by functions VSMM_create() 
and VSMM_exit(), and is read by the function 
VSMM_min_load_proc(). Second, the function 
VSMM_create() is implemented using the remote 
thread creation function, and the function 
VSMM_share() is implemented using the shared 
memory allocation function and the shared memory 
distribution function in Millipede. Third, the join of 
tasks is not implemented in Millipede, it is 
implemented using barriers in Millipede. Fourth, 
read-write locks are not implemented in Millipede. 
The set of functions for read-write locks are 
implemented using mutex locks and condition 
variables in Millipede. 
 
3.2. The runtime library 
 

The CCC runtime library contains a collection of 
functions that implements the salient abstractions of 
CCC on top of the virtual shared memory machine 
interface. 

We consider the data parallelism first. For the 
sake of efficiency, the SIMD model of the domain 
construct will be transformed and executed in the 

SPMD model. For each domain construct named 
dname, the compiler will declare a structure type 

CCC_dmain_dname_type 
for it. Except for the original data members in the 
domain construct, the compiler will add a mutex 
lock and a barrier into it to implement the SPMD 
model. The compiler will also define a function  

CCC_domain_dname_init() 
for it to initialize the mutex lock and barrier. The set 
of functions CCC_reduce_op() provide efficient 
implementation for reduce operations: addition, 
product, bit-and, bit-or, bit-xor, logical-and, logical-
or, maximum, and minimum. 

We now consider the task parallelism. For each 
task-parallel function named fname and with n 
parameters, the compiler will declare a structure type  

CCC_fname_n_param_type 
for it. To create a task for this task-parallel function, 
its arguments will be packed into a structure of this 
type. The compiler will also define two macro 
definitions  

CCC_fname_n_pack_arg() 
CCC_fname_n_unpack_arg() 

to pack and unpack its arguments before and after 
entering the function. 

Task-parallel functions can be invoked in parallel 
sections. Parallel sections are executed in fork-join 
form. To appropriately execute the join operations, 
the task identifier for each created task will be 
maintained. The macro definition  

CCC_parallel_section_prologue()  
determines the number of function calls in the 
parallel section and declares an array to store the task 
identifiers. The macro definition  

CCC_parallel_section_epilogue() 
performs the appropriate join operations. 

For each monitor construct named mname, the 
compiler will declare a structure type  

CCC_monitor_mname_type 
for it. If there is no read function in the monitor, a 
mutex lock will be added into the structure, and the 
body of each function will be enclosed by the lock 
and unlock operations of the mutex lock. If there are 
some read functions in the monitor, a read-write lock 
will be added into the structure, and the body of each 
function be enclosed by the lock and unlock 
operations of the read-write lock. 

For each channel of basic type tname, the library 
contains an implementation of it using a monitor. 
More specifically, it contains a declaration of the 
structure type  

CCC_channel_tname_type 
and the definitions of the following two mutually 
exclusive functions 

void CCC_send_tname 
(CCC_channel_tname_type, tname); 

tname CCC_receive_tname 
(CCC_channel_tname_type); 

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

947



5 

For user-defined types, the compiler will generate the 
declarations of the corresponding structure type and 
the definitions the corresponding send and receive 
functions. 

The code generator of the compiler can be 
significantly simplified given the macros and 
function templates defined in the runtime library. 
This simplification also greatly facilitates the 
maintenance and enhancement of the compiler in the 
future. 
 
3.3. The compiler 
 

The CCC compiler translates CCC programs into 
C programs that call functions provided by the virtual 
shared memory machine interface and the runtime 
library.  

We consider the data parallelism first. The CCC 
compiler first needs to map the virtual tasks into the 
physical tasks based on the number of processors 
available. Usually, multiple virtual tasks will be 
mapped into one physical task. Hence, the mapping 
would be done by merging multiple data mapped to 
the same physical task and emulating the concurrent 
execution of multiple instances of a function. 

The merging of the multiple data may add more 
dimensions to each variable. For example, if the 
domain construct is declared as a 2-dimensional 
array and the variable is also declared as a 2-
dimensional array, then the merged variable would 
become a 4-dimensional array. The first two 
dimensions are used to identify the virtual tasks and 
the last two dimensions are the original variables. 
Hence, the access patterns for each variable would be 
changed accordingly. The CCC compiler will 
generate an access function for each variable. 

The emulation of the concurrent execution of 
multiple instances of a function is much more 
difficult. Basically, each statement in the function 
body should be executed multiple times. However, to 
improve the efficiency on SMPs or SMP clusters, we 
would like to emulate the SIMD model using the 
SPMD model. That is, we will synchronize only 
when necessary.  

The inference of the necessary synchronization 
points depends on the data dependence among the 
statements in the function body. The data dependence 
is inferred from the accesses of non-local variables 
defined in domain construct. These non-local 
variable accesses represent remote read, remote write, 
or reduce operations, and are the necessary 
synchronization points. The data dependence occurs 
between read-write, write-read, and write-write pairs. 
If multiple pairs overlap, then they can share their 
synchronizations to minimize the necessary 
synchronization points.  

The statements among synchronization points 
could then be grouped into a loop to emulate the 

concurrent execution of multiple instances. Such a 
grouping could minimize the number of loops. 

If a non-local variable access occurs in a 
conditional statement, like an if-statement or switch-
statement, then this conditional statement needs to be 
partitioned into multiple conditional statements to 
make sure that every task will execute this non-local 
variable access. Similarly, if a non-local variable 
access occurs in a repeated statement, like a for-
statement or while-statement, then each task needs to 
execute the same number of iterations to ensure that 
every task will execute this non-local variable access, 
although some of the tasks may do nothing else in the 
loop. 

The compiler has performed several optimizations 
to improve the quality of the generated code. First, 
the merging of the multiple data may be omitted. 
Some of the variables defined in the domain 
construct maintain the same value for all virtual tasks. 
In such situations, one instance of these variables can 
be shared among the virtual tasks instead of 
duplicating multiple instances of these variables. 
Second, the looping of statements may be omitted. If 
the merging of a variable is omitted, then there is no 
need to use a loop to manipulate the instances of this 
variable. Third, the global checking for loop 
termination may be omitted. If the loop conditional 
expression ensures that every task executes the same 
number of iterations, then there is no need to perform 
the global checking for the loop termination. 

We now consider the task parallelism. Since 
monitors and channels are higher-level shared 
memory synchronization and communication 
abstractions, the implementation of these abstractions 
in terms of lower-level abstractions provided by the 
virtual shared memory machine interface is quite 
straightforward. We only describe the static analysis 
of communication structures based on the channel 
declarations.  

The static analysis of communication structures 
checks whether the channels are used as they are 
declared. This analysis is based on a compact control 
flow graph for each function. There are five kinds of 
nodes in the compact control flow graphs. A call 
node represents a call to a sequential function. A 
spawn node represents a call to a parallel function. A 
compound node represents a sequence of nodes. An 
alternative node represents a list of nodes that are 
mutually exclusive. A repetition node represents a 
node that may be executed multiple times. Based on 
this graph, we can analyze first-order channels in 
linear time. 
 

4. Related Work 
 

The programming language CCC is highly 
influenced by the data parallelism features provided 
by Dataparallel C [7] and DINO [10], the monitor 
construct provided by Concurrent Pascal [4], the 

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

948



6 

channels provided by Fortran M [5], and the coherent 
integration of various parallel programming 
paradigms provided by SR [2]. 

In Dataparallel C, the non-local access patterns 
use the instance name instead of the domain name. 
This makes it difficult to reuse the functions. In 
DINO, the variables in domain are declared using 
global view instead of local view. This makes it 
necessary to explicitly distinguish local and non-local 
accesses. Monitors in Concurrent Pascal are passive 
construct, while monitors in CCC are active objects. 
Fortran M only provides one-to-one and many-to-one 
channels. We discover that one-to-many and many-
to-many channels are also very useful. SR only 
supports task parallelism. Although data parallelism 
can be represented by task parallelism, the domain 
construct provides a higher-level abstraction that 
facilitates readability and maintainability. 

Efficiently implementing a parallel programming 
system that supports both data and task parallelism 
on both SMPs and SMP clusters is a very difficult 
job. Most related projects concentrate on 
implementing efficient thread libraries supports 
either data or task parallelism on either SMPs or 
SMP clusters. 

The libraries ThreadMark[1] and OpenMP [11] 
efficiently support data parallelism on SMP clusters. 
However, using these libraries to support task 
parallelism is very difficult if it is not impossible. 
The libraries Pthread, [8] and Cilk [3] efficiently 
support task parallelism on a single SMP. However, 
the extensions of these libraries on SMP clusters are 
still unavailable. The libraries Mellipede [9] and 
Filaments [6] efficiently support task parallelism on 
SMP clusters. However, the interfaces they provide 
are very different. 
 

5. Conclusions 
 

CCC is a high-level parallel programming 
language that aims to provide a coherent integration 
of various parallel programming paradigms. CCC 
supports both data and task parallelism. In CCC, data 
parallelism is specified in SIMD model, while task 
parallelism is specified in MIMD model. Task 
parallelism in CCC supports both message-passing 
communication abstraction and shared-variables 
synchronization abstraction. Both data and task 
parallelism are specified as task-level parallelism. 
Channels are used as the message-passing 
communication abstraction and monitors are used as 
the shared-variables synchronization abstraction. 
Both channels and monitors are viewed as objects. 
These salient features make CCC a simple and 
modular language for studying various parallel 
programming paradigms. 

The CCC parallel programming system aims to 
provide a unified implementation on top of various 
parallel machines. CCC has been implemented on 

both SMPs and SMP clusters. The implementation is 
mainly based on a virtual shared memory machine 
interface that supports both shared memory and 
dynamic task creation. To retarget CCC compiler on 
a different library or machine, the virtual shared 
memory machine interface is the only component that 
needs to be modified. This makes the implementation 
of CCC simple and retargetable. 
 

6. Acknowledgements 
 

This work was supported in part by the National 
Science Council of R.O.C. under grant numbers 
NSC-87-2213-E-194-006, NSC-88-2213-E-194-004, 
NSC-89-2213-E-194-004, and NSC-90-2213-E-194-
055. The author would like to thank all his Master 
students for their efforts in the implementation of the 
CCC parallel programming system. 
 

References 
 
[1] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, 

R.Rajamony, W. Yu, and W. Zxaenepoel, 
“TreadMarks: Shared Memory Computing on 
Networks of Workstations,” IEEE Computer, 
29(2):18-28, 1996. 

[2] G. Andrews and Olsson, The SR Programming 
Language: Concurrency in Practice, 
Benjamin/Cummings, 1993. 

[3] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. 
Leiserson, K. H. Randall, and Y. Zhou, “Cilk: An 
Efficient Multithreaded Runtime System,” In Proc. 
Symposium on Principles and Practice of Parallel 
programming, pp. 207-216, ACM, 1995. 

[4] P. Brinch Hansen, “The Programming Language 
Concurrent Pascal,” IEEE Transactions on Software 
Engineering, 2 (June), 199-206, 1975. 

[5] I. Foster, and K. M. Chandy, “Fortran M: A Language 
for Modular Parallel Programming,” Journal of 
Parallel and Distributed Computing, 1994. 

[6] V. W. Freeh, D. K. Lowenthal, and G. R. Andrews, 
“Distributed Filaments: Efficient Fine-Grain 
Parallelism on a Cluster of Workstations,” First 
Symposium on Operating Systems Design and 
Implementation, pp. 201-212, Monterey, CA, 
November 14-17, 1994 

[7] P. Hatcher and M. Quinn, Data-Parallel Programming 
on MIMD Computers, The MIT Press, 1991. 

[8] IEEE. IEEE P1003.1c/D10: Draft Standard for 
Information Technology – Portable Operating Systems 
Interface (POSIX), September 1994. 

[9] A. Itzkovitz, A. Shuster, and L. Shalev, “Thread 
Migration and its Applications in Distributed Shared 
Memory Systems,” Journal of Systems and Software, 
vol. 42, pp. 71-87, 1998. 

[10] M. Rosing, R. B. Schnabel, and R. P. Weaver, “The 
DINO Parallel Programming Language,” Technical 
Report CU-CS-457-90, Department of Computer 
Science, University of Colorado, Boulder, Colorado, 
April 90. 

[11] The OpenMP Forum. OpenMP C and C++ 
Application Program Interface, Version 1.0, October 
1998. 

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

949




