
 1

Using FPGA to Implement a Partial Reconfigurable Architecture of
Embedded System

Yan-Xiang Deng
Yuan-Ze University, Chungli,

Taiwan, Republic of China
tys@ccit.edu.tw

Yu-Ching Chang
Yuan-Ze University, Chungli,

Taiwan, Republic of China
s897438@mail.yzu.edu.tw

Chao-Jang Hwang
Yuan-Ze University, Chungli,

Taiwan, Republic of China
 cschwang@saturn.yzu.edu.tw

Abstract - With the advance of science and
technology, information products be required with
light and thin, hence how to design a system into a
single chip become a trend, the embedded system is
typical example. Today the specification of products
are changeful and various. How to lengthen the
product lifetime on the market and to obtain more
profits becomes an important issue.

Our paper proposes a partial reconfigurable
architecture of embedded system, the system
combine one major MPU (MicroProcessor Unit) and
many reconfigurable function units. Utilize the
characteristic of FPGA (Field Programmable Gate
Array), we could reconfigure the function units
according to demand for specific function and
change the architecture of hardware to satisfy
different kinds of application. In addition, it can also
promote computing efficiency by hardware circuit.
Therefore, this architecture probably becomes an
optimized system between ASIC (Application Specific
Integrated Circuit) and GPP (General-Purpose
Processor).

Keywords: FPGA、Partial Reconfigurable、

Embedded System

1. Introduction

As we know, the technology of Computer and
Communication changes frequently, various
consumer electronic products appear on the market
constantly. Many research fields of Computer 、
Communication and Consumer Electronics are
integrated together gradually, and science and
technology of 3C are merged. Today, the technology
of integrated circuit progresses quickly, so how to
design a system into a single chip becomes a trend.
Embedded system may be represented widely.

The method of embedded hardware depends on
technique of SoC (System on a Chip). SoC can be
implemented by FPGA or ASIC. Present FPGA has
already had high density (90nm)、 high capacity
(more than eight million gate count)、faster I/O and
combine multiple microprocessor and various IP

(Intellectual Property). In addition, FPGA can
upgrade in the field to satisfy new standard, so we
can use FPGA to complete more complicated and
more high-speed embedded system, it may
substitutes for ASIC.

Reconfigurable architecture is a hot research field
of computing system recently. Because 3C industry
rising fast, the systematic scale has been already
more and more complicated, the offered functions
are more and more diversified, for example,
multimedia communication system. The
reconfigurable architecture of embedded system
becomes an important issue for our design to satisfy
the developmental trend of application system in the
future.

From the description above, our research goal is
to utilize the re-programmable technique of FPGA to
implement a reconfigurable architecture of
embedded system into a single chip that is flexible
and various.

The following sessions can be described as below :
We have introduced the development and

application of embedded system in the first session.
Then we will give the hardware structure for our
design and illustrate conception of reconfigurable
computing. We also introduce briefly our
development environment for software and hardware.
In the third session, we propose a design flow that
can be reconfigured in embedded system. The design
flow includes three steps:cEstablish hardware
structure of embedded system.dCreate application
program for embedded system.eIntegral verification.
The fourth session deals with the verification of all
hardware component, we can check the connectivity
whether it is matched to our design.

2. Background Knowledge

2.1. H/W Structure of Embedded System

Our hardware structure of embedded system is
showed in Figure 1. We use Xilinx EDK6.2 to set up
the microprocessor unit. The application logic unit is
reconfigurable and listed as following:

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

950

 2

y Microprocessor unit
MicroBlaze (32-bits soft CPU)
y Application logic unit

EMC (External memory controller)、GPIO
(General-purpose I/O) 、UART
y Memory unit

LMB BRAM (On-Chip memory)
y Communication interface unit

OPB (On-chip Peripheral Bus) 、LMB (Local
memory bus)
y Standard peripheral

RS232、7-segment LED、LED、DIP
Switch、 Push Button

Figure 1. System Structure

2.2. Reconfigurable Computing Architecture

A reconfigurable computing architecture
combines one major MPU and many reconfigurable
function units. The MPU control system operation
and reconfigurable hardware deal with data
operation. The reconfigurable function unit can be
treated as co-processor to accelerate specific
operation. Reconfigurable computing architecture is
showed in Figure 2. It includes a programmable
MPU on left-hand side and a reconfigurable function
unit on right-hand side. We can replace core1 by
core2 via JBit copy [1][2]. According to the demand
for specific function, system can dynamic change [3]
the architecture of hardware to satisfy different kinds
of application.

Figure 2. Reconfigurable Computing Architecture

2.3. Development Environment

In software, we use several EDA (Electronic
Design Automation) tools to help us complete our
design. Xininx© ISE (Integrated Software
Environment) can run synthesis 、 implementation
then produce bit-stream file to download to chip.
Modeltech© ModelSim can execute functional
simulation and EDK (Embedded Development Kit)
support many tools to develop embedded system. In
hardware, we use development board of Memec©,
DS-KIT-V2MB1000-EURO, it provides a FPGA
chip with 1,000,000 gate count and others resource.

3. Design and Implementation

3.1. Establish Hardware Structure

The design flow of hardware platform is showed
in Figure 3 and defined by the MHS
(Microprocessor Hardware Specification) file [4][5].
The hardware platform consists of one or more
processors and peripherals connected to the
processor buses. Users can define their own
peripherals and combine them in the MHS. The
MHS file is a simple text file.

Figure 3. Design Flow of Hardware Platform

The MHS file defines the system structure、

peripherals and embedded processors. It also defines
the connectivity of the system, the address map of
each peripheral in the system and configurable
options for each peripheral. The PlatGen (Platform
Generator) tool creates the hardware platform using
the MHS file as input. PlatGen produces net-list files
of various forms, for example, NGC or EDIF file.
Those files can be used by downstream tool to
download to FPGA chip. Top-level HDL wrappers
allow user to generate modular IP [6][7] that can be
partial reconfigurable. Figure 4 shows how to
generate modular IP.

3.2. Establish Software Environment and

Application Program

The software platform is defined by the MSS
(Microprocessor Software Specification) file. The

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

951

 3

MSS file defines customization parameters of driver
and library for peripherals、processor customization
parameters、 standard input and output devices、
interrupt handler routines and other related software
features. The MSS file is also a simple text file and
used as input by the LibGen (Library Generator) tool
for customization of drivers 、 libraries and
interrupts handlers.

Figure 4. Generate Modular IP

The source code of the application program can

be written in a high level language such as C or C++
or in assembly language. Once the source files was
created, GNU compiler compile the source file and
link to generate executable files in the ELF
(Executable and Link Format) format.

Entire process of creating the software platform
and application program is shown in Figure 5.

Figure 5. Design Flow of S/W Platform and Application

3.3. Integral Verification

In this step, we can separate two independent
directions: functional simulation and application
debug. The verification flow of design can be shown
in Figure 6.

Figure 6. Integral Verification Flow

3.3.1. Functional Simulation. The verification
platform is based on the hardware platform. The
verification specification allows the user to specify a
simulation model for each processor, peripheral or
other module in the hardware platform. The MHS
file is processed by the SimGen (Simulation
Generator) tool to create simulation files along with
some command files for specific simulators
supported by the tool.

3.3.2. Applications Debug. XMD (Xilinx
Microprocessor Debugger) and the GDB (GNU
debugger) are used together to debug the application
software. XMD provides an instruction set simulator,
and optionally connects to a working hardware
platform to allow GDB to run the user application.

When the device is configured, we can debug the
software application directly via the MDM
(MicroBlaze Debug Module) interface. GDB
connects to the MicroBlaze core through the MDM
and the XMD engine utility as shown in Figure 7.
XMD is a program that facilitates a unified GDB
interface and a Tcl (Tool Command Language)
interface for debugging programs and verifying
systems using the MicroBlaze microprocessor.

Figure 7. Run Application and Debug

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

952

 4

4. Verification

As we follow the design flow to complete our
design, we must verify and test the design whether it
work normally. We can look over the PBD
(Processor Block Diagram) file to check all
connection of hardware module whether it is correct
or not. We will also load our application program
into on-chip memory of FPGA and execute the
application program. Utilize serial cable to connect
PC and development board and then the result finally
will be shown on the terminal window of PC. Figure
8 shows our system test diagram.

Figure 8. System Testing Diagram

We run a test program to write one data of 32-bits
(AAAA5555H)、16-bits (AA55H) and 8-bits (A5H)
to SRAM、DDR_SDRAM and OPB_RAM module.
When these data have read from the above memory,
we will check if the data corresponds to wrote value
previously then show the “PASSED!” message on
the terminal windows, otherwise show “FAILED!”.
At the same time, we test the input/output device on
the development board. The test program receives
data from the input device (DIP_Switch and Push
_Button) and show the value on the terminal. We can
also write data to the output device (7_segment LED
and 1-bit LED), it will form horse race light on the
two 7_segment LED. The test result will be shown in
Figure 9.

Summarize our design with following results:

� Total Number LUTs: 2,503 out of 10,240 24%
� Number of Block RAMs: 16 out of 40 40%
� Number of MULT18X18s: 3 out of 40 7%
� Total equivalent gate count for design: 1,155,751
� Maximum frequency: 76.982MHz

5. Conclusion

Our paper proposes a design flow for partial
reconfigurable architecture of embedded system. We
can design many application logic units beforehand,
then download specific bit-stream file to FPGA chip
according to specific requirement. The new
application logic unit can aid main microprocessor to
handle large amount and special operation. This
design of partial reconfigurable architecture includes
flexibility and efficiency both.

We plan to extend our work into the following
directions:
1. Construct a prototype with fully self-

reconfiguration system.
2. Develop multi-function of embedded system

employing multiple reconfigurable coprocessors
connected via on-chip busses.

References

[1] E. L. Horta and J. W. Lockwood. “PARBIT: A Tool to

Transform Bitfiles to Implement Partial
Reconfiguration of Field Programmable Gate Arrays
(FPGA).” Technical report, Department of Computer
Science, Applied Research Lab, Washington
University, Saint Louis, July 2001.

[2] Matthias Dyer, Christian Plessl, and Marco Platzner.
“Partially Reconfigurable Cores for Xilinx Virtex”,
Computer Engineering and Networks Lab, ETH Zurich,
2002.

[3] Chien-Kuei Chung. “Design and Implement of
Dynamic Reconfigurable Architecture Base on
Embedded System”, July 23, 2004.

[4] Xilinx, Inc. “Embedded System Tools Reference
Guide”, January 30, 2004.

[5] Xilinx, Inc. “Platform Studio User Guide”, January 30,
2003.

[6] Xilinx, Inc. “OPB IPIF Product Specification”, June
14, 2004.

[7] Xilinx, Inc. “User Core Templates Reference Guide”,
January, 2004.

Figure 9. Test Result

Serial
Cable

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

953

