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Abstract

Let G(V, E, W) be a graph with n-vertex-
set V and medge-set E, where W is a cost
function which maps V to real costs. For any
subset H of V, the bottleneck cost of H is defined
as b(H) = max; y{WX)}. The main god of this
research is to identify a certain type of
dominating set of G such that its bottleneck cost
is minimized.

The problem of identifying a dominating
set with the minimum bottleneck cost has been
known to be O(nlogn + m) time solvable on
weighted general graphs; and the time
complexity can be reduced to O(n) on trees. This
paper first shows that the time-complexity
remains O(n) on weighted block graphs. Second,

)

we show that the situation is greatly different
when the Bottleneck Perfect Dominating Set
Problem (the BPDS problem) is considered. This
paper claims a very meaningful algorithmic result:
the BPDS problemis NP-hard on bipartite graphs
but O(n) time solvable on weighted trees. Finally,
we extend the result of the BDS problem to
consider the sum communication costs
simultaneously and the time-complexity is
O(mlogn) on weighted general graphs

Keywords: (perfect) dominating set, bottleneck
placement cost and sum communication cost,
bipartite graph, block graph, tree

1. Introduction

In this paper, G(V, E, W) denotes a
graph with n-vertex-set V and medge-set E in
which Wrepresents a cost function mapping V to
real costs. Due to the rapid growth of the
application areas of domination in the past thirty
years, many researches have been focused on
studying domination and its related problems on
graphs. These application areas include
computer science, electrical and computer
engineering, telecommunication and network
design, and operations research, etc. [13, 14] Let
(u, v) be an edge of G, we say that u dominatesyv,
and vice versa For any subset H of V, H is called
adominating set of G iff each vertex inV — H is
dominated by at least one vertex in H. Some
practical variants of dominating sets have been
proposed and studied. H is caled a total
dominating set iff H contains no isolated vertex
[3, 5 18 22, 23]. H is caled a connected
dominating set iff the subgraph induced by H is
connected [4, 15, 24]. H is called an independent
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dominating set iff H forms an independent set,
that is, (u, V)1 E, fordl u, vi H[7-9, 17, 19, 28
30]. Findly, H is caled a perfect dominating set
iff each vertex u T V - H is dominated by only
one vertex inH [11, 20, 25, 26].

Traditionally, researchers emphasize on
finding a certain type of dominating set H such

[¢}
that its sum cost, Q xiHW(X) , is minimized.

This paper addresses another important cost
measurement, the bottleneck cost. For any
subset H of V, bottleneck cost of H is defined as
b(H) = max; ,{WX)}. The goal of thisresearch is
to find a certain type of dominating set such that
its bottleneck cost is minimized.

The problems studied in this paper are
defined below.

The Bottleneck Dominating Set problem (The
BDS problem): Given a weighted graph G(V, E,
W), find adominating set H of G such that b(H) is
minimized. H denotes an optimal solution of G.

The Bottleneck Perfect Dominating Set
problem (The BPDS problem): Given aweighted
graph G(V, E, W), find a perfect dominating set R
of G such that b(R) is minimized. R denotes an
optimal solution of G.

Fig. 1 illustrates a graph with real costs
on vertices. Examples of optimal solutions for the
problems studied in this paper are described in
the following. (1) For the BDS problem, the sets
{a, e % and {c, d, § are two dominating sets.
The set {a, e, # is a dominating set with the
minimum bottleneck cost, 3, since max{\WMa), We),
W} =max{1, 1, 3} = 3. (2) For the BPDS problem,
the sets {, e, } and {a, } are two perfect
dominating sets. The set {a, f} is a perfect
dominating set with the minimum bottleneck cost
whichisequal to 3.
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Fig. 1. A graph with real costs on vertices.

In[28], the significance and motivations
of finding various dominating sets with minimum
bottleneck costs have been proposed. We have
proven that the BDS problem is O(nlogn + m)
time solvable on weighted general graphs and
O(n) time solvable on weighted trees. This paper
will first show that the time-complexity of the

BDS problem remains O(n) on weighted block
graphs. Second, the situation will be shown
greatly different when the BPDS problem is
considered. We will clam a very worthy
agorithmic results on graphs. the BPDS problem
is NP-hard on bipartite graphs but O(n) time
solvable on weighted trees. Finaly, we extend
the result of the BDS problem to consider the
sum communication costs simultaneously and
the time-complexity isO(mlogn) time on weighted
general graphs

2. An O(n) Time Algorithm for the BDS
Problem on Weighted Block Graphs

This section will design an O(n) time
agorithm for the BDS problem on weighted block
graphs. Given a graph G(V, E), a cut vertex is a
vertex v such that deleting v and all its incident
edges can increase the number of connected
components. A block of G is a maxima
connected induced subgraph containing no cut
vertex. In [12], Harary have defined a block graph
BG(G) of a graph G as the intersection graph of
the blocks of G. Let BK4, ..., BK;, be the blocks of
G. The block graph of G, denoted by BG(G) =
(Vge, Egg), is defined as follows. Vgs = {BK4, ...,
Bky}, and Egg = {(BK;, Bk) ¥2i * j and BK; C BK;
=%

Harary has also proven that a graph is
the block graph of some graph iff al of whose
blocks are complete graphs. Thus, researchers
focused on the type of block graphs whose
blocks are all complete graphs. Fig. 2 shows a
block graph of this type. The graph has four
blocksand {d, g} arethe cut vertices.
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Fig. 2. A block graph with four blocks.

A very useful tree-like decomposition
structure, called a block-tree, will be used to
represent a block graph hereafter. The block-tree
isrefined from the cut-tree structure proposed by
Aho [1]. The cut-tree, denoted by T'(V, E), of a
block graph B&(V, E) with h blocks BKj, ..., BKj,
and p cut verticesvy, ..., v, is defined asfollows:

V' ={BKj, .., BKy, Vi, .., V;}, and E =
{(BK;, )1 BK,1Ei £h,1£]£p}.

The cut-tree of the block graph in Fig. 2
isillustrated in Fig. 3.
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Fig. 3. The cut-tree of the block graph in Fig. 2.

In [1], Aho has shown that the cut-tree
of ablock graph can be constructed in linear-time
by the depth-first-search. For any block BK;,
defineB, = {v1 BK; %visnot acut vertex}, 1 £ i
£ h. For example, in Fig. 2, B; represents the set
of the vertices {a, b, c}. Note that B; can be
empty under this definition. Let ustake Fig. 2 as
the example again. B; is empty because the
original block BK; corresponds to the set of
vertices, {d, g}, which are all cut vertices. The
block-tree T®(VE®, E®®) of a block graph BG(V,
E) can now be defined as follows, where B, 1 £ i
£ h, will be called block vertices hereafter. VE© =
{By, ., By, Vi, ..., Vb, and E*® = {(B,, vj) v, T BK,,
1£i£h,1£j£p}.

The block-tree of the block graph
shown in Fig. 2 isdepicted in Fig. 4. Some papers
have given efficient algorithms for solving
problems on block graphs b, 6, 16, 27]. This
section will solve the BDS problem on weighted
block graphs by the dynamic programming
strategy [2, 21].

Definition 1: Any vertex v is caled a black
vertex if v must be included by any optimal
solution, and v is called a white vertex if v must
be excluded from any optimal solution.

Definition 2: For any nonempty block vertex B,
B™" denotes any vertex in B such that W(B™") =
ming g{WV)}, i.e, B™" is a vertex in B with the
minimum cost.

B1 B2 Bs

Bs

Fig. 4. The block-tree of the block graph in Fig. 2.

For any block graph BG, if BG only
consists of a non-empty block vertex B, then BG
has no cut vertex according to the definition of
block graphs. In this situation, it is clear that
{B™"} is a dominating set with the minimum
bottleneck cost since all vertices in B form a
clique.

In the rest of this section, the input of
the BDS problem will be the block-tree of the
original block graph. It is reasonable to further

assume that at least one cut vertex exist based
upon the above discussion.

Given a block graph BG and its
corresponding block-tree T, suppose that r is
any cut vertex as shown in Fig. 5. The block-tree
will be denoted by T(r). In Fig. 5 each C

represents the clique{ X, , ... X, }JEBL,1£i £

k. It is clear that any optimal solution either
includesr or does not. So, the following two new

related problems, (P-) and ( P, ) areintroduced.

(P) Find a dominating set H of BG with the
minimum bottleneck cost under the additional
constraint thatr T H.
(P.) Find a dominating set H of BG with the
minimum bottlepeck cost under the additional
constraint thatr | H.

Let b-(BG and b, (BG) denote the
bottleneck cost of all optima solutions of
Problem (PF) and Problem (P.) on BG

respectively. The bottleneck cost of all optimal
solutions of the BDS problem, denoted by b(BG),
can be easily derived using the following formula.

b(BG) =min{ b-(BG), b, (BG}

% (2.1)

Yq

Fig. 5. A block-tree T(r), where the square
verticesrepresent block vertices and vy, ..., Y,
are nonempty block verticesif exist.

Formula (2.1) indicates that b(BG) can
be computed in O(2) timeif b-(BG) and b, (BG)

have been available.



First, consider the boundary case in
which T(r) only consists of cut vertex r and its
children, say By, .., By, k3 2. Let H be any
optimal solution. If r T H, then all verticesin B,
E .. E B, are dominated by r and b(BG) 3 W(r). It
is easy to verify that including any vertex in B;
E .. E B, will obtain to a solution with a
bottleneck cost greater than or equal to Wr).
Thus, {r} is aready an optima solution of
Problem (P,). On the other hand, if r i H, then
we can easily verify that {B,"", .., B™" is a
dominating set with the minimum bottleneck cost
of Problem (P.).

The correctness of the following
formulas for computing b-(BG), b, (BG), and

b(BG under this boundary condition can be
easily proved.

b; (BG) = maxzad W(B,™")} % (2.2)
b, (BG =Wr) % (2.3)
b(BG) = min{ bF (BG), br (BG)}
Ya(2.4)

Consider a general block-tree T(r) as
shown in Fig. 5. Let W denotetheset { Y, ... Yg}.

To solve Problem ( PF)’ the following two cases

should be handled.
Case 1. Wisnot empty
Since Problem ( PF) deals with the case

in which all feasible solution can not includer, at
least one black vertex must be included from
each block vertex Y, 1 £ i £ q, respectively,
according to the definition of dominating sets.
Then, r is dominated by the black verticesin Y;
E ... E Y, Thisimpliesthat we can solve the BDS
problem on BG, ..., BG; independently and

recursively without considering r. Let p® BG

denote the minimum bottleneck cost of BG in this
case. The following formula can be easily
established.

b"®e =
b(BG), ..., b(BG)} ¥4 (25)

maq maxsi o{ W(B™)},

Case 2. Wisempty
There must exist a black vertex v;1 C,
for some i, in order to dominate the vertex r. Let

b (BG) denote the minimum bottleneck cost of
BG in this case and b, (BG) represent the

minimum bottleneck cost of BG under the
condition that some vertex v; must be black.

Verifying the correctness of the following
formulaissimple.

b"™ (BG =maq{Py, ..., P},
where P; = max{b(BG), ..., b(BG.1),
b, (BG), b(BG.1), ..., b(BG)}
% (2.6)

Based upon the above two cases,
b- (BG) can be easily computed as follows:

_1b-Y(BG), Wt £

b-(BG =
CO= I o) w= &

¢

% (27)

Fig. 6. The block-tree corresponding to block
graph BG shownin Fig. 5.
The remaining problem is to compute
bvi (BG),vi C, forali.Consider the block-tree

corresponding to BG shown in Fig. 6. Two
situations can occur.
Ca%l.vi’l\ Bi

It is clear that B; is not empty in this
case and v, can be assigned as B™". Let

bvi @ (BG) denote the minimum bottleneck cost

of BG here. The following formula can be easily
derived.

b, ” (BG) =maqW(B""), b(BG, ), ...
b(BG, )} %(28)

Case2.vil { X ... X; }
All vertices in C; are dominated by vi.
Let bvi(z) (BG) denote the minimum bottleneck

cost of BG in this case. The following formula
can be easily derived.



b, ” @G =maqY, ... Y},

where Ys = ma{b(BG,) ..
b(BG, ). b, (BG,). bBG, ) ..
b(BG, )} % (29

Using the reasoning of the above two
cases, b, (BG) can be easily computed by the
following formula.

b, (8G)
1b,BG)v1 B
10, ?(BG) v T {X,,.X, }

li.
Ji

% (2.10)

Next, we will deal with Problem (P, ). If
H is an optimal solution of Problem (P.), then r

T Hand b, (BG @ W(r). If Wis not empty, then

it is easy to show that including any vertex in Y;
E .. E Y, will obtain to a solution with a
bottleneck cost greater than or equal to Wr).
Verifying the correctness of the following
formula is an easy task when the optimal

b, @ (BG) = maxval; /* initialization */
loops=1toj;

maxvals = maxva;

if b(BG;_) = maxval then

solutions of the BDS problem on the subgraphs
BG, 1£i £ k, have been computed.

b, (B = mad{ W), b(BG), ..., b(BG)}
Y (2.11)

In the following, we will prove that the
time-complexity for implementing the above
formulas is O(n). It is trivial to see that formulas
(2.1) to (2.11) can be performed in either O(1) time
or linear-time, except Formula (2.6) and Formula
(29). The following lemmas will prove that
Formula (2.6) and Formula (2.9) can aso be
implemented in linear-time.

Lemma 1. If the values b, (BG; ) and
b( BGis ),s=1, ..., ji, have been computed, then

b, BG) can be obtained in Of) time, i.e,

Formula (2.9) can be done in O(j;) time.
Proof: First, we can compute the largest value,
maxval, and the second largest value, secval, of

the j; valuesb(BG i), 8=1, ... ji, InO()) time:

Next, the value bvi(z) (BG) can be

derived using aloop in O(j;) time as follows:

if b, (BG;_)? secval then
mexvals= b, (BG; );
* b, (BG, ) is the new maximum in {b(BG, ), ..., b(BG,_)),
b, (BG; ) b(BG, ). . b(BG; )} %/

else

maxvals = secval;

I* bXS(BGiS) is the second largest in{b(BGil), b(BGiH),
b, (BG; ), b(BG,_ ) ..., b(BGij_ )}, so Y. = the second

largest in {b(BG ), ..., b(BG,_,), b, (BG, ), b(BG, ), ...,

b(BG, )}.*/

endif
else/* b(BG,_) £ maxval;,

if b, (BG;_ )3 maxval then
maxval;= b, (BG; );

endif

/* Indeed, maxvas =Y sin Formula(2.9) */



b, ® ®G)=minb, ¥ (BG), maxvay;

endloop.

Lemma 2: Formula (2.6) can be implemented in

k
o(Q [C|+kK )time

i=1
Proof: Using the similar technique as Lemma 1,
b" (B can be computed in O(k) time when

the values b(BG) and b, (BG),i=1,.., k, have

been computed. Based upon the result of Lemma
1 and the facts that Formula (2.8) and Formula
(2.10) can be done in O(j; + 1) time and O(1) time,
respectively. We can easily conclude that

k
b (BG) can be computed in O(é |Ci|+ K)
i=1
time.
O

Finally, an optima solution can be
identified by examining each vertex once from the
root r after b(BG) has been computed, and its
time-complexity is aso O(n). The
following main theorem can be established.

Theorem 1. The BDS problem can be solved in
QO(n) time on weighted block graphs.

3. NP-hardness of the BPDS Problem

on Bipartite Graphs
To examine the complexity of the BPDS
problem, its corresponding decision problem is
considered.

The Bottleneck Perfect Dominating Set
decision problem (The BPDS decision problem):
Given an undirected and connected graph G(V, E,
W) and a real constant h, determine whether a
perfect dominating set RI V exists such that its
bottleneck cost is less than or equal toh.

Next, a variant of the BPDS decision
problem isintroduced.

The Constrained Perfect Dominating Set
decision problem (The CPDS decision problem):
Given an undirected and connected graph G(V, E)
and a set of vertices V&I V, determine whether
there exists a perfect dominating set R of G such
that R (V- V¢.

The following lemma can then be
directly derived.

Lemma 3: The BPDS decision problem is
polynomially equivalent to the CPDS decision
problem.

This section will consider the
complexity about the BPDS problem on bipartite
graphs[29]. A graph G(V, E) is called a bipartite
graph if V can be partitioned into two disjoint
sets | and J such that | and J are both
independent sets, that is, there is no edge (u, V)
such that u, vi lor u, vi J. We denote a
bipartite graph with V.= 1 E Jby G(I E J, E)
hereafter. Fig. 7 depicts an instance of bipartite

graphs.
aﬂx i
b

[}
d g} h
o/ k
Fig. 7. A bipartite graph G(l E J, E).

Showing that the BPDS decision
problem is NP-complete is equivalent to proving
that the CPDS decision problem is NP-complete.

A known NP-complete problem isintroduced and
Lemma 4 can be established.

The Exact Cover problem [10] : Given a family
of F = {S, .., S} of sets where each § is a
subset of aset X = {Xy, ..., Xq}, does there exist a
subfamily of pairwise disjoint sets of F whose
union is equal to X?

Lemma 4: The CPDS decision problem is NP-
complete on bipartite graphs.

Proof: It is easy to check that the CPDS decision
problem belongs to the NP class of problems.
We now show that the Exact Cover problem can
be reduced to the CPDS decision problem on
bipartite graphs in polynomia time. Given an
instance of the Exact Cover problem in whichF =
{Su ... S} and X = {x, ..., X}, a bipartite graph
G( E J, E) is constructed by the following
transformationrules. | =FE P,J=XE F and E
={(x, S) ¥2x, belongs to S} E E, where P, W,
and E" are derived using the following loop.

P=W=/& E*:[E;i:j:();



for each pair S,and S inF do
{
ifS,;C St Athen
{
i=i+LP=PE{u};
J=j+2 F =FE{y ¥}
E =E E {(Sly yj-l)! (yj: s)' (yj-l;
u), (;, Ui}
}
}

endfor

Assume that P = {uy, .., Uy} and F =
{y1, ..., i} after performing the above procedure.
Some useful properties of G can be easily
derived.

Property 1: 0£ b £ gg, | =20, and %E Y=
ab

Property 2: Each u; is adjacent to exactly two
vertices y.qy and ypi inF.

It is easy to ascertain that the time-
complexity of the transformation procedure is
polynomial based on the above properties.

Let V&= X. Then, (V- V¢ corresponds
totheset FE F E P. The goa of the CPDS
decision problem is to determine whether there
exists a perfect dominating set D of G such that
Di (V-V§=FEFEP.

For any vertex v of G, w is said to be a
neighbor of viff (v, w) T E and define N(v) = {w |
(v, w) T E}. Suppose that K is a solution of the
Exact Cover problem. Without a loss of
generality, we can assumethat K ={S,, .., S;}, 1

D=K;

Q=F-K;H=F; R=P; /*initialization */
for each ST Qdo

{

£afp.Then, S,C S= A fordl S,and S inK. It
implies that each x, in X will be dominated by
exactly one vertex in K. The situation can be
illustrated in Fig. 8. The task left is to determine
which vertices in F - K) E F E P. could be
selected to obtain a perfect dominating setD i F
EFEP.

;742 | L

A ] {:j)

e |
T

F-K
Fig. 8. A bipartite graph constructed from an
instance of the Exact Cover Problem andK isa
solution of it.

Foreach ST F - K, there must exist S’ 1
F- Ksuchthat SC S't /& This implies that
there exists x, I X such that (S, x,) T E and (S,
x,) 1 E. Therefore, all verticesinF - K can not be
included into any perfect dominating set DI F
EFEP.

Thefollowing loop will determine which
verticesin F E P could be added to obtain a
solution of the CPDS decision problem. Its
correctness can be easily verified based on the
reasoning so far as well as the comments within
it.

if only one ST K existssuch that (S, y;) % (y;, u) % (U, y.1) %
(i1, S) isapath of G, for somey;, y;1, and u;, then

/* y;, isonly dominated by S"; u; and Sis only dominated by y;. */

{
D=DE {y};
H=H-{y1 ¥y} R=R-{u};
}
else
{

Let{SY, .., S} be the vertices in K such that (S, y) % /%, u®) % (%,
yO.0) % (y0.1, S%) beapathof G,e>1land1£t£e

D=DE {y“};

1* y®,; isonly dominated by S and u®; is only dominated by y**,. */

H=H-{y",y"):
for z=2toedo

R= R'{U(l)i};



D=DE {y?,u®}; H=H-{y?1,y?}; R=R-{u®};

endfor

}

endfor

D=DE R; /* Theremaining verticesinP areall included. */

Next, we prove another direction. If D is
aperfect dominatingset DI (V-V§=FE F E
P, then each x, in X must be dominated by
exactly one vertex in D, denoted by x,. It is
easily checkable that x®, T F, for al h, and
either X®, C xX® = Eor xX®,=xP fordl z* s.
Therefore, K = Ejge{X®} is a solution of the
Exact Cover Problem.

From the discussions so far, a perfect
dominating setD | (V - V§ exists in the bipartite
graph G iff there exists a subfamily of pairwise

disjoint sets of F such that itsunion is equal to X.

This implies that the CPDS decision problem is
NP-complete on bipartite graphs.
O

Theorem 2: The BPDS problem is NP-hard on
bipartite graphs.

4. An O(n) Time Algorithm for the
BPDS Praoblem on Weighted Trees

Given atree T and any vertex r, the tree
is denoted by T(r). For any perfect dominating
set Rof T(r), b(R) is the value of the bottleneck
cost of D, that is, b(D) can be expressed as
max;; p{ W(V)}. For the sake of clear presentation,
denote dr) to be the value of the minimum
bottleneck cost of all optimal solutions of the
BPDS problem on T(r), i.e, dr) = min{b(R) 2R is
aperfect dominating set of T(r)}.

Given atree T(r), any optimal solution
either includes the root r or not. This leads us to
introduce the following two new related
problems, (P9 and (P,), which are in fact the
origind BPDS problem with additiona
constraints.

(P9 Compute dy(r) = min{b(R) ¥ar| RandRisa
perfect dominating set of T(r)}.
(P) Compute dy(r) = min{b(R) ¥2rT Rand Ris a
perfect dominating set of T(r)}.

From the definitions of the BPDS

problem and the problems (P and (P,), the
following formula can be easily obtained.

dr) = min{ch(r), dy(r)} ¥2(4.1)

Formula (4.1) implies that the bottleneck
cost of al optimal solutions can be obtained in
O(1) time when the problems (P9 and (P,) have
been solved. Therefore, the followings will
concentrate on solving these two problems.

First, consider the boundary case when
T(r) only consists of vertex r. In thissituation, {r}
isthe only one perfect dominating set. Therefore,
the bottleneck costs of the problems (P9, (P),
and the origina problem in this boundary
condition are as follows: ¥ "'o(r) =¥, ¥"'(r) =
¢™¥4(r) = W)

Another boundary case is the situation
that T(r) only consists of vertex r and its children,
say Xq, .., X If k=1, {r}, {x}, and {r, x;} arethe
al perfect dominating sets of T(r). Otherwise, the
only perfect dominating set is {r}. It is easy to
verify the correctness of the following formulas.

\lW( Xl)a k = l
ly k3 2
P (r) = W) %4 (4.3)
0bndy-ll(r) - min{dandy-llo(r), 0bndy-lll(r)}
Ya (44)

") = %(4.2)

Now, consider a general tree T(r) as
shown in Fig. 9. The problem (P,J considers the
cases in which r must be excluded. From the
definition of perfect dominating sets, any
feasible solution of the problem (P, must
contain exactly one vertex belonging to {xi, ...,
X¢. This can be expressed as the following
formula

ah(r) = min{max{ da(Xy), th(Xz), .., (X},
ma{h(x1), diXz), ... (X}, ..., maqch(xy),
(%), .., ch(xi)}} ¥2(4.5)

Formula (4.5) indicates that the cases
where X, 1 £1i £ Kk, is the only one vertex that
must be included are dealt with, respectively.

Fig. 9. A tree T(r) and the subtrees of r.



Next, turn to deal with the problem (P,).
If Ris a solution of the problem (P,), thenr T R.
The bottleneck cost of D will be equal to or
greater than Wr). Now, for each x; in {x4, ..., X},
it can be either included or excluded. Suppose
that T( Xil), oo T( Xiji ) be the subtrees of vertex

x asillustrated in Fig. 10. If x; is excluded, i.e,, X;
has been dominated by r, then all the verticesin

{ Xi v oo Xij_ } must also be excluded since each

vertex not in R can be dominated by only one
vertex in R. In another, if X is included, then

every vertex in {Xil, Xij.} can be either
I

included or excluded. Now, the following formula
can be easily obtained when the problem (P,9 on

thesubtreesT(Xip Z1£i£kand1l£p£j, and

the problem (P,) on T(x),1 £i £ k, have been
solved.

Fig. 10. The subtrees of vertex x, 1E i £ k.

a(r) = maqW(r), mingadmax{Fi, Ji}}}
%, (46)

, Where F; = max{ WXx), ma<{c(Xil), c(xiz),
X, and 3 = maqa(X,), (X,) -
(X, )}

The following will prove that the time-
complexity for implementing the above formulas
is O(n). First, the following lemmas are
established.

Lemma5: If the 2k values di(x;) and dy(x), i =1, ...,
k, have been computed, then dyr) can be
obtained in O(k) time for any internal vertex r
with k childrenx,, ..., X.
Proof: First, we compute the largest value,
maxval, and the second largest value, secval, of
thek valuesdy(x),i =1, ..., k, inO(k) time.

Next, the value dyr) can be derived
using aloop in O(k) time asfollows:

do(r) = maxval; /* initialization */
loopi =1tok
maxval; = maxvd;
if dy(x;) = maxval then
if di(x) 2 secval then
mxaval, = secval;
else

if di(x) 3 maxva then
maxval, = dy(x);
ab(r) = min{dy(r), maxval};
endloop.
O

Lemma 6: For any internal vertex r, di(r) can be

k
computed in O(é (J; +D + 1) time when the
i=1

valuesd(X; ), 1£i £k, 1£p£Lj, anddy(x), 1£1

£k, areavailable.
Proof: This lemma can be directly derived from
Formula (4.6).
O

From Lemma 5, Lemma 6, and the fact
that dr) can be computed in constant time by
simply comparing dy(r) and di(r) for any internal
vertex r. We can conclude that the number of
operations executed on each vertex is bounded
by aconstant.

Finally, an optima solution can be
derived from the root of the input tree in O(n)
time since for the set {r, x4, ..., X}, one of the
following cases could occur.

Case 1. r is selected. For each subtree T(x), if
ma Wx), madd X, ), dX,) - dX B <

iji
maq (X, ), (X)) - (X )}, then x is

included, else x; can be excluded.
Case 2. r is not selected. Only one vertex in
{X4, ..., X} must beincluded.

Based on the above discussion, an
optimal solution can be identified by examining
each vertex constant times from the root r after
dr) has been computed, and its time- complexity
isasoO(n).

Theorem 3: The BPDS problem can be solved in
QO(n) time on weighted trees.

5. Extension to Consder Sum

Communication Costs Smultaneoudy

In addition to the costs of allocating
service facilities, the communication costs
between the vertices with no facility and the
vertices with facilities are also a key factor
related to the costs and performance of real
systems. This section will extend the results of
the BDS problem for dealing with the two cost
measurements simultaneously.

For any dominating set D, the
bottleneck-placement-cost of D is defined to be
BPD) = max;p{CKX)} and its sum



communication-cost is defined to be SC(D) =
é XTV_DW(X,‘I (X)), where n{x) is avertex y
in which WX, y) is minimized among all vertices
dominating x. The pair (BP(D), SC(D)) is called
the BS-dominating-cost of D. The goal is to
identify a dominating set D such that BP(D) is
minimized. Furthermore, if more than one
dominating set whose bottleneck-placement-
costs are minimized, then any one with the
minimum  sum-communication-cost  will  be
selected.

Now, the following definitions are first
made.

Definition 3: Given any two pairs of real
numbers (a;, b;) and (ay b,), the following
relations are defined.

1. (ay, by) < (az, by) if and only if (iff) (@, < ay) or
(a;=az and b; <by).

2. (a3, by) = (ap, by) iff (8, = a, and b; = by).

Definition 4: Let @y, by), ..., @n b,) be any n
pairs of real numbers.

1. Thepair (&, b;) isaminimum pair among these
n pairsiff (a, b) £ (a;, by), foral j* i.

2. The pair &, by isa maximum pair among
these n pairsiff (a, by) 3 (as, by), foral s? t.

The extended problem in this section is
now described formally asfollows:

The Minimum BS-dominating-cost Dominating
Set problem (The MBS_DS problem): Find a
dominating set S iV such that its BS
dominating-cost is minimized for a weighted
graph G(V, E, C, W). S is called an optima
solution of G.

Fig. 1 illustrates another graph with
positive costs both on vertices and edges.
Example of optimal solution for the MBS DS
problem is described asfollows: The setsD; = {a,
e f} and D, = {c, d, § are two dominating sets.
BR(D,) = max{ Wa), We), Mf)} =max{1,1,3} =3
and SC(D,) = (b, mb)) + (c, n(c)) + (d, m(d)) + (h,
nh)) + (k, nik)) = Wb, f) + Wc, a) + WMd, a) +
Wh,f) + WMk, )=3+2+5+4+3=17. Itiseasy
to check that D, isan optimal solution.

This section will prove that the
MBS _DS problem can be solved in O(mlogn)
time on weighted general graphs using the
binary search technique. To investigate the
complexity of the MBS DS problem, a
corresponding constrained optimization problem
isintroduced.
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Fig. 11. A graph with real costsboth on vertices
and edges.

The Constrained Minimum BS-dominating-cost
Dominating Set problem (The CMBS_DS
problem): Given aweighted graph G(V, E, C, W)
and a positive constant |, find a dominating set
S such that BP(S) £ |. Any dominating set H
satisfying the condition BPH) £ | is called a
feasible solution. If S, ..., S, p 3 2, are the
feasible solutions, then identify a dominating set
S such that SC(S) £ SC(S), for al t * i,
furthermore. We call that S is an optimal solution
of the CMBS_DS problem.

For eachx1 V, defineN(x) = {y eyl V
and  y) T E}. The following key lemma is
established.

Lemma 7: Suppose thaty (G(V, E, C, W) and |)
is an input instance for the CMBS_DS problem.
Let Va={x ¥%x1 Vand C(x) £1}. Then, V - V&=
{x %x 1T Vand C(x) > I}. The following
statements hold.

(1) A feasible solution of y existsiff N(v) C V¢t
A foralvi (V-Vg.

(2) Suppose that two or more feasible solutions
of y exist. For each x T V - V¢ denote that

Nye(X) ={zT NX) G Ve&¥aWz x) £ Wy, x), for
dlyT N6 G V. Then, H= E ;_yo{y¥eyis
any one vertex in N,¢(x)} isan optimal solution

ofy.
Proof: (1) If afeasible solution of y exists, thenit
implies that a dominating set S exists such that
its bottleneck-placement-cost is less than or
equal to |,i.e, ST V& This can directly derive
that N(v) C V&t /& foralvi (V-Vg.

On the other hand, consider the case
N(v) C V&t & foral vi (V- V¢. Wesimply put
Sas V¢and it is easy to verify that Sa feasible
solutionof y .
(2) From (1), we know that H i V¢ Assume that
Q is a feasible solution other than H such that
SC(Q) < SC(H). Q must also be a subset of V¢ Let
ul Q-H.Itiseasy to verify that N(u) C (V- Vg
must contain at least one vertex, otherwise we
can merely discard u to obtain a better solution.

Forany vi N(u) C (V- V@, if visonly
dominated by u, then N,,¢(v) = {u}. This will



imply that u T H. Therefore, v must also be
dominated by some other vertex y T H such that
WYy, V) <Wu, v), foral vi N(u) C (V- V@. This
can easily derive that SC(Q) > SC(H). A
contradiction occurs.
O
Based on Lemma 7, the following
algorithm can be designed to solve the MBS _DS
problem on weighted general graphs correctly.

Algorithm MBS DS
Input: A weighted graph G(V, E, C, W) in whichV
={ X1, «eey Xn} -
Output: A dominating set Sof G such that the
BS-dominating-cost of Sisminimized.
M ethod:
Step 1: Sort the vertices of G into non-decreasing
order using their costs as keys;

/* C(x)) £ ... £ C(x,) after sorting. */
Step 2: Ib=1; ub = n; /* lower bound and upper
bound of theindices*/
Step 3: S=empty set;
Step 4: while (Ib £ ub)

Step 5: mid=(Ib+ub) / 2;

Step 6: V&= {Xq, ... Xmid};

Step 7: flag = Test-Neighbor (V¢

Step 8: if flag==TRUE

Step 9: {

Step 10: S= EUT(V_V@{y Yy
is any one vertex in N, ¢(X)};
ub=mid- 1,

Step 11: }

Step 12; else

Step 13: Ib=mid+1;

Step 14: endif

Step 15: endwhile
Step 16: if (Sis not empty) output S;
End MBS DS

The output of the procedure Test-
Neighbor(V¢isTRUE if V&=V or N(v) C V@& /A,
foral vi (V- V. Otherwise, its return value is
FALSE.

The time-complexity of procedure Test-
Neighbor(V¢ can be analyzed as follows. For

eachx 1 V, suppose that N(x) ={ X; , ..., X; },

j1< ... < j..Défine In(x) = j;, i.e, In(X) is the
smallest index value of the verticesinN(x). Then,
it is easy to prove that N(v) C V&= AEiff In(v) >
mid, for each v 1 (V - V@. Therefore, the
procedure Test-Neighbor(V@ can be finished in
oV - V&) time if In(x) have been pre-
computed, for all xT V.
The following
established consequently.

theorem can be

11

Theorem 4. The MBS DS problem can be
solved in O(mlogn) time on weighted general
graphs.
Proof: Let T(n) denote the time-complexity of
Algorithm MBS _DS. Step 1 involves a sorting of
n numbers and its time-complexity is O(nlogn).
Step 10 can be performed in O(m) time. Based on
the above discussions, the while loop from Step
4 to Step 15 can be performed in O((n + m)logn)
timeif In(x) have been pre-computed, for all xT V.
Computing al In(x) requires to examine each
edge once and its time-complexity isO(m).

Combining the above results, it is easily
verifiable that T(n) = O(nlogn) + O((n + m)logn) =
O(mlogn).

O

6. The Conclusions

This paper has discussed the BDS
problem and the BPDS problem on graphs with
real costs on vertices. This paper has shown that
the time-complexity of the BDS problem remains
O(n) on weighted block graphs. Second, this
paper has claimed a very meaningful agorithmic
result on graphs: the BPDS problem is NP-hard
on bipartite graphs but O(n) time solvable on
weighted trees. Finally, we extend the result of
the BDS problem to consider the sum
communication costs simultaneously and the
time-complexity is O(mlogn) time on weighted
general graphs

Some directions are worthy to continue
in the future.
1. The approach used in this study can be easily
applied to solve this problem on other classes of
graphs, such as perfect graphs.
2. Consider the combinations of placement costs
and communication costs simultaneously.
3. Find out the properties and the relationships
between bottleneck minimization problems and
summation minimization problems on weighted
graphs. This is a very important and practical
research direction.
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