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摘要
設 G(V, E, W)為一個 n個頂點與 m個邊

之頂點具權重的圖形。任給一個 V之子集合 H,
其瓶頸成本定義為β(H) = maxx∈H{W(x)}。本論
文主要目標為找出具最小瓶頸成本之支配集與

完美支配集。

最小瓶頸支配集已經被證明在一般圖

形上可以於 O(nlogn + m)的時間求解，且如果
是樹形圖還可以降低到 O(n)。本論文進一步證
明在區塊圖形上仍能於 O(n)時間求解。然而，
完美支配集則情況大不相同。我們將證明在二

裂圖形是 NP-hard但是樹形圖上可以有 O(n)時
間的演算法。最後我們延伸到同時考慮瓶頸配

置成本與總和通訊成本，並且證明在一般化圖

形上求支配集之時間複雜度為 O(mlogn)。

關鍵詞: (完美) 支配集、瓶頸配置成本

與總和通訊成本、二裂圖形、區塊圖形、樹

Abstract
Let G(V, E, W) be a graph with n-vertex-

set V and m-edge-set E, where W is a cost
function which maps V to real costs . For any
subset H of V, the bottleneck cost of H is defined
as β(H) = maxx∈H{W(x)}. The main goal of this
research is to identify a certain type of
dominating set of G such that its bottleneck cost
is minimized.

The problem of identifying a dominating
set with the minimum bottleneck cost has been
known to be O(nlogn + m) time solvable on
weighted general graphs; and the time-
complexity can be reduced to O(n) on trees. This
paper first shows that the time-complexity
remains O(n) on weighted block graphs. Second,

we show that the situation is greatly different
when the Bottleneck Perfect Dominating Set
Problem (the BPDS problem) is considered. This
paper claims a very meaningful algorithmic result:
the BPDS problem is NP-hard on bipartite graphs
but O(n) time solvable on weighted trees. Finally,
we extend the result of the BDS problem to
consider the sum communication costs
simultaneously and the time-complexity is
O(mlogn) on weighted general graphs

Keywords : (perfect) dominating set, bottleneck
placement cost and sum communication cost,
bipartite graph, block graph, tree

1. Introduction
In this paper, G(V, E, W) denotes  a

graph with n-vertex-set V and m-edge-set E in
which W represents a cost function mapping V to
real costs. Due to the rapid growth of the
application areas of domination in the past thirty
years, many researches have been focused on
studying domination and its related problems on
graphs. These application areas include
computer science, electrical and computer
engineering, telecommunication and network
design, and operations research, etc. [13, 14] Let
(u, v) be an edge of G, we say that u dominates v,
and vice versa. For any subset H of V, H is called
a dominating set of G iff each vertex in V – H is
dominated by at least one vertex in H. Some
practical variants of dominating sets have been
proposed and studied. H is called a total
dominating set iff H contains no isolated vertex
[3, 5, 18, 22, 23]. H is called a connected
dominating set iff the subgraph induced by H is
connected [4, 15, 24]. H is called an independent
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dominating set iff H forms an independent set,
that is, (u, v) ∉ E, for all u, v ∈ H [7-9, 17, 19, 28-
30]. Finally, H is called a perfect dominating set
iff each vertex u ∈ V - H is dominated by only
one vertex in H [11, 20, 25, 26].

Traditionally, researchers emphasize on
finding a certain type of dominating set H such

that its sum cost, ∑ ∈Hx
xW )( , is minimized.

This paper addresses another important cost
measurement, the bottleneck cost. For any
subset H of V, bottleneck cost of H is defined as
β(H) = maxx∈H{W(x)}. The goal of this research is
to find a certain type of dominating set such that
its bottleneck cost is minimized.

The problems studied in this paper are
defined below.

The Bottleneck Dominating Set problem (The
BDS problem): Given a weighted graph G(V, E,
W), find a dominating set H of G such that β(H) is
minimized. H denotes an optimal solution of G.

The Bottleneck Perfect Dominating Set
problem (The BPDS problem): Given a weighted
graph G(V, E, W), find a perfect dominating set R
of G such that β(R) is minimized. R denotes an
optimal solution of G.

Fig. 1 illustrates a graph with real costs
on vertices. Examples of optimal solutions for the
problems studied in this paper are described in
the following. (1) For the BDS problem, the sets
{a, e, f} and {c, d, f} are two dominating sets.
The set {a, e, f} is a dominating set with the
minimum bottleneck cost, 3, since max{W(a), W(e),
W(f)} = max{1, 1, 3} = 3. (2) For the BPDS problem,
the sets {b, e, f} and {a, f} are two perfect
dominating sets. The set {a, f} is a perfect
dominating set with the minimum bottleneck cost
which is equal to 3.

a, 1

c, 10
b, 5

e, 1 f, 3

h, 30

d, 12

k, 9

Fig. 1. A graph with real costs on vertices.
In [28], the significance and motivations

of finding various dominating sets with minimum
bottleneck costs have been proposed. We have
proven that the BDS problem is O(nlogn + m)
time solvable on weighted general graphs and
O(n) time solvable on weighted trees. This paper
will first show that the time-complexity of the

BDS problem remains O(n) on weighted block
graphs. Second, the situation will be shown
greatly different when the BPDS problem is
considered. We will claim a very worthy
algorithmic results on graphs: the BPDS problem
is NP-hard on bipartite graphs but O(n) time
solvable on weighted trees. Finally, we extend
the result of the BDS problem to consider the
sum communication costs simultaneously and
the time-complexity is O(mlogn) time on weighted
general graphs

2. An O(n) Time Algorithm for the BDS
Problem on Weighted Block Graphs

This section will design an O(n) time
algorithm for the BDS problem on weighted block
graphs. Given a graph G(V, E), a cut vertex is a
vertex v such that deleting v and all its incident
edges can increase the number of connected
components. A block of G is a maximal
connected induced subgraph containing no cut
vertex. In [12], Harary have defined a block graph
BG(G) of a graph G as the intersection graph of
the blocks of G. Let BK1, ..., BKh be the blocks of
G. The block graph of G, denoted by BG(G)  =
(VBG, EBG), is defined as follows: VBG = {BK1, ...,
Bkh}, and EBG = {(BKi, Bkj)  i ≠ j and BKi ∩ BKj

≠ ∅}.
Harary has also proven that a graph is

the block graph of some graph iff all of whose
blocks are complete graphs. Thus, researchers
focused on the type of block graphs whose
blocks are all complete graphs. Fig. 2 shows a
block graph of this type. The graph has four
blocks and {d, g} are the cut vertices.

BK1

b

c
g

i h e f

d

a

BK2BK4

BK3

Fig. 2. A block graph with four blocks.
A very useful tree-like decomposition

structure, called a block-tree, will be used to
represent a block graph hereafter. The block-tree
is refined from the cut-tree structure proposed by
Aho [1]. The cut-tree, denoted by T*(V*, E*), of a
block graph BG(V, E) with h blocks BK1, ..., BKh

and p cut vertices v1, ..., vp is defined as follows: 
V* = {BK1, ..., BKh , v1, ..., vp}, and E* =

{(BKi, vj)vj ∈ BKi, 1 ≤ i ≤ h, 1 ≤ j ≤ p}.
The cut-tree of the block graph in Fig. 2

is illustrated in Fig. 3.
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BK3g d

BK2

BK 4

BK 1

Fig. 3. The cut-tree of the block graph in Fig. 2.
In [1], Aho has shown that the cut-tree

of a block graph can be constructed in linear-time
by the depth-first-search. For any block BKi,
define Bi = {v ∈ BKi  v is not a cut vertex}, 1 ≤ i
≤ h. For example, in Fig. 2, B1 represents the set
of the vertices {a, b, c}. Note that Bi can be
empty under this definition. Let us take Fig. 2 as
the example again. B3 is empty because the
original block BK3 corresponds to the set of
vertices, {d, g}, which are all cut vertices. The
block-tree TBG(VBG, EBG) of a block graph BG(V,
E) can now be defined as follows, where Bi, 1 ≤ i
≤ h, will be called block vertices hereafter. VBG =
{B1, ..., Bh, v1, ..., vp}, and EBG = {(Bi, vj)  vj ∈ BKi,
1 ≤ i ≤ h, 1 ≤ j ≤ p}.

The block-tree of the block graph
shown in Fig. 2 is depicted in Fig. 4. Some papers
have given efficient algorithms for solving
problems on block graphs [5, 6, 16, 27]. This
section will solve the BDS problem on weighted
block graphs by the dynamic programming
strategy [2, 21].

Definition 1: Any vertex v is called a black
vertex if v must be included by any optimal
solution, and v is called a white vertex if v must
be excluded from any optimal solution.

Definition 2: For any nonempty block vertex B,
Bmin denotes any vertex in B such that W(Bmin) =
minv∈B{W(v)}, i.e., Bmin is a vertex in B with the
minimum cost.

B2

g

d

B3

B4

B1

Fig. 4. The block-tree of the block graph in Fig. 2.
For any block graph BG, if BG only

consists of a non-empty block vertex B, then BG
has no cut vertex according to the definition of
block graphs. In this situation, it is clear that
{Bmin} is a dominating set with the minimum
bottleneck cost since all vertices in B form a
clique.

In the rest of this section, the input of
the BDS problem will be the block-tree of the
original block graph. It is reasonable to further

assume that at least one cut vertex exist based
upon the above discussion.

Given a block graph BG and its
corresponding block-tree T, suppose that r is
any cut vertex as shown in Fig. 5. The block-tree
will be denoted by T(r). In Fig. 5, each Ci

represents the clique { x i1
, ..., x i ji

} ∪ Bi, 1 ≤ i ≤

k . It is clear that any optimal solution either
includes r or does not. So, the following two new
related problems, ( P

r
) and ( Pr ) are introduced.

 
( P

r
) Find a dominating set H of BG with the

minimum bottleneck cost under the additional
constraint that r ∉ H.
( Pr ) Find a dominating set H of BG with the

minimum bottleneck cost under the additional
constraint that r ∈ H.

Let 
r

β (BG) and rβ (BG) denote the

bottleneck cost of all optimal solutions of
Problem ( P

r
) and Problem ( Pr ) on BG,

respectively. The bottleneck cost of all optimal
solutions of the BDS problem, denoted by β(BG),
can be easily derived using the following formula.

β(BG) = min{
r

β (BG), rβ (BG)}

(2.1)

Bk

x
j1
1

r

x k1 xk jk

x
11

Ck

Y1

BGk

C1

BG1

•      •      • Yq

B1 •      •      •

Fig. 5. A block-tree T(r), where the square
vertices represent block vertices and Y1, … , Yq

are nonempty block vertices if exist.
Formula (2.1) indicates that β(BG) can

be computed in O(1) time if 
r

β (BG) and rβ (BG)

have been available.
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First, consider the boundary case in
which T(r) only consists of cut vertex r and its
children, say B1, ..., Bk, k  ≥ 2. Let H be any
optimal solution. If r ∈ H, then all vertices in B1

∪ ... ∪ Bk are dominated by r and β(BG) ≥ W(r). It
is easy to verify that including any vertex in B1

∪ ... ∪ Bk will obtain to a solution with a
bottleneck cost greater than or equal to W(r).
Thus, {r} is already an optimal solution of
Problem ( Pr ). On the other hand, if r ∉ H, then

we can easily verify that {B1
min, ..., Bk

min} is a
dominating set with the minimum bottleneck cost
of Problem ( P

r
).

The correctness of the following
formulas for computing 

r
β (BG), rβ (BG), and

β(BG) under this boundary condition can be
easily proved.

r
β (BG) = max1≤i≤k{W(Bk

min)} (2.2)

rβ (BG) = W(r) (2.3)

β(BG) = min{
r

β (BG), rβ (BG)}

(2.4)

Consider a general block-tree T(r) as
shown in Fig. 5. Let Ω  denote the set {Y1, …  Yq}.
To solve Problem ( P

r
), the following two cases

should be handled.
Case 1. Ω  is not empty

Since Problem ( P
r
) deals with the case

in which all feasible solution can not include r, at
least one black vertex must be included from
each block vertex Yi, 1 ≤ i ≤ q, respectively,
according to the definition of dominating sets.
Then, r is dominated by the black vertices in Y1

∪ ... ∪ Yq. This implies that we can solve the BDS
problem on BG1, … , BGk independently and

recursively without considering r. Let )I(β (BG)

denote the minimum bottleneck cost of BG in this
case. The following formula can be easily
established.

)I(β (BG) = max{maxB∈Ω{W(Bmin)},

β(BG1), … , β(BGk)} (2.5)

Case 2. Ω  is empty
There must exist a black vertex vi ∈ Ci,

for some i, in order to dominate the vertex r. Let
)II(β (BG) denote the minimum bottleneck cost of

BG in this case and 
ivβ (BGi) represent the

minimum bottleneck cost of BGi under the
condition that some vertex vi must be black.

Verifying the correctness of the following
formula is simple.

)II(β (BG) = max{Π1, … , Πk},

where Πi = max{β(BG1), … , β(BGi-1),

ivβ (BGi), β(BGi+1), … , β(BGk)}

(2.6)

Based upon the above two cases,

r
β (BG) can be easily computed as follows:

r
β (BG) = 





∅=Ωβ
∅≠Ωβ

),BG(

),BG(
)II(

)I(

r

r

(2.7)

ji
x

ij
iBG

Ci

Bi

1i
x

1
BGi

•
•      •      •

•
•

•
•

•

Fig. 6. The block-tree corresponding to block
graph BGi shown in Fig. 5.

The remaining problem is to compute

ivβ (BGi), v ∈ Ci, for all i. Consider the block-tree

corresponding to BGi shown in Fig. 6. Two
situations can occur.
Case 1. vi ∈ Bi

It is clear that Bi is not empty in this
case and vi can be assigned as Bi

min. Let
)1(

ivβ (BGi) denote the minimum bottleneck cost

of BGi here. The following formula can be easily
derived.

)1(

ivβ (BGi) = max{W(Bi
min), β(

1
BG i ), … ,

β(
ijiBG )} (2.8)

Case 2. vi ∈ {
1i

x , … , 
iji

x }

All vertices in Ci are dominated by vi.

Let 
)2(

ivβ (BGi) denote the minimum bottleneck

cost of BGi in this case. The following formula
can be easily derived.
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)2(

ivβ (BGi) = max{Ψ1, … , 
ij

Ψ },

where Ψs = max{β(
1

BG i ), … ,

β(
1

BG
−si

), 
sxβ (

si
BG ), β(

1
BG

+si
), … ,

β(
ijiBG )} (2.9)

Using the reasoning of the above two
cases, 

ivβ (BGi) can be easily computed by the

following formula.

ivβ (BGi)

 = 






∈β
∈β

},...,{),BG(

),BG(

1

)2(

)1(

iji

i

iiiiv

iiiv

xxv

Bv
 (2.10)

Next, we will deal with Problem ( rP ). If

H is an optimal solution of Problem ( rP ), then r

∈ H and rβ (BG) ≥ W(r). If Ω  is not empty, then

it is easy to show that including any vertex in Y1

∪ ... ∪ Yq will obtain to a solution with a
bottleneck cost greater than or equal to W(r).
Verifying the correctness of the following
formula is an easy task when the optimal

solutions of the BDS problem on the subgraphs
BGi, 1 ≤ i ≤ k , have been computed.

rβ (BG) = max{W(r), β(BG1), ..., β(BGk)}

(2.11)

In the following, we will prove that the
time-complexity for implementing the above
formulas is O(n). It is trivial to see that formulas
(2.1) to (2.11) can be performed in either O(1) time
or linear-time, except Formula (2.6) and Formula
(2.9). The following lemmas will prove that
Formula (2.6) and Formula (2.9) can also be
implemented in linear-time.

Lemma 1: If the values 
sxβ (

si
BG ) and

β(
si

BG ), s = 1, ..., ji, have been computed, then
)2(

ivβ (BGi) can be obtained in O(ji) time, i.e.,

Formula (2.9) can be done in O(ji) time.
Proof: First, we can compute the largest value,
maxval, and the second largest value, secval, of
the ji values β(

si
BG ), s = 1, ..., ji, in O(ji) time.

Next, the value 
)2(

ivβ (BGi) can be

derived using a loop in O(ji) time as follows:

)2(

ivβ (BGi) = maxval; /* initialization */

loop s = 1 to ji
maxvals = maxval;
if β(

si
BG ) = maxval then

if 
sxβ (

si
BG ) ≥ secval then

maxvals = 
sxβ (

si
BG );

/* 
sxβ (

si
BG ) is the new maximum in {β(

1
BG i ), … , β(

1
BG

−si
),

sxβ (
si

BG ), β(
1

BG
+si

), … , β(
ijiBG )}. */

else
maxvals = secval;
/* 

sxβ (
si

BG ) is the second largest in {β(
1

BG i ), … , β(
1

BG
−si

),

sxβ (
si

BG ), β(
1

BG
+si

), … , β(
ijiBG )}, so Ψs = the second

largest in {β(
1

BG i ), … , β(
1

BG
−si

), 
sxβ (

si
BG ), β(

1
BG

+si
), … ,

β(
ijiBG )}. */

endif
else /* β(

si
BG ) ≤ maxvals;

if 
sxβ (

si
BG ) ≥ maxval then

maxvals = 
sxβ (

si
BG );

endif

/* Indeed, maxvals = Ψs in Formula (2.9) */
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)2(

ivβ (BGi) = min{
)2(

ivβ (BGi), maxvals};

endloop.

�

Lemma 2: Formula (2.6) can be implemented in

O( kC
k

i
i +∑

=1

 ) time.

Proof: Using the similar technique as Lemma 1,
)II(β (BG) can be computed in O(k) time when

the values β(BGi) and 
ivβ (BGi), i = 1, ..., k , have

been computed. Based upon the result of Lemma
1 and the facts that Formula (2.8) and Formula
(2.10) can be done in O(ji + 1) time and O(1) time,
respectively. We can easily conclude that

)II(β (BG) can be computed in O( kC
k

i
i +∑

=1

 )

time.
�

Finally, an optimal solution can be
identified by examining each vertex once from the
root r after β(BG) has been computed, and its
time-complexity is also O(n). The
following main theorem can be established.

Theorem 1: The BDS problem can be solved in
O(n) time on weighted block graphs.

3. NP-hardness of the BPDS Problem
on Bipartite Graphs

To examine the complexity of the BPDS
problem, its corresponding decision problem is
considered.

The Bottleneck Perfect Dominating Set
decision problem (The BPDS decision problem):
Given an undirected and connected graph G(V, E,
W) and a real constant η, determine whether a
perfect dominating set R ⊆ V exists such that its
bottleneck cost is less than or equal to η.

Next, a variant of the BPDS decision
problem is introduced.

The Constrained Perfect Dominating Set
decision problem (The CPDS decision problem):
Given an undirected and connected graph G(V, E)
and a set of vertices V′ ⊆ V, determine whether
there exists a perfect dominating set R of G such
that R ⊆ (V - V′).

The following lemma can then be
directly derived.

Lemma 3: The BPDS decision problem is
polynomially equivalent to the CPDS decision
problem.

This section will consider the
complexity about the BPDS problem on bipartite
graphs [29]. A graph G(V, E) is called a bipartite
graph if V can be partitioned into two disjoint
sets I and J such that I and J are both
independent sets, that is, there is no edge (u, v)
such that u, v ∈ I or u, v ∈ J. We denote a
bipartite graph with V = I ∪ J by G(I ∪ J, E)
hereafter. Fig. 7 depicts an instance of bipartite
graphs.

I J

a

c

d

e

f

g

h

k

b

Fig. 7. A bipartite graph G(I ∪ J, E).
Showing that the BPDS decision

problem is NP-complete is equivalent to proving
that the CPDS decision problem is NP-complete.
A known NP-complete problem is introduced and
Lemma 4 can be established.

The Exact Cover problem [10] : Given a family
of F = {S1, ..., Sp} of sets where each Si is a
subset of a set X = {x1, ..., xq}, does there exist a
subfamily of pairwise disjoint sets of F whose
union is equal to X?

Lemma 4: The CPDS decision problem is NP-
complete on bipartite graphs.
Proof: It is easy to check that the CPDS decision
problem belongs to the NP class of problems.
We now show that the Exact Cover problem can
be reduced to the CPDS decision problem on
bipartite graphs in polynomial time. Given an
instance of the Exact Cover problem in which F =
{S1, ..., Sp} and X = {x1, ..., xq}, a bipartite graph
G(I ∪ J, E) is constructed by the following
transformation rules. I = F ∪ Π, J = X ∪ Φ and E
= {(xz, St)  xz belongs to St} ∪ E*, where Π, Ω ,
and E* are derived using the following loop.

Π = Ω  = ∅; E* = ∅; i = j = 0;



7

for each pair Sz and St in F do
{
    if Sz ∩ St ≠ ∅ then
        {

i = i + 1; Π = Π ∪ {ui};
j = j + 2; Φ = Φ ∪ {yj-1, yj};
E* = E* ∪ {(Sz, yj-1), (yj, St), (yj-1,
ui), (yj, ui)}

                }
        }

endfor

Assume that Π = {u1, ..., uβ} and Φ =
{y1, ..., yλ} after performing the above procedure.
Some useful properties of G can be easily
derived.

Property 1: 0 ≤ β ≤ 
p
2





 , λ = 2β, and  E*  =

4β.

Property 2: Each ui is adjacent to exactly two
vertices y(2i-1) and y(2i) in Φ.

It is easy to ascertain that the time-
complexity of the transformation procedure is
polynomial based on the above properties.

Let V′ = X. Then, (V - V′) corresponds
to the set F ∪ Φ ∪ Π. The goal of the CPDS
decision problem is to determine whether there
exists a perfect dominating set D of G such that
D ⊆ (V - V′) = F ∪ Φ ∪ Π.

For any vertex v of G, w is said to be a
neighbor of v iff (v, w) ∈ E and define N(v) = {w |
(v, w) ∈ E}. Suppose that K is a solution of the
Exact Cover problem. Without a loss of
generality, we can assume that K = {S1, ..., Sα}, 1

≤ α ≤ p. Then, Sz ∩ St = ∅, for all Sz and St in K. It
implies that each xh in X will be dominated by
exactly one vertex in K. The situation can be
illustrated in Fig. 8. The task left is to determine
which vertices in (F - K) ∪ Φ ∪ Π. could be
selected to obtain a perfect dominating set D ⊆ F
∪ Φ ∪ Π.

xq

Sα

•

•

•

•

•

•

•

•

•

•

•

•

F - K

X

K Π

x1

S1

•

•

•

•

•

•

Φ

•

•

•

Fig. 8. A bipartite graph constructed from an
instance of the Exact Cover Problem and K is a

solution of it.
For each S ∈ F - K, there must exist S+ ∈

F - K such that S ∩ S+ ≠ ∅. This implies that
there exists xh ∈ X such that (S, xh) ∈ E and (S+,
xh) ∈ E. Therefore, all vertices in F - K can not be
included into any perfect dominating set D ⊆ F
∪ Φ ∪ Π.

The following loop will determine which
vertices in Φ ∪ Π could be added to obtain a
solution of the CPDS decision problem. Its
correctness can be easily verified based on the
reasoning so far as well as the comments within
it.

D = K;
Q = F - K; H = Φ; R = Π; /* initialization */
for each S ∈ Q do
{

if only one S+ ∈ K exists such that (S, yj)  (yj, ui)  (ui, yj-1)  
(yj-1, S

+) is a path of G, for some yj, yj-1, and ui, then
{

D = D ∪ {yj};
/* yj-1 is only dominated by S+; ui and S is only dominated by yj. */
H = H - { yj-1, yj}; R = R - {ui};

}
else
{

Let {S(1), ..., S(ε)} be the vertices in K such that (S, y(t)
j)  (y(t)

j, u
(t)

i)  (u(t)
i,

y(t)
j-1)  (y(t)

j-1, S
(t)) be a path of G, ε > 1 and 1 ≤ t ≤ ε;

D = D ∪ {y(1)
j};

/* y(1)
j-1 is only dominated by S(1) and u(1)

i is only dominated by y(1)
j. */

H = H - { y(1)
j-1, y

(1)
j}; R = R - {u(1)

i};
for z = 2 to ε do
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{
D = D ∪ {y(z)

j-1, u
(z)

i}; H = H - { y(z)
j-1, y

(z)
j}; R = R - {u(z)

i};
}
endfor

}
}
endfor
D = D ∪ R; /* The remaining vertices in Π are all included. */

Next, we prove another direction. If D is
a perfect dominating set D ⊆ (V - V′) = F ∪ Φ ∪
Π, then each xh in X must be dominated by
exactly one vertex in D, denoted by x(D)

h. It is
easily checkable that x(D)

h ∈ F, for all h, and
either x(D)

z ∩ x(D)
s = ∅ or x(D)

z = x(D)
s, for all z ≠ s.

Therefore, K = ∪1≤h≤q{x(D)
h} is a solution of the

Exact Cover Problem.
From the discussions so far, a perfect

dominating set D ⊆ (V - V′) exists in the bipartite
graph G iff there exists a subfamily of pairwise
disjoint sets of F such that its union is equal to X.
This implies that the CPDS decision problem is
NP-complete on bipartite graphs.

�

Theorem 2: The BPDS problem is NP-hard on
bipartite graphs.

4. An O(n) Time Algorithm for the
BPDS Problem on Weighted Trees

Given a tree T and any vertex r, the tree
is denoted by T(r). For any perfect dominating
set R of T(r), β(R) is the value of the bottleneck
cost of D, that is, β(D) can be expressed as
maxv∈D{W(v)}. For the sake of clear presentation,
denote δ(r) to be the value of the minimum
bottleneck cost of all optimal solutions of the
BPDS problem on T(r), i.e., δ(r) = min{β(R)  R is
a perfect dominating set of T(r)}.

Given a tree T(r), any optimal solution
either includes the root r or not. This leads us to
introduce the following two new related
problems, (Pr′) and (Pr), which are in fact the
original BPDS problem with additional
constraints.

(Pr′) Compute δ0(r) = min{β(R)  r ∉ R and R is a
perfect dominating set of T(r)}.
(Pr) Compute δ1(r) = min{β(R)  r ∈ R and R is a
perfect dominating set of T(r)}.

From the definitions of the BPDS
problem and the problems (Pr′) and (Pr), the
following formula can be easily obtained.

δ(r) = min{δ0(r), δ1(r)} (4.1)

Formula (4.1) implies that the bottleneck
cost of all optimal solutions can be obtained in
O(1) time when the problems (Pr′) and (Pr) have
been solved. Therefore, the followings will
concentrate on solving these two problems.

First, consider the boundary case when
T(r) only consists of vertex r. In this situation, {r}
is the only one perfect dominating set. Therefore,
the bottleneck costs of the problems (Pr′), (Pr),
and the original problem in this boundary
condition are as follows: δbndy-I

0(r) = ∞, δbndy -I(r) =
δbndy-I

1(r) = W(r).
Another boundary case is the situation

that T(r) only consists of vertex r and its children,
say x1, ..., xk. If k  = 1, {r}, {x1}, and {r, x1} are the
all perfect dominating sets of T(r). Otherwise, the
only perfect dominating set is {r}. It is easy to
verify the correctness of the following formulas.

δbndy-II
0(r) = 

W x k
k
( ),
,

1 1
2

=
∞ ≥





 (4.2)

δbndy-II
1(r) = W(r) (4.3)

δbndy -II(r) = min{δbndy-II
0(r), δbndy-II

1(r)}
(4.4)

Now, consider a general tree T(r) as
shown in Fig. 9. The problem (Pr′) considers the
cases in which r must be excluded. From the
definition of perfect dominating sets, any
feasible solution of the problem (Pr′) must
contain exactly one vertex belonging to {x1, ...,
xk}. This can be expressed as the following
formula.

δ0(r) = min{max{δ1(x1), δ0(x2), ..., δ0(xk)},
max{δ0(x1), δ1(x2), ..., δ0(xk)}, … , max{δ0(x1),
δ0(x2), ..., δ1(xk)}} (4.5)

Formula (4.5) indicates that the cases
where xi, 1 ≤ i ≤ k , is the only one vertex that
must be included are dealt with, respectively.

. . .
T(xk)

r

xkx1

T(x1)

Fig. 9. A tree T(r) and the subtrees  of r.
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Next, turn to deal with the problem (Pr).
If R is a solution of the problem (Pr), then r ∈ R.
The bottleneck cost of D will be equal to or
greater than W(r). Now, for each xi in {x1, ..., xk},
it can be either included or excluded. Suppose
that T( x i1

), ..., T( x i ji
) be the subtrees of vertex

xi as illustrated in Fig. 10. If xi is excluded, i.e., xi

has been dominated by r, then all the vertices in
{ x i1

, ..., x i ji
} must also be excluded since each

vertex not in R can be dominated by only one
vertex in R. In another, if xi is included, then
every vertex in {x i1

, ..., x i ji
} can be either

included or excluded. Now, the following formula
can be easily obtained when the problem (Pr′) on
the subtrees T( x ip

), 1 ≤ i ≤ k  and 1 ≤ p ≤ ji, and

the problem (Pr) on T(xi), 1 ≤ i ≤ k , have been
solved.

. . .
T x ij i

( )

xi

x iji
x i1

T xi( )
1

Fig. 10. The subtrees  of vertex xi, 1 ≤ i ≤ k .
δ1(r) = max{W(r), min1≤i≤k{max{Φi, ϑ i}}}

(4.6)

, where Φi = max{W(xi), max{δ( x i1
), δ( xi2

), ...,

δ( x i ji
)}}, and ϑ i = max{δ0( x i1

), δ0( xi2
), ...,

δ0( x i ji
)}.

The following will prove that the time-
complexity for implementing the above formulas
is O(n). First, the following lemmas are
established.

Lemma 5: If the 2k  values δ1(xi) and δ0(xi), i = 1, ...,
k , have been computed, then δ0(r) can be
obtained in O(k) time for any internal vertex r
with k  children x1, ..., xk.
Proof: First, we compute the largest value,
maxval, and the second largest value, secval, of
the k  values δ0(xi), i = 1, ..., k , in O(k) time.

Next, the value δ0(r) can be derived
using a loop in O(k) time as follows:

δ0(r) = maxval; /* initialization */
loop i = 1 to k

maxvali = maxval;
if δ0(xi) = maxval then

if δ1(xi) ≥ secval then
mxavali = secval;
else

if δ1(xi) ≥ maxval then
maxvali = δ1(xi);

δ0(r) = min{δ0(r), maxvali};
endloop.

�

Lemma 6: For any internal vertex r, δ1(r) can be

computed in O( ( )ji
i

k

=
∑ +

1

1  + 1) time when the

values δ0( x ip
), 1 ≤ i ≤ k , 1 ≤ p ≤ ji, and δ1(xi), 1 ≤ i

≤ k , are available.
Proof: This lemma can be directly derived from
Formula (4.6).

�
From Lemma 5, Lemma 6, and the fact

that δ(r) can be computed in constant time by
simply comparing δ0(r) and δ1(r) for any internal
vertex r. We can conclude that the number of
operations executed on each vertex is bounded
by a constant.

Finally, an optimal solution can be
derived from the root of the input tree in O(n)
time since for the set {r, x1, ..., xk}, one of the
following cases could occur.

Case 1. r is selected. For each subtree T(xi), if
max{W(xi), max{δ( x i1

), δ( x i2
), ..., δ( x i ji

)}} <

max{δ0( x i1
), δ0( x i2

), ..., δ0( x i ji
)}, then xi is

included, else xi can be excluded.
Case 2. r is not selected. Only one vertex in
{x1, ..., xk} must be included.

Based on the above discussion, an
optimal solution can be identified by examining
each vertex constant times from the root r after
δ(r) has been computed, and its time- complexity
is also O(n).

Theorem 3: The BPDS problem can be solved in
O(n) time on weighted trees.

5. Extension to Consider Sum
Communication Costs Simultaneously

In addition to the costs of allocating
service facilities, the communication costs
between the vertices with no facility and the
vertices with facilities are also a key factor
related to the costs and performance of real
systems . This section will extend the results of
the BDS problem for dealing with the two cost
measurements simultaneously.

For any dominating set D, the
bottleneck-placement-cost of D is defined to be
BP(D) = maxx∈D{C(x)} and its sum-
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communication-cost is defined to be SC(D)  =

∑ −∈ DVx
xxW ))(ì ,( , where µ(x) is a vertex y

in which W(x, y) is minimized among all vertices
dominating x. The pair (BP(D), SC(D)) is called
the BS-dominating-cost of D. The goal is to
identify a dominating set D such that BP(D) is
minimized. Furthermore, if more than one
dominating set whose bottleneck-placement-
costs are minimized, then any one with the
minimum sum-communication-cost will be
selected.

Now, the following definitions are first
made.

Definition 3: Given any two pairs of real
numbers (a1, b1) and (a2, b2), the following
relations are defined.
1. (a1, b1) < (a2, b2) if and only if (iff) (a1 < a2) or
(a1 = a2 and b1 < b2).
2. (a1, b1) = (a2, b2) iff (a1 = a2 and b1 = b2).

Definition 4: Let (a1, b1), ..., (an, bn) be any n
pairs of real numbers.
1. The pair (ai, bi) is a minimum pair among these
n pairs iff (ai, bi) ≤ (aj, bj), for all j ≠ i.
2. The pair (at, bt) is a maximum pair among
these n pairs iff (at, bt) ≥ (as, bs), for all s ≠ t.

The extended problem in this section is
now described formally as follows:

The Minimum BS-dominating-cost Dominating
Set problem (The MBS_DS problem): Find a
dominating set S ⊆ V such that its BS-
dominating-cost is minimized for a weighted
graph G(V, E, C, W). S is called an optimal
solution of G.

Fig. 11 illustrates another graph with
positive costs both on vertices and edges .
Example of optimal solution for the MBS_DS
problem is described as follows: The sets D1 = {a,
e, f} and D2 = {c, d, f} are two dominating sets.
BP(D1) = max{W(a), W(e), W(f)} = max{1, 1, 3} = 3
and SC(D1) = (b, µ(b)) + (c, µ(c)) + (d, µ(d)) + (h,
µ(h)) + (k , µ(k)) =  W(b, f) + W(c, a) + W(d, a) +
W(h, f) + W(k , f) = 3 + 2 + 5 + 4 + 3 = 17. It is easy
to check that D1 is an optimal solution.

This section will prove that the
MBS_DS problem can be solved in O(mlogn)
time on weighted general graphs using the
binary search technique. To investigate the
complexity of the MBS_DS problem, a
corresponding constrained optimization problem
is introduced.

20

5

2
37

43

186
3

5 60

50

c, 4
b, 7

e, 1 f, 3

h, 98

d, 76

k, 19a, 1

Fig. 11. A graph with real costs both on vertices
and edges .

The Constrained Minimum BS-dominating-cost
Dominating Set problem (The CMBS_DS
problem): Given a weighted graph G(V, E, C, W)
and a positive constant λ,  find a dominating set
S such that BP(S) ≤ λ. Any dominating set H
satisfying the condition BP(H) ≤ λ is called a
feasible solution. If S1, … , Sp, p ≥ 2, are the
feasible solutions, then identify a dominating set
Si such that SC(Si) ≤ SC(St), for all t ≠ i,
furthermore. We call that Si is an optimal solution
of the CMBS_DS problem.

For each x ∈ V, define N(x) = {y  y ∈ V
and (x, y) ∈ E}. The following key lemma is
established.

Lemma 7: Suppose that ψ (G(V, E, C, W) and λ)
is an input instance for the CMBS_DS problem.
Let V′ = {x  x ∈ V and C(x) ≤ λ}. Then, V - V′ =
{x  x ∈ V and C(x) > λ}. The following
statements hold.
(1) A feasible solution of ψ exists iff N(v) ∩ V′ ≠
∅, for all v ∈ (V - V′).
(2) Suppose that two or more feasible solutions
of ψ exist. For each x ∈ V - V′, denote that

VN ′ (x) = {z ∈ N(x) ∩ V′  W(z, x) ≤ W(y, x), for

all y ∈ N(x) ∩ V′}. Then, H = ( )VVx ′−∈∪ {y  y is

any one vertex in VN ′ (x)} is an optimal solution

of ψ.
Proof: (1) If a feasible solution of ψ exists, then it
implies that a dominating set S exists such that
its bottleneck-placement-cost is less than or
equal to λ, i.e., S ⊆ V′. This can directly derive
that N(v) ∩ V′ ≠ ∅, for all v ∈ (V - V′).

On the other hand, consider the case
N(v) ∩ V′ ≠ ∅, for all v ∈ (V - V′). We simply put
S as V′ and it is easy to verify that S a feasible
solution of ψ.
(2) From (1), we know that H ⊆ V′. Assume that
Q is a feasible solution other than H such that
SC(Q) < SC(H). Q must also be a subset of V′. Let
u ∈ Q – H. It is easy to verify that N(u) ∩ (V - V′)
must contain at least one vertex, otherwise we
can merely discard u to obtain a better solution.

For any v ∈ N(u) ∩ (V - V′), if v is only
dominated by u, then VN ′ (v) = {u}. This will



11

imply that u ∈ H. Therefore, v must also be
dominated by some other vertex y ∈ H such that
W(y, v) < W(u, v), for all v ∈ N(u) ∩ (V - V′). This
can easily derive that SC(Q) > SC(H). A
contradiction occurs.

�
Based on Lemma 7, the following

algorithm can be designed to solve the MBS_DS
problem on weighted general graphs correctly.

Algorithm MBS_DS
Input: A weighted graph G(V, E, C, W) in which V
= {x1, ..., xn}.
Output: A dominating set S of G such that the
BS-dominating-cost of S is minimized.
Method:
Step 1: Sort the vertices of G into non-decreasing
order using their costs as keys;

/* C(x1) ≤ …  ≤ C(xn) after sorting. */
Step 2: lb = 1; ub = n; /* lower bound and upper
bound of the indices */
Step 3: S = empty set;
Step 4: while (lb ≤ ub)
Step 5: mid = (lb + ub) / 2;
Step 6: V′ = {x1, ..., xmid};
Step 7: flag = Test-Neighbor(V′);
Step 8: if flag == TRUE
Step 9: {
Step 10: S = ( )VVu ′−∈∪ {y  y

is any one vertex in VN ′ (x)};

ub = mid - 1;
Step 11: }
Step 12: else
Step 13: lb = mid + 1;
Step 14: endif
Step 15: endwhile
Step 16: if (S is not empty) output S;
End MBS_DS

The output of the procedure Test-
Neighbor(V′) is TRUE if V′ = V or N(v) ∩ V′ ≠ ∅,
for all v ∈ (V - V′). Otherwise, its return value is
FALSE.

The time-complexity of procedure Test-
Neighbor(V′) can be analyzed as follows. For
each x ∈ V, suppose that N(x) = {

1j
x , … , 

ρj
x },

j1 < …  < jρ. Define ln(x) = j1, i.e., ln(x) is the
smallest index value of the vertices in N(x). Then,
it is easy to prove that N(v) ∩ V′ = ∅ iff ln(v) >
mid, for each v ∈ (V - V′). Therefore, the
procedure Test-Neighbor(V′) can be finished in
O(V  - V′) time if ln(x) have been pre-
computed, for all x ∈ V.

The following theorem can be
established consequently.

Theorem 4: The MBS_DS problem can be
solved in O(mlogn) time on weighted general
graphs.
Proof: Let T(n) denote the time-complexity of
Algorithm MBS_DS. Step 1 involves a sorting of
n numbers and its time-complexity is O(nlogn).
Step 10 can be performed in O(m) time. Based on
the above discussions, the while loop from Step
4 to Step 15 can be performed in O((n + m)logn)
time if ln(x) have been pre-computed, for all x ∈ V.
Computing all ln(x) requires to examine each
edge once and its time-complexity is O(m).

Combining the above results, it is easily
verifiable that T(n) = O(nlogn) + O((n + m)logn) =
O(mlogn).

�

6. The Conclusions
This paper has discussed the BDS

problem and the BPDS problem on graphs with
real costs on vertices. This paper has shown that
the time-complexity of the BDS problem remains
O(n) on weighted block graphs. Second, this
paper has claimed a very meaningful algorithmic
result on graphs: the BPDS problem is NP-hard
on bipartite graphs but O(n) time solvable on
weighted trees. Finally, we extend the result of
the BDS problem to consider the sum
communication costs simultaneously and the
time-complexity is O(mlogn) time on weighted
general graphs

Some directions are worthy to continue
in the future.
1. The approach used in this study can be easily
applied to solve this problem on other classes of
graphs, such as perfect graphs.
2. Consider the combinations of placement costs
and communication costs simultaneously.
3. Find out the properties and the relationships
between bottleneck minimization problems and
summation minimization problems on weighted
graphs. This is a very important and practical
research direction.
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