
Reconfigurable Processor Core Design for Network-on-a-Chip

Shih-Lun Chen, Jer-Min Jou, Chien-Ming Sun, Yuan-Chin Wu, Haoi Yang, Hong-Yi Su
Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, R. O. C.

jou@j92a21.ee.ncku.edu.tw

Abstract-Today, the cost of mask in SoC is
increasing rapidly. Designing a complex system-on-
a-chip (SoC) confronts many challenges. Networks-
on-a-chip (NoC) is a new architectural template,
which helps to meet many of these challenges and
enables fast time to market for new designs. How to
transfer high-speed and macro data for computing
and reusing macro transistors proves to be more
and more important in the area of IC design. The
reconfigurable processor turns into a research focus
by many SoC researchers in the world.
 This paper offers a new powerful, flexible, and
reusable reconfigurable processor for NoC, which
will process no matter general or special purpose
applications with high performance. It could handle
software well like a superscalar CPU and process
some special applications with macro data
efficiently like an ASIC. Our results show that the
reconfigurable processor design greatly improves
the performance than traditional processor design.

Keywords: Reconfigurable, NoC

1. Introduction

Recently, a single chip may contain up to one
billion transistors; with such massive resources, SoC
designers can implement much complex hardware on
a chip. Those designers now face many unusual
challenges, such as performance and power,
reusability, adaptability, and scalability.

An efficient solution to these problems is to treat
SoCs as micronetworks, or Networks on Chips
(NoCs) where the interconnections are designed
using an adaptation of the protocol stack [1].
Networks have regular structure, so the design of
global wires could be fully optimized and as a result
their properties are more predictable. Regularity
enables design modularity, which provides a
standard interface for easier component reuse and
better interoperability.
The reconfigurable computing research and design
are development items nowadays. The
reconfiguration provides a lot of advantages in
design for designers [2]. No matter in reducing design
cost, shorting design time, diminishing the difficulties

and improving the integrating of IP components, the
reconfiguration plays an important role.

The MATRIX (Multiple Alu architecture with
Reconfigurable Interconnect eXperiment) [3] is a
multi-granular array of 8-bits BFUs (Basic Functional
Units) with procedurally programmable instruction
memory and a controller which can generate local
control signals from ALU output by a pattern matcher,
a reduction network or 0 half NOR PLA.

 The CHESS Array [4] hexagonal array features a
chessboard-like floorplan with interleaved rows of
alternating ALU / switchbox sequence. Embedded
RAM areas support high memory requirements.
Switchbox can be converted to 16 word by 4 bits
RAMs if needed.

TRIPS [5] contains mechanisms that enable the
processing cores and the on-chip memory system to
be configured and combined in different modes for
instruction, data, or thread-level parallelism. To adapt
to small and large-grain concurrency, thTRIPS
architecture contains four out-of-order, 16-wide-issue
Grid Processor cores, which can be partitioned when
easily extractable fine-grained parallelism exists.

This paper will introduce how to design a
reconfigurable processor for NoC. Section 2
introduces the architectures of NoC and
reconfigurable circuits. Section 3 presents the
reconfigurable processor architecture and describes
details of three kinds of components, communication
components, basic processor components and
reconfigurable components of it . Section 4 describes
the scheduling of reconfigurable processor. Section 5
presents how to hierarchically design a hardware and
how to map application data flow to hardware
hierarchically. Section 6 shows the simulation results
and components costs of processor with
reconfigurable design or not, which would verify that
reconfigurable processor is an advantaged design.

2. NoC System Architectures

 The topology of the network in NoC is 2D mesh
topology. It is easily mapped to 2-D layout and
expanded. Taking figure 1 for an example, this is a 16-
node 2D mesh network and the pair of (x, y)
represents the address of nodes in the network.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

960

The NoC design is the combination of dynamic
compositions of heterogeneous IP blocks, which
require that the on-chip interconnect network is
scalable, programmable, and reusable. There are four
main components types in the NoC:
(1) Reconfigurable communication components:

contain interconnect network, routers
(communication controllers), and network
interface.

(2) Reconfigurable computation components: they
could be reconfigurable processors, DSPs, or
application-specific logics, i.e. FPGAs, or ASICs.

(3) Distributed global/local memory components are
used to store shared or unshared data.

(4) Application interface (AI): contains
computational instructions and communicational
primitives.

The reconfigurable processor is the most important

component of the NoC. It’s a reconfigurable platform
and enables NoC could be hierarchically mapped
application data flow. The NoC is also a
reconfigurable platform for hierarchical data flow
mapping.

Figure 1 Architecture of NoC.

2.2 Reconfigurable Architectures

 The reconfigurable architectures could be
classified into fine-grained circuits and coarse-
grained circuits [6]. Fine-grained reconfigurable
circuits consist of an array of CLBs (Configurable
Logic Blocks) with a path width of 1 bit, which are
embedded in a reconfigurable interconnect fabrics.

Figure 2 Reconfigurable processor orientation.

Coarse-grained reconfigurable circuits consist of an
array of CFBs (Configurable Functional blocks), also
called rDPU (reconfigurable Datapath Unit).

The coarse-grained architectures support in
arithmetic layer, data-path in character layer and the
powerful and area efficient in routing switches. The
most advantage in the coarse-grained architecture is
reducing the configuration memories and
configuration time.

Figure 2 shows that the reconfigurable processor is
bridging the gap between reconfigurable computing
and microprocessors parallel computer. The key point
to choice which architecture to design is dependent
on what kind of purpose the users would need. As
shown in the figure, the reconfigurable processor has
more flexibility than reconfigurable computing and
ASIC, and more performance than microprocessor
parallel computer.

3. Reconfigurable Processor Architecture

This section presents instruction set and three

kinds of components which are communication, basic
processor, and reconfigurable components in
reconfigurable processor. Figure 3 shows entire
reconfigurable architecture example, we can easily
find that there are sixteen function units in this
reconfigurable processor design.

Figure 3 Reconfigurable processor architecture.

3.1 Instruction Set

After comparing with CISC and RISC instruction
set, the very long instruction word (VLIW) [7] is the
best and most suitable for the reconfigurable CPU
design. As figure 4 shown, there are four 32-bit slots
in one instruction and the length of each instruction
is 128-bit.

Figure 4 VLIW instruction format in the
reconfigurable processor design.

uProcuProc

switch

uProc
uProc

uProcuProc

uProcuProc

uProc
uProc

uProcuProc

FPGAMEM

MEM

MEM

MEM

MEM

MEM

Shared
MEM

FPGA

FPGA

local homogeneous
global heterogeneousDSP DSP DSP

Shared
MEM

Shared
MEM

uProcuProc

switch

uProc
uProc

uProcuProc

uProcuProc

uProc
uProc

uProcuProc

FPGAMEM

MEM

MEM

MEM

MEM

MEM

Shared
MEM

FPGA

FPGA

local homogeneous
global heterogeneousDSP DSP DSP

Shared
MEM

Shared
MEM

4

ForwardFU
1

FU
5

FU
9

FU
13

FU
2

FU
6

FU
10

FU
14

FU
3

FU
7

FU
11

FU
15

FU
4

FU
8

FU
12

FU
16

FU
1

FU
5

FU
9

FU
13

FU
1

FU
5

FU
9

FU
13

FU
2

FU
6

FU
10

FU
14

FU
2

FU
6

FU
10

FU
14

FU
3

FU
7

FU
11

FU
15

FU
3

FU
7

FU
11

FU
15

FU
4

FU
8

FU
12

FU
16

FU
4

FU
8

FU
12

FU
16

Decoder1

Decoder2

Decoder3

Decoder4

Decoder1

Decoder2

Decoder3

Decoder4

Central
Controller

Instruction
Cache

Register File

Network InterfaceNetwork Interface

Reconfigurable
controller

DMA

Data
Cache

ADDShift
Left

6

PC

MUX

ADD

64

1

Interrupt
Handler

2

Pre-decoder

Branch
Predictor

1
2

2

220

20

flexibility

performance

microprocessor
parallel computer

reconfigurable
computing

ASIC

reconfigurable
processor

Simple operation 1 Simple operation 2 Simple operation 3 Simple operation 4
127 96 64 32 0

Simple operation 1 Simple operation 2 Simple operation 3 Simple operation 4
127 96 64 32 0

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

961

 There are five types of slots in reconfigurable
processor. Register, immediate, jump and
reconfigurable type slots are used for calculation and
much like MIPS instructions with a modify bit, “r” for
separating the slot types are reconfigurable or not.
The final type is communication type slot that are
used for communications.

Figure 5 Reconfigurable type slots.

 Figure 5 shows the reconfigurable type slots. The
above one could be immediate type or running
reconfigurable slot depend on the last bit “r” flag. If r
flag equals zero, this slot would be immediate type
slot. If it equals one, this slot is reconfigurable
running slot. So, reconfigurable processor uses the
one bit “r” flag to determine this slot is normal
operation or reconfigurable operation. The below one
is reconfigurable download slot. It would provide the
information about start address, frame memory
number and download amount. The DMA will use
such information to execute the action of download
reconfigurable operations.

3.2 Communication Components

 The main communication component in
reconfigurable processor is network interface. It
manages the data transfer in NoC. Figure 6 shows a
data transfer example from tile A to tile B. If the
reconfigurable processor tile A wants to send a data
to other tile B, maybe a global memory or other
reconfigurable processor, the reconfigurable
processor would decode the communication
instruction and then send the data address and
destination to network interface.

Figure 6 Data transfer from tile A to tile B.

Then the network interface will make packages and
then send to routers by some signals handshaking.
After the router receiving the packages, it would send
the packages to other routers by routing algorithm.
Finally the router will send the packages to the
network interface of tile B, the network interface
would compose the packages to data. The receiving
data would be stored in the receiving buffer of the
network interface and waiting the receiving

instruction to load the data to register file or store to
data caches of tile B. After such sending and
receiving actions, accomplish a communication action.

3.3 Basic Processor Components
 Combining the program counter datapath and
arithmetic datapath, we could get a basic processor. It
contains instruction cache for instructions reading,
data cache for data reading and writing, register file
for temporary storing data for computing, decoder for
decoding instructions to produce control signals,
ALU for executing arithmetic operation and
addresses generation for load and store, and interrupt
handler for handling I/O interrupt.
 The reconfigurable processor is a five-stage
pipeline design. The first stage is fetch stage which
uses the address stored in PC to read instructions
from instruction cache. The second stage is decode
stage which decodes instructions to produce control
signals and reads the data from register file. The third
state is execution stage which executes the arithmetic
operations and calculates addresses for load and
store. The fourth stage is memory stage which loads
data from data cache or stores data into it . The fifth
stage is write back stage which reads data from
pipeline register between memory and write back
stage and determines to write it into the register file or
not
 The forward circuit is designed for handling the
data hazard which caused when a data needed to
operate in this clock, but it must write back register
file several clocks later. The forwarding action is
getting the data early from the internal resources
before it write to register file in fifth stage. The branch
predictor is designed for handling the control hazard
which caused by branch instructions. The
reconfigurable processor uses Hysteresis counter
two-bit self predictor. If the prediction is correct, the
pipeline will continues execute. Contrarily, if the
prediction is incorrect, the instructions that were
fetched and decoded must be discarded and the
instructions that were executed, loaded or stored in
memory and written back would continues execute.

3.4 Reconfigurable Components

 The special components designs in reconfigurable
processor are reconfigurable controller, DMA and
reconfigurable design in function unit and combines
with some registers, circuits, wires and memories for
reconfiguration.

The reconfigurable controller controls which frame
needed in this reconfigurable computing in all
function units. As FIGIGRE 5 shown, the
reconfigurable controller gets the running-times value
from central controller for decision and then sending
control signals to function units.

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU NI
Router Router.......

NI

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU

Tile A Tile B

op rs rt offset
31 26 21 016

r
1

op rs rt offset
31 26 21 016

r
1

op offset
31 26 19 016

1
1

fi
18

mrs
21

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

962

 The principle of the DMA design of reconfigurable
CPU is modicum like common DMA. As shown in
figure 7, the data could transfer directly and rapidly
from instruction cache to frames (in M1 or M2) for
reconfiguration, this action called download
reconfiguration. This download action could execute
in the same time with running other instructions.

Figure 7 Reconfigurable controller and DMA
architectures.

Figure 8 shows the architecture of the most

important arithmetic component function unit. As the
figure shown, the function unit connects with the
decoder, reconfigurable controller, DMA, register file,
forward, and data cache. Different from traditional
general purpose processor, there is a special memory
called frame memory, consisted of four parts
including operation, source one, source two and
destination register file addresses, of the function
units in reconfigurable processor.

Figure 8 Function unit architecture.

The frame memories are stored the reconfigurable
operations in frame 0 to frame 3 in M1 or M2 by DMA.
The M1 and M2 are four-frame memories, which are
designed for storing reconfigurable operations for
reconfigurable computations. When the function unit
runs M1 or other non-reconfigurable instruction, the
DMA would download reconfigurable operations
from instruction
cache in the same time.

The function unit additional combined an address
generator for the reconfigurable computation because
when it runs reconfigurable computation, the ALU
would get the operation and source addresses from
frame memory and execute them. At the same time,
the processor could load data from data cache to
register file, the load address is produced by the
additional adder.

4. Reconfigurable Processor Scheduling

The reconfigurable processor is a dynamic run-time
reconfigurable design. It could handle software well
like a superscalar CPU and process some special
applications with macro data efficiently like an ASIC.
Figure 9 shows its running schedule. In the start it
runs normal operation 1 instructions like a
superscalar CPU, but at the same time the
reconfigurable operations are downloaded from
instruction cache to the frame memory M1 of each
function unit by DMA. As normal operation 1

Figure 9 Reconfigurable processor scheduling.

FIGURE 10 Reconfigurable processor execution example

Bubble sort
execution

FIR Application
Reconfigurable

operations loading

FIR Application
Reconfigurable

operations running

MDCT Application
Reconfigurable

operations loading

MDCT Application
Reconfigurable

operations running

Non-reconfiguration

Executions
time

s

Counter

Central
Controller

Instruction
Cache

FU
1

FU
2

FU
3

FU
4

FU
5

FU
6

FU
7

FU
8

FU
9

FU
10

FU
11

FU
12

FU
13

FU
14

FU
15

FU
16

FU
1

FU
2

FU
3

FU
4

FU
5

FU
6

FU
7

FU
8

FU
9

FU
10

FU
11

FU
12

FU
13

FU
14

FU
15

FU
16

fi

Reconfigurable Controller
c

cfi

Comparator

fi 0fi<c?

fi=0

m

8 0

2

1

1

Address
Generator

Controller

Start
address

fn
DMA Register

File

Forward

Data
Cache

R1
(M1)

R2
(M2)

Reconfigurable
Operations

Normal
Operations

Download R2

Download R1

lwr
lwr
lwr
lwr
lwr
lwr
lwr

N1

N2
Download R3

ALU
zero

ALU
zero

funct rs1 rs2 rd

Branch
Control

funct rs1 rs2 rd

op rs1 rs2 rd

Frame 0
Frame 1
Frame 2
Frame 3

Frame 0
Frame 1
Frame 2
Frame 3

M1 M2
fi

DMA

Decoder

Central
Controller

Forward
Register File

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

963

finished the reconfigurable operation 1, an special
application like hardware, had already downloaded to
frame memories of all function units by DMA. So, the
reconfigurable processor could execute
reconfigurable operation 1 right away.

During executing reconfigurable operation 1, the
processor not only could load data that would be
used later by additional adder of function units but
also could download reconfigurable operation 2 from
instruction cache to the other frame memory M2 of
each function unit by DMA at the same time. In the
same way, the reconfigurable operation 2 executes
closely following reconfigurable operation 1. After
finishing reconfigurable operation 2, the processor
could execute normal operation 2 or other special
application like hardware. Figure 10 shows the timing
flow of a reconfigurable processor running example.
Firstly, the processor runs normal operation bubble
sort. At the same time, the FIR application
reconfigurable operations are downloaded into M1.

After finishing the non-reconfigurable bubble sort
execution, the processor runs FIR application
reconfigurable operations continuously. At the same
time, the MDCT application reconfigurable
operations are downloaded to M2. After finishing the
FIR executions, the processor runs MDCT
application reconfigurable operations continuously.
The processor runs the non-reconfigurable
executions again following with the end of MDCT
reconfigurable application reconfigurable operations
finished.
 In order to estimate the performance of the
reconfigurable processor, we define SR (Speedup
Ratio) for analyzing our design [8]. SR is computed as
follows:

NoCP time =Normal operation time + Reconfigurable

operation time.
Normal operation time = SW_only_ time –

SW_loop_time
Reconfigurable time = SW_loop_time/RS

Where Normal_only_time is the time from normal

operation only execution and the SW_loop_time is
the time taken on a CPU by the loop that will be
mapped to hardware. RS (Reconfigurable speedup)

denotes the speedup expected on the loop by
mapping it to reconfigurable computation.

Using bubble sort, FIR and MDCT for example, the
SR value is 2.36. So, the reconfigurable processor
design greatly improves the performance than
traditional processors by saving loading and
download time.

6. Simulation Results

This section will introduce the results of analyzing
several design alternatives, including 1-function-unit,
2-function-units, 4-function-units, 9-function-units
and 16-function-units of the processors with
reconfigurable design and non-reconfigurable design
by C language.

In order to evaluate the design effectiveness of
different architecture designs, a general application
example FIR filter and MDCT are used. Figure 13
shows the simulation results of FIR and Figure 14
shows the simulation results of MDCT, Notice the
unit of y coordinate axis, it represents the hardware
could produce how many results each clock. We
could easily find that the reconfigurable design is
greatly promoting the performance in FIR and MDCT
application than general processors.

0

0.5

1

1.5

2

2.5

1 FU 2 FU 4 FU 9 FU 16 FU

Amounts of fuction units

P
e
r
f
o
r
m
a
n
c
e
(
r
e
s
u
l
t
/
c
l
o
c
k
)

Non-reconfigurable ProcessorReconfigurable Processor

Figure 13 Compare of performance between

architectures with and without reconfigurable
design in FIR example.

0

0.2

0.4

0.6

0.8

1

1.2

1 FU 2 FU 4 FU 9 FU 16 FU

Amounts of fuction units

P
e
r
f
o
r
m
a
n
c
e
(
r
e
s
u
l
t
/
c
l
o
c
k
)

Non-reconfigurable ProcessorReconfigurable Processor

Figure 14 Compare of performance between

architectures with and without reconfigurable
design in MDCT example.

Table 1 shows the execution time of three

applications bubble sort, FIR, and MDCT. The
bubble sort application depends on too many branch

(1 －)

= SW_loop_time
 RS

Normal_only_time–SW loop time +

Normal_only_time
S=

Normal time + Reconfigurable time

Normal_only_time

= SW_loop_time
 RS

1 －

1

1
RS

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

964

instructions. So its not suitable for reconfigurable
computing. The FIR and MDCT applications are
suitable for reconfigurable computing. Both of them
cost 16 clocks time for download, but it could be
saved by executing other instructions and
downloading at the same time. To observe the
simulation results, the applications using both of
normal operation and reconfigurable operation for
executing are greatly improving the performance that
only using normal operations.

0
20
40
60
80
100
120
140
160
180
200

R
e
g
i
s
t
e
r

M
u
l
t
i
p
l
i
e
r

A
d
d
e
r

S
u
b
t
r
a
c
t

C
o
m
p
a
r
a
t
o
r

S
h
i
f
t
e
r

Or A
n
d

C
a
c
h
e

Componets

C
o
m
p
o
n
e
n
t

a
m
o
u
n
t

1 FU2 FU4 FU9 FU16 FU

Figure 15 Components increasing amounts of each

kind of processor architectures adding
reconfigurable design.

Figure 15 shows the components increasing

amounts of each kind of processor architectures from
the architectures without reconfigurable design to
with reconfigurable design. We could easily find that
the multipliers, Subtracts, shifters and caches are zero
growing-up in component amounts. The increasing
components percentages of the and gates are from
3.13% to 7.69%, the comparators are from 4.44% to
21.46%, the adders are from 5.46% to 34.25% and the
registers are from 4.92% to 40.74%.

After analyzing the results, the performances are
increasing from 62% to 300% and the hardware
components costs are all less than 50%. We could
get the conclusion that the processor with
reconfigurable design is more efficient than
traditional processors.

7. Conclusion

We proposed a coarse-grained dynamic
reconfiguration processor. It could handle software
well like a superscalar CPU and process some special

applications with macro data efficiently like an ASIC.
After simulation, we verify that Reconfigurable
processor is more efficient in special applications and
has more flexibilities than traditional general purpose
processors We hope one day, the reconfigurable
processor could combine with the network interface,
interconnection network and routers well, and then
complete the NoC design. Finally we look forward to
accomplish NoC mesh for entire hierarchical dataflow
mapping into a chip.

References
[1] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S.

Malik, J. Rabaey, A. Sangiovanni-Vincentelli,
“Addressing the System-on-a-Chip interconnect
Woes through Communication-Based Design,''
Design Automation Conference, pp. 667-672, 2001.

[2] Jou, Jer Min: Reconfigurable SoC Architectures,
The 14th VLSI Design/CAD Symposium, pp.217-
200, 2003.

[3] Hauck, S.; Hosler, M.M.; Fry, T.W: High
performance carry chains for FPGA's Very Large
Scale Integration (VLSI) Systems, IEEE
Transactions on , Volume: 8 , Issue: 2 , April 2000.

[4] A. Marshall et al.: A Reconfigurable Arithmetic
Array for Multimedia Applications; Proc.
ACM/SIGDA FPGA‘99, Monterey, Feb. 21-23,
1999.

[5] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J.
Huh, D.C. Burger, S.W. Keckler, and
C.R."Exploiting ILP, TLP, and DLP with the
Polymorphous TRIPS Architecture, Moore, 30th
Annual International Symposium on Computer
Architecture (ISCA), June 2003.

[6] Hartenstein, R.;” A decade of reconfigurable
computing: a visionary retrospective”, Design,
Automation and Test in Europe, 2001. Conference
and Exhibition 2001.

[7] http//www.semiconductors.philips.com/acrobat/o
ther/vliw-wp.pdf.

[8] Dinesh C. Suresh, Riverside Walid A.
Najjar, Riverside Frank Vahid. “Profiling
Tools for Hardware/Software Partitioning of
Embedded Applications”. Proc. of the 2003 ACM
SIGPLAND Conf. on Languages, Comp iler and
Tools for Embedded Systems, Sam Diego, CA
Juen 2003.

Table 1 Execution time of bubble sort, FIR, and MDCT applications

4001020010200001016MDCT

20010501050001016FIR

10101010010100Bubble Sort

Normal Operation
Only Time

Total
Time

Reconfigurable
Time

Normal
Time

Download
Time

Time(clock)
Application

4001020010200001016MDCT

20010501050001016FIR

10101010010100Bubble Sort

Normal Operation
Only Time

Total
Time

Reconfigurable
Time

Normal
Time

Download
Time

Time(clock)
Application

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

965

