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Abstract-Today, the cost of mask in SoC is 
increasing rapidly. Designing a complex system-on-
a-chip (SoC) confronts many challenges. Networks-
on-a-chip (NoC) is a new architectural template, 
which helps to meet many of these challenges and 
enables fast time to market for new designs. How to 
transfer high-speed and macro data for computing 
and  reusing macro transistors proves to be more 
and more important in the area of IC design. The 
reconfigurable processor turns into a research focus 
by many SoC researchers in the world.  
      This paper offers a new powerful, flexible, and 
reusable reconfigurable processor for NoC, which 
will process no matter general or special purpose 
applications with high performance. It could handle 
software well like a superscalar CPU and process 
some special applications with macro data 
efficiently like an ASIC. Our results show that the 
reconfigurable processor design greatly improves 
the performance than traditional processor design.  
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1. Introduction 
 

Recently, a single chip may contain up to one 
billion transistors; with such massive resources, SoC 
designers can implement much complex hardware on 
a chip. Those designers now face many unusual 
challenges, such as performance and power, 
reusability, adaptability, and scalability.  

An efficient solution to these problems is to treat 
SoCs as micronetworks, or Networks on Chips 
(NoCs) where the interconnections are designed 
using an adaptation of the protocol stack [1]. 
Networks have regular structure, so the design of 
global wires could be fully optimized and as a result 
their properties are more predictable. Regularity 
enables design modularity, which provides a 
standard interface for easier component reuse and 
better interoperability.  
The reconfigurable computing research and design 
are development items  nowadays. The 
reconfiguration provides a lot of advantages in 
design for designers [2]. No matter in reducing design 
cost, shorting design time, diminishing the difficulties 

and improving the integrating of IP components, the 
reconfiguration plays an important role.  

The MATRIX (Multiple Alu architecture with 
Reconfigurable Interconnect eXperiment) [3] is a 
multi-granular array of 8-bits BFUs (Basic Functional 
Units) with procedurally programmable instruction 
memory and a controller which can generate local 
control signals from ALU output by a pattern matcher, 
a reduction network or 0 half NOR PLA.  

 The CHESS Array [4] hexagonal array features a 
chessboard-like floorplan with interleaved rows of 
alternating ALU / switchbox sequence. Embedded 
RAM areas support high memory requirements. 
Switchbox can be converted to 16 word by 4 bits 
RAMs if needed.  

TRIPS [5] contains mechanisms that enable the 
processing cores and the on-chip memory system to 
be configured and combined in different modes for 
instruction, data, or thread-level parallelism. To adapt 
to small and large-grain concurrency, thTRIPS 
architecture contains four out-of-order, 16-wide-issue 
Grid Processor cores, which can be partitioned when 
easily extractable fine-grained parallelism exists.  

This paper will introduce how to design a 
reconfigurable processor for NoC. Section 2 
introduces the architectures of NoC and 
reconfigurable circuits. Section 3 presents the 
reconfigurable processor architecture and describes 
details of three kinds of components, communication 
components, basic processor components and 
reconfigurable components of it . Section 4  describes 
the scheduling of reconfigurable processor. Section 5 
presents how to hierarchically design a hardware and 
how to map application data flow to hardware 
hierarchically. Section 6 shows the simulation results 
and components costs of processor with 
reconfigurable design or not, which would verify that 
reconfigurable processor is an advantaged design. 
 
2. NoC System Architectures 
 
    The topology of the network in NoC is 2D mesh 
topology. It is easily mapped to 2-D layout and 
expanded. Taking figure 1 for an example, this is a 16-
node 2D mesh network and the pair of (x, y) 
represents the address of nodes in the network. 
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The NoC design is the combination of dynamic 
compositions of heterogeneous IP blocks, which 
require that the on-chip interconnect network is 
scalable, programmable, and reusable. There are four 
main components types  in the NoC:  
(1) Reconfigurable communication components: 

contain interconnect network, routers 
(communication controllers), and network 
interface. 

(2) Reconfigurable computation components: they 
could be reconfigurable processors, DSPs, or 
application-specific logics, i.e. FPGAs, or ASICs. 

(3) Distributed global/local memory components are 
used to store shared or unshared data. 

(4) Application interface (AI): contains 
computational instructions and communicational 
primitives. 

 
The reconfigurable processor is the most important 

component of the NoC. It’s a reconfigurable platform 
and enables NoC could be hierarchically mapped 
application data flow. The NoC is also a 
reconfigurable platform for hierarchical data flow 
mapping. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Architecture of NoC. 
 

2.2 Reconfigurable Architectures 
 

  The reconfigurable architectures could be 
classified into fine-grained circuits and coarse-
grained circuits [6]. Fine-grained reconfigurable 
circuits consist of an array of CLBs (Configurable 
Logic Blocks) with a path width of 1 bit, which are 
embedded in a reconfigurable interconnect fabrics.  
 
 
 
 
 
 
 
 
 

Figure 2 Reconfigurable processor orientation. 

Coarse-grained reconfigurable circuits consist of an 
array of CFBs (Configurable Functional blocks), also 
called rDPU (reconfigurable Datapath Unit). 

The coarse-grained architectures support in 
arithmetic layer, data-path in character layer and the 
powerful and area efficient in routing switches. The 
most advantage in the coarse-grained architecture is 
reducing the configuration memories and 
configuration time. 

Figure 2 shows that the reconfigurable processor is 
bridging the gap between reconfigurable computing 
and microprocessors parallel computer. The key point 
to choice which architecture to design is dependent 
on what kind of purpose the users would need. As 
shown in the figure, the reconfigurable processor has 
more flexibility than reconfigurable computing and 
ASIC, and more performance than microprocessor 
parallel computer. 

 
3. Reconfigurable Processor Architecture  

 
This section presents instruction set and three 

kinds of components which are communication, basic 
processor, and reconfigurable components in 
reconfigurable processor. Figure 3 shows entire 
reconfigurable architecture example, we can easily 
find that there are sixteen function units in this 
reconfigurable processor design. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Reconfigurable processor architecture. 
 
3.1 Instruction Set 
 

After comparing with CISC and RISC instruction 
set, the very long instruction word (VLIW) [7] is the 
best and most suitable for the reconfigurable CPU 
design. As figure 4 shown, there are four 32-bit slots 
in one instruction and the length of each instruction 
is 128-bit. 

 
 
 

Figure 4 VLIW instruction format in the 
reconfigurable processor design. 
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 There are five types of slots in reconfigurable 
processor. Register, immediate, jump  and 
reconfigurable type slots  are used for calculation and 
much like MIPS instructions with a modify bit, “r” for 
separating the slot types are reconfigurable or not. 
The final type is communication type slot that are 
used for communications.  

 
 
 
 
 

Figure 5 Reconfigurable type slots. 
 

    Figure 5 shows the reconfigurable type slots. The 
above one could be immediate type or running 
reconfigurable slot depend on the last bit “r” flag. If r 
flag equals zero, this slot would be immediate type 
slot. If it equals one, this slot is reconfigurable 
running slot. So, reconfigurable processor uses the 
one bit “r” flag to determine this slot is normal 
operation or reconfigurable operation. The below one 
is reconfigurable download slot. It would provide the 
information about start address, frame memory 
number and download amount. The DMA will use 
such information to execute the action of  download 
reconfigurable operations. 
 
3.2 Communication Components 
 
    The main communication component in 
reconfigurable processor is network interface. It 
manages the data transfer in NoC. Figure 6 shows a 
data transfer example from tile A to tile B. If the 
reconfigurable processor tile A wants to send a data 
to other tile B, maybe a global memory or other 
reconfigurable processor, the reconfigurable 
processor would decode the communication 
instruction and then send the data address and 
destination to network interface.  
 
 
 
 
 
 
 

Figure 6 Data transfer from tile A to tile B. 
 

Then the network interface will make packages and 
then send to routers by some signals handshaking. 
After the router receiving the packages, it would send 
the packages to other routers by routing algorithm. 
Finally the router will send the packages to the 
network interface of tile B, the network interface 
would compose the packages to data. The receiving 
data would be stored in the receiving buffer of the 
network interface and waiting the receiving 

instruction to load the data to register file or store to 
data caches of tile B. After such sending and 
receiving actions, accomplish a communication action. 
   
3.3 Basic Processor Components 
     Combining the program counter datapath and 
arithmetic datapath, we could get a basic processor. It 
contains instruction cache for instructions reading, 
data cache for data reading and writing, register file 
for temporary storing data for computing, decoder for 
decoding instructions to produce control signals,   
ALU for executing arithmetic operation and 
addresses generation for load and store, and interrupt 
handler for handling I/O interrupt. 
    The reconfigurable processor is a five-stage 
pipeline design. The first stage is fetch stage which 
uses the address stored in PC to read instructions 
from instruction cache. The second stage is decode 
stage which decodes instructions to produce control 
signals and reads the data from register file. The third 
state is execution stage which executes the arithmetic 
operations and calculates addresses for load and 
store. The fourth stage is memory stage which loads 
data from data cache or stores data into it . The fifth 
stage is write back stage which reads data from 
pipeline register between memory and write back 
stage and determines to write it into the register file or 
not 
    The forward circuit is designed for handling the 
data hazard which caused when a data needed to 
operate in this clock, but it must write back register 
file several clocks later. The forwarding action is 
getting the data early from the internal resources 
before it write to register file in fifth stage. The branch 
predictor is designed for handling the control hazard 
which caused by branch instructions. The 
reconfigurable processor uses Hysteresis counter 
two-bit self predictor. If the prediction is correct, the 
pipeline will continues execute. Contrarily, if the 
prediction is incorrect, the instructions that were 
fetched and decoded must be discarded and the 
instructions that were executed, loaded or stored in 
memory and written back would continues execute.  
 
3.4 Reconfigurable Components 
  
    The special components designs in reconfigurable 
processor are reconfigurable controller, DMA and 
reconfigurable design in function unit and combines 
with some registers, circuits, wires and memories for 
reconfiguration. 

The reconfigurable controller controls which frame 
needed in this reconfigurable computing in all 
function units. As FIGIGRE 5 shown, the 
reconfigurable controller gets the running-times value 
from central controller for decision and then sending 
control signals to function units. 
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    The principle of the DMA design of reconfigurable 
CPU is modicum like common DMA. As shown in 
figure 7, the data could transfer directly and rapidly 
from instruction cache to frames (in M1 or M2) for 
reconfiguration, this action called download 
reconfiguration. This download action could execute 
in the same time with running other instructions. 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 7 Reconfigurable controller and DMA 
architectures. 

 
Figure 8 shows the architecture of the most 

important arithmetic component function unit. As the 
figure shown, the function unit connects with the 
decoder, reconfigurable controller, DMA, register file, 
forward, and data cache. Different from traditional 
general purpose processor, there is a special memory 
called frame memory, consisted of four parts 
including operation, source one, source two and 
destination register file addresses, of the function 
units in reconfigurable processor.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 8 Function unit architecture. 
 

 
 
 
 
 
 
 
 
 
 
 

The frame memories are stored the reconfigurable 
operations in frame 0 to frame 3 in M1 or M2 by DMA. 
The M1 and M2 are four-frame memories, which are 
designed for storing reconfigurable operations for 
reconfigurable computations. When the function unit 
runs M1 or other non-reconfigurable instruction, the 
DMA would download reconfigurable operations 
from instruction  
cache in the same time.  

The function unit additional combined an address 
generator for the reconfigurable computation because 
when it runs reconfigurable computation, the ALU 
would get the operation and source addresses from 
frame memory and execute them. At the same time, 
the processor could load data from data cache to 
register file, the load address is  produced by the 
additional adder. 
 
4. Reconfigurable Processor Scheduling 
 

The reconfigurable processor is a dynamic run-time 
reconfigurable design. It could handle software well 
like a superscalar CPU and process some special 
applications with macro data efficiently like an ASIC. 
Figure 9 shows its running schedule. In the start it 
runs normal operation 1 instructions like a 
superscalar CPU, but at the same time the 
reconfigurable operations are downloaded from 
instruction cache to the frame memory M1 of each 
function unit by DMA. As normal operation 1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9 Reconfigurable processor scheduling. 
 

 
 
 
 
 
 
 
 
 
 

FIGURE 10 Reconfigurable processor execution example 
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finished the reconfigurable operation 1, an special 
application like hardware, had already downloaded to 
frame memories of all function units by DMA. So, the 
reconfigurable processor could execute 
reconfigurable operation 1 right away.  

During executing reconfigurable operation 1, the 
processor not only could load data that would be 
used later by additional adder of function units but 
also could download reconfigurable operation 2 from 
instruction cache to the other frame memory M2 of 
each function unit by DMA at the same time.  In the 
same way, the reconfigurable operation 2 executes 
closely following reconfigurable operation 1. After 
finishing reconfigurable operation 2, the processor 
could execute normal operation 2 or other special 
application like hardware. Figure 10 shows the timing 
flow of a reconfigurable processor running example. 
Firstly, the processor runs normal operation bubble 
sort. At the same time, the FIR application 
reconfigurable operations are downloaded into M1.    

After finishing the non-reconfigurable bubble sort 
execution, the processor runs FIR application 
reconfigurable operations continuously. At the same  
time, the MDCT application reconfigurable 
operations are downloaded to M2. After finishing the 
FIR executions, the processor runs MDCT 
application reconfigurable operations continuously. 
The processor runs the non-reconfigurable 
executions again following with the end of MDCT 
reconfigurable application reconfigurable operations 
finished.  
    In order to estimate the performance of the 
reconfigurable processor, we define SR (Speedup 
Ratio) for analyzing our design [8]. SR is computed as 
follows: 
 
NoCP time =Normal operation time + Reconfigurable 

operation  time. 
Normal operation time = SW_only_ time – 

SW_loop_time 
Reconfigurable  time = SW_loop_time/RS 
 
 
 
 

 
 

 
 
 
 
 
 

     
Where Normal_only_time is the time from normal 

operation only execution and the SW_loop_time is 
the time taken on a CPU by the loop that will be 
mapped to hardware. RS (Reconfigurable speedup) 

denotes the speedup expected on the loop by 
mapping it to reconfigurable computation. 

Using bubble sort, FIR and MDCT for example, the 
SR value is 2.36.  So, the reconfigurable processor 
design greatly improves the performance than 
traditional processors by saving loading and 
download time. 
 
6. Simulation Results 
 

This section will introduce the results of analyzing 
several design alternatives, including 1-function-unit, 
2-function-units, 4-function-units, 9-function-units 
and 16-function-units of the processors with 
reconfigurable design and non-reconfigurable design 
by C language.  

In order to evaluate the design effectiveness of 
different architecture designs, a general application 
example FIR filter and MDCT are used.  Figure 13 
shows the simulation results  of FIR and Figure 14 
shows the simulation results of MDCT, Notice the 
unit of y coordinate axis, it represents the hardware 
could produce how many results each clock. We 
could easily find that the reconfigurable design is 
greatly promoting the performance in FIR and MDCT 
application than general processors.  
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Figure 13 Compare of performance between 

architectures with and without reconfigurable 
design in FIR example. 
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Figure 14 Compare of performance between 

architectures with and without reconfigurable 
design in MDCT example. 

 
Table 1 shows the execution time of three 

applications bubble sort, FIR, and MDCT. The 
bubble sort application depends on too many branch  
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instructions. So its not suitable for reconfigurable 
computing. The FIR and MDCT applications are 
suitable for reconfigurable computing. Both of them 
cost 16 clocks time for download, but it could be 
saved by executing other instructions and 
downloading at the same time. To observe the 
simulation results, the applications using both of 
normal operation and reconfigurable operation for 
executing are greatly improving the performance that 
only using normal operations.  
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Figure 15 Components increasing amounts of each 

kind of processor architectures adding 
reconfigurable design. 

 
Figure 15 shows the components increasing 

amounts of each kind of processor architectures from 
the architectures without reconfigurable design to 
with reconfigurable design. We could easily find that 
the multipliers, Subtracts, shifters and caches are zero 
growing-up in component amounts. The increasing 
components percentages of the and gates  are from 
3.13% to 7.69%, the comparators are from 4.44% to 
21.46%, the adders are from 5.46% to 34.25% and the 
registers are from 4.92% to 40.74%.     

After analyzing the results, the performances are 
increasing from 62% to 300% and the hardware 
components costs are all less than 50%. We could 
get the conclusion that the processor with 
reconfigurable design is more efficient than 
traditional processors. 
 
7. Conclusion 
 

We proposed a coarse-grained dynamic 
reconfiguration processor. It could handle software  
well like a superscalar CPU and process some special 

 
 
 
 
 
 
 
 
 
 

applications with macro data efficiently like an ASIC. 
After simulation, we verify that Reconfigurable 
processor is more efficient in special applications and 
has more flexibilities than traditional general purpose 
processors  We hope one day, the reconfigurable 
processor could combine with the network interface, 
interconnection network and routers well, and then 
complete the NoC design. Finally we look forward to 
accomplish NoC mesh for entire hierarchical dataflow 
mapping into a chip. 
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Table 1 Execution time of bubble sort, FIR, and MDCT applications 
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