
A New Approach of Seed-Set Finding for Iso-Surface Extraction

Chiang-Han Hung Chuan-kai Yang

National Taiwan University of Science and Technology
�

Abstract

Iso-surface extraction is one of the most important approaches
for volume rendering, and iso-contouring is one of the most effec-
tive methods for iso-surface extraction. Unlike most other methods
having their search domain to be the whole dataset, iso-contouring
does its search only on a relatively small subset of the original
data-set. This subset, called a seed-set, has the property that ev-
ery iso-surface must intersect with it, and it could be built at the
preprocessing time. When an iso-value is given at the run time, iso-
contouring algorithm starts from the intersected cells in the seed-
set, and gradually propagates to form the whole iso-surface. As
smaller seed-sets offer less cell searching time, most existing iso-
contouring algorithms concentrate on how to identify an optimal
seed-set. In this paper, we propose a new and efficient approach
for seed-set construction. This presented algorithm could reduce
the size of the generated seed-sets by up to one order of magnitude,
compared with the volume thinning approach.

1 Introduction

Volume rendering has been an important research topic in recent
years due to its wide applications in various areas, including med-
ical diagnosis, numerical simulations, production of education or
entertainment, and so on. While there are numerous techniques of
volume rendering, iso-surface extraction is one of the most popu-
lar approaches. In general, Iso-surface extraction consists of two
phases, cell searching and triangle generation. As the procedure
of the second phase is nearly fixed, most of the current research
concentrates on reducing the time spent during the first phase, and
among such, iso-contouring is one of the most effective methods.
The idea of iso-contouring is to first identify a subset called seed-
set, which has the property that every iso-surface must intersect
with at least one cell from the seed-set. Assuming continuous vari-
ation over the scalar fields defined on the cells, iso-contouring algo-
rithm propagates from the intersected cells in the seed-set to form
the desired iso-surface. Compared with other iso-surface extraction
methods, the benefit of iso-contouring is two-fold. First, the gen-
erated iso-surface could be readily converted into triangle strips,
which significantly reduces the traffic sent to the graphics card dur-
ing the rendering stage, thus speeding up the performance. Sec-
ond, the cell search domain is often dramatically decreased, and
therefore the search time for finding the cells on the iso-surface is
also minimized. Furthermore, many other techniques that help re-
duce the cell search time could also be applied, such as interval
trees, leading to even better overall performance. Compared with
the original dataset, the seed-set size should be relatively smaller so
that we could quickly locate where to start the iso-surface propa-
gation. This defines the very goal during the preprocessing time of
an iso-contouring algorithm. Inspired by the min-max span space
proposed by [14], we observed that a seed-set of a dataset could
be constructed in a brand-new way, which will be explained in the
ensuing sections. This observation leads to a fairly simple imple-
mentation with high efficiency. In addition, our proposed method

�
Department of Information Management, National Taiwan Uni-

versity of Science and Technology, Taipei, Taiwan 106. Emails:�
ckyang � @cs.ntust.edu.tw

is independent of other optimization techniques, such as the ideas
proposed by Bajaj et al. [1, 3, 2], in the sense that it could be ap-
plied together with other approaches. For example, it can be shown
that when combined with the existing volume thinning approach,
the size of the resulting seed-set from the original volume thinning
approach could be further reduced to be 8 times smaller than the
one using volume thinning approach alone.

The rest of the paper is organized as follows. Section 2 re-
views the related work on iso-surface extraction. Section 3 presents
our new algorithms, which could be viewed as new ways for min-
imizing a seed-set. Section 4 demonstrates the efficiency of our
method when compared and/or combined with the volume thinning
approach. Section 5 concludes the paper and envisions the potential
future directions.

2 Related Work

Volume rendering techniques can be classified into two big cate-
gories: direct volume rendering, such as raycasting [12, 13], and in-
direct rendering, such as iso-surface extraction. Lorenson’s march-
ing cubes [15] pioneered the research on iso-surface extraction. Un-
like direct rendering to generate images directly from the datasets,
indirect rendering outputs polygonal meshes which are sent to the
graphics engines for traditional rendering. In general, given an iso-
value, the way iso-extraction proceeds is to first identify the cells
intersected with the desired iso-surface, then extract the desired iso-
surface cell by cell through outputting the approximated polygons.
Therefore, there are two phases during the iso-surface extraction
process, namely the cell searching and polygon (triangle) genera-
tion. While the second phase is quite standard now, except for the
ambiguity problem, the first phase still leaves room for improve-
ment.

There are essentially three schools of thoughts trying to reduce
the cell searching time. The first type is called the space-based
approach. Wilhelms et al. [17] proposed an octree decomposition
method of this type for regular volume datasets. Each node in the
octree records the ����� and �
	�� within it. A given iso-value is
checked against the coarsest level in the octree and recursively sent
to finer levels if necessary. However the real efficiency, usually
defined by how much percentage of cells get touched , is very data-
dependent and this method cannot be readily applied to irregular
grids. The second type is called the range-based approach. Gal-
lagher [8] proposed a method of this type, which divided the range
of data values into sub-ranges, cal led buckets. For each cell, we
identify its starting bucket as well as its span, or the number of
buckets its range intersects with. Cells with the same span are
grouped together while within each group sub-groups are formed
according to their starting cell. Span numbers greater than a thresh-
old can be grouped together to save storage. Given a query, all the
span groups are traversed and depends on the span that group rep-
resents, a number of more buckets will be traversed accordingly.
Another very different method of this type, proposed by Livnat et
al. [14], represents each cell by a point in a �� plane with it y-
coordinate to be the max value of a cell and the x-coordinate to be
the min value of a cell. Each result to an iso-value query corre-
sponds to a square region with its lower right corner touching the

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1103

line defined by the equation of ��� � . This representation is called
a min-max span space, as shown in Figure 1. A kd-tree is then used
to build a hierarchy based on those points. At run time to answer
a query the kd-tree is traversed to find the right and lower bound-
ary and those points falling within this region are reported. Shen
et al. [16] later improved the searching time complexity further by
using a uniform partition in the area of the �� plane defined by
��� � , the only area where all the cells of a data set can fall into.
Yet another method, proposed by Cignoni et al. [6], demonstrated
how to use the concept of interval tree to answer an iso-surface
query, which is essentially a stabbing query in the field of com-
putational geometry [7], to achieve the optimal time complexity for
searching. It built a hierarchical data structure so that an iso-surface
query could be answered at run time by a logarithmic time complex-
ity. The third type is called the surface-based approach, which at its
preprocessing stage identifies a subset of the original dataset, called
seed-set, and then at run time propagates to form the entire iso-
surface from the intersected cells within the seed-set. The way of
identifying a seed-set from the dataset distinguishes every method
of this type. Itoh et al. proposed to build an a seed-set through an
extrema graph, which is originally consisted of the local maximum
and minimum points. These extremum points are connected to form
a graph so that at run time, as each iso-surface must intersect with
such a graph, the intersected cells can be located and propagated to
form the entire iso-surface. However, as an iso-surface can be either
closed or open, the above approach is suitable only the iso-surface
is closed. In order to cope with the open iso-surface, boundary cells
are sorted and included as well. [9]. The inclusion of boundary cells
incurs great overhead. To address this issue, later they proposed
a volume thinning approach to form a skeleton from the original
dataset, and this skeleton serves as a seed-set [10], thus eliminat-
ing the need of sorted boundary lists. Figure 2 demonstrates a 2D
thinning process. By observing some basic property of a seed-set,
Bajaj et al. begins with the whole dataset as a seed-set and gradually
reduce the redundant cells with a sweeping paradigm [1]. Their al-
gorithm first defines the range of a face (edge or vertex) connecting
two cells to be the iso-value range within which if one cell inter-
sects with the corresponding iso-surface, the other cell will also be
enumerated through the same face (edge or vertex) during the sur-
face propagation process. Then for a cell, the fundamental property
is that, if the union of ranges of its faces (edges and vertices) con-
tains its range, the cell can be removed. Kreveld et al. developed an
approximation algorithm [11] by constructing a contour tree which
contains the local maximal, local minimal and saddle points, and for
the first time, can be proved to generate a seed-set that is at most
twice the size of the optimal seed-set size. However, the required
running time is ���	��
������� . Our approach, on the contrary, may
not be able to produce the seed-set as small as the contour tree ap-
proach does, but it is a linear time algorithm, and extremely easy to
implement. Among the described related work, we will further de-
tail the min-max span space and volume thinning approach in later
sections as they serve as the foundations of our new approach.

3 New Approach

In this section, we describe where our idea originates, and what our
approaches are. We have implemented two variants, and each of
them will be detailed in the subsections.

3.1 Upper-Left Envelope

Our new approach, though a surface-based algorithm, is in fact
mainly inspired by the min-max span space representation of a data
set. Recall that a seed-set of a dataset should bear the property that
every iso-surface must intersect with it. It did not take long be-
fore we realize that a good candidate for seed-set does exist, and

max

X=Y

min

Figure 1: A min-max span space of a dataset, where each cell is
represented as a black dot. The grey area corresponds to an iso-
value query, and the cells falling into this area intersect with the
desired iso-surface.

Figure 2: A 2D volume thinning process. On the left: the original
dataset, where the extremum points are marked in dark gray. On
the right: The resulting skeleton after the thinning process.

it is in fact belonging to some forms of envelope line. In terms
of min-max span space representation, we conclude that all those
cells, represented as points, which have no cells on their upper-left
side, could form a seed-set. Figure 3 demonstrates such an obser-
vation. The fact that these points marked in circles form a seed-set
can be proved by the following. Assume � represents the set of
all the points (cells) which does not have any other points on their
upper and left-hand side, then this � must intersect with every iso-
surface. Because as long as a iso-surface passes through a dataset,
it must intersect with this data by at least one cell, say cell 	 . If
cell 	 belongs to � , then we are done; otherwise there must exist
another cell, say cell � , which is on the upper and left-hand side
of cell 	 . From Figure 1 we know cell � must also intersect with
this iso-surface. If cell � belongs to � , we are done; otherwise the
procedure just described can be carried out recursively, and due to
the finite cell number in a dataset, we will eventually reach a cell
which belongs to � , thus proving our claim. For convenience, we
will call these cells in � to be on the upper-left envelope. This is in
fact a special case of the so called maxima finding problem [5, 4].

Although it seems that we have found a good seed-set this way,
there are still cells that should be included. In other words, the set
of such cells is not yet complete to be a seed-set. Considering a 2D
counterexample given in Figure 4. In this figure, the corresponding
intervals for cell � , � and � are ������������� , ����� ��!"�"� , and �	#����%$��"� .
It is clear that only cell � is on the upper-left envelope while the
other two are not. However, if we only retain cell � as the seed-set,
then for the iso-value query whose iso-values falling in the interval
of ����� �%���"� , there is no way of propagating from cell � to cell � ,
as cell � does not intersect with such values. On a deeper thought,
what is really missing here is the consideration of connectivity. Put
it more concretely, cell � should be retained so that the iso-surface
propagation can reach cell � .

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1104

max

X=Y

min

Figure 3: A min-max span space of a dataset, where those dots who
have no upper-left neighbors are marked with circles. These dots
must be included in the final seed-set.

40 50

50

60

50

70

3040

A B C

Figure 4: A 2D counterexample. The numbers are the correspond-
ing scalar values defined on the grid points.

3.2 Variant 1

To take connectivity into account, in variant 1 we make modifica-
tion to our original algorithm as the following. We start by concep-
tually constructing a graph on top of the min-max span space where
two cells (points) are connected by an edge if there are connected
through a face. From this graph we try to remove unnecessary cells,
as shown in Figure 5. In this Figure, a cell can be removed from
the graph if it has an upper-left neighbor, because such a neighbor
would have a smaller minimum and a larger maximum, therefore at
run time, the cell can be re-discovered by the surface propagation
process from this neighbor. Notice that once a cell is removed, the
edges connected to it should be transitively adjusted, as shown in
this Figure. From the implementation point of view, it is really not
necessary to construct the connected graph, instead, we could start
with treating the whole dataset as the seed-set, and then gradually
remove unwanted cells one by one. Most importantly, the algorithm
requires only one pass of scan through all the cells then a seed-set
can be constructed. For each cell, we just need to check all its six
face-connected neighbors to see if it has a upper-left neighbor in
the min-max span space representation, or equivalently, if it has a
neighbor whose range contains this cell’s range. If so, the cell can
be removed from the seed-set. Otherwise, it should be retained. The
reason behind this is straightforward. If a cell has a face-connected
neighbor which appears to its upper and left-hand side in the min-
max span space, this means that neighbor has a range that includes
the cell’s range. This inclusiveness property guarantees that once
that neighbor is preserved in the seed-set, the current cell could al-
ways be re-connected through the corresponding face. Notice the
transitive property is implicitly preserved during this process, thus
requiring no other bookkeeping or particular data structures. In
other words, each cell could be checked individually without wor-
rying its neighbors’ existence. However, there is one exception. If
cell � and cell � are adjacent with each other by a face, and if cell
� and cell � have exactly the same range while all other neighbors
of cell � and � do not have containing ranges, then our algorithm
will remove cell � from cell � ’s point of view, and vice versa from
cell � ’s point of view. One simple and less precise approach to deal

A

B

C

D
E

F

G

A

C

E

Figure 5: A cell reduction process. On the left are connected com-
ponents of the original dataset, while on the right are the reduced
components of the dataset.

B C

20

3020 40

1030 5

20

A

Figure 6: A 2D example of iso-surface(s). Here the given iso-value
is �� .

with this exception is to first assign an unique ID to each cell, then
when it comes to cell removal, only the cell with a bigger ID value
is removed.

There is one more optimization that we could perform to further
reduce the size of the seed-set. Recall in the iso-surface propagation
process, the intersected cells found in the seed-set are used to prop-
agate to locate all the intersected cells with the desired iso-surface.
Usually this propagation is performed through face connectivity,
however, as an iso-surface could touch a vertex or pass through an
edge, we could modify the surface propagation process accordingly.
This modification also affects the seed-set construction as the def-
inition of a neighbor of a cell gets changed. By taking the new
definition into account, our algorithm requires little modification
while most of it remains unchanged.

Note that there is one more modification to be done during the
surface propagation process so that our approach is feasible. Refer
to Figure 6 for a 2D illustration. In this Figure, the curves represent
the iso-surfaces corresponding to iso-value equal to "� . According
to normal surface traversal, such as the one in Bajaj et al. [1], each
cell only checks to see if any of its faces (edges or vertices) inter-
sects with the iso-value, surface propagation will proceed along that
face (edge or vertex) neighbor. Without modification, it is apparent
that a surface propagation starting from cell � will not reach cell � ,
as the face between cell � and � does not intersect with the given
iso-value. To correct this, we just need to make little modification
to the surface propagation process: if the range of any face (edge or
vertex) neighbors of the current cell intersects with the given iso-
value, surface propagation should proceed along that neighbor.

3.3 Variant 2

Recall the method proposed by Bajaj et al. [1], where a cell could
be eliminated if the union of ranges of its faces (edges or vertices)
contains its range, then this cell could be eliminated. By making use
of this property, Bajaj et al. applied a sweeping algorithm to obtain
an approximate seed-set. Similar to the modification we just made

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1105

during the surface propagation process, we could modify Bajaj et
al.’s cell removal property to the following. If the union of ranges of
a cell’s neighbors contain its range, then this cell can be removed.
For implementation, we adopt the following algorithm, which could
accommodate the variant 1 algorithm at the same time. For each
cell, we calculate the minimum of minimum of all its neighbors ap-
pearing to its top, denoted by ��� � ��� ��� � , and the maximum
of maximum of all its neighbors appearing to its left, denoted by
� ��� ��� � ��� . If ��� � ��� ��� �	�
� ��� ��� � ��� ,
it can be shown that the union of its neighbors’ range contains its
range. Note that the case of having upper-left neighbors is already
implicitly included.

3.4 Combined with Volume Thinning

In addition to proposing a new approach, another goal of this pa-
per is to combine this approach with existing approach to seek for
an even smaller seed-set. According to Itoh et al. [10], their vol-
ume thinning approach performs much better than their previous
extrema graph approach [9], due to the elimination of boundary
cells. Therefore, we re-implement the volume thinning algorithm
so that we could compare and combine their approach with ours.
There is one immediate optimization that we could perform and
sometimes it can significantly reduce the skeleton size produced by
the original thinning algorithm (as will be demonstrated in the per-
formance evaluation section). The trick is when the eight scalar
values of a non-isolated cell are all equal to one constant value, this
cell can be removed, because this value must also appear on on of its
neighbors. At run time, when this particular iso-value is requested,
one of its neighbors should be included, either because that neigh-
bor belongs to the seed-set, or is reached by the propagation from
a seed-set, and thus this cell will eventually be included as well.
Therefore this cell does not need to be present in the seed-set.

Noticing that volume thinning and our approach bear differ-
ent perspectives towards cell reduction, we combine these two ap-
proaches and see how the merged variant performs. What we could
do is to first generate a skeleton by using the volume thinning ap-
proach, then apply the procedure that we mentioned in the last sec-
tion, i.e., each cell in the skeleton checks to see if it has a face-
connected, edge-connected, or vertex-connected neighbor whose
range containing its range. And if so, the cell is removed; otherwise
it is retained. Other implementation details such as equal-valued
adjacent cells can be handled in exactly the same way.

As the last remark, after the seed-set is constructed, we could
build an interval tree from the cells in the seed-set to further speed
up the seed cells searching at the run time, just as proposed by
[1]. Because a seed-set is usually relatively smaller compared to
the original data set, the cell searching time for finding the inter-
sected cells in the seed-set could become extremely fast. Notice
that although these intersected cells still need to be propagated to
find all the cells intersected with a given iso-surface, nevertheless,
the asymptotic time complexity is roughly only proportional to the
number of cells intersected with the iso-surface. That is, we only
spent minimal effort on those non-intersected cells, and at the same
time could enumerate cells which facilitate the generation of tri-
angle strips to enhance the rendering throughput of the graphics
engine.

4 Performance Evaluation

We have implemented our system on a Pentium 4 2.8GHz machine
with 1GByte memory, running the Windows 2000 Professional op-
erating system. We have collected and tested totally 10 volume
datasets. Table 1 lists the characteristics of these 10 datasets. We
also list the number of extremum points for reference. # of Skele-
ton Cells are the results by using Itoh et al.’s volume thinning al-

Data set # of # of Skeleton Cells After
Skeleton Cells Removing constant cells

MR Brain 2160246 2109589
CT Head 1410784 1410592
CT Engine 791428 776573
SOD 41902 27611
HIPIP 10520 10518
Hydrogenatom 1732 943
Aneurism 33134 12726
Bonsai 155850 115281
Skull 495554 491410
Foot 234405 200949

Table 2: Comparison of the number of seed cells between the origi-
nal skeleton and the new skeleton after removing the constant cells.

gorithm, which we have re-implemented for comparison study. For
convenience, we use Whole n to denote the result of using variant
� algorithm running on the whole dataset, and similarly Skeleton n
the result of using variant � algorithm running on resulting skeleton
produced by the volume thinning approach.

Table 2 shows the impact of removing those cells with constant
values. As shown by the Aneurism dataset, the number of skeleton
cells could become roughly three times smaller. This phenomenon
is not completely occidental, as shown by Table 1, only "��! pos-
sible values to be distributed to � "$��� �$��� "$ cells, there may
still exist some homogeneous regions which were not removed by
the volume thinning process.

Table 3 demonstrates how connectivity affects the seed-set size,
by using the variant 1 algorithm running on the whole dataset. In
this paper, we assume each cell is a cube, therefore it has ! faces, �
edges and � vertices. If we allow connectivity to be extended from
only face-connectivity, denoted by (�), to face-connectivity plus
edge-connectivity, denoted by (�����), or together with vertex-
connectivity, denoted by (���������), for both the seed-set re-
duction and surface propagation, then the seed-set size could be re-
duced up to four times smaller, as the Hydrogenatom dataset shows
in this table. As this table suggests, from this point on all the re-
ported numbers are based on the (���������) connectivity.

Table 4 juxtaposes the resulting seed-set sizes by different al-
gorithms, where Itoh and Bajaj represent the results by the work
in [10] (volume thinning) and [1] (fast iso-contouring), separately.
Due to the limit of time, we did not get to re-implement Bajaj et al.’s
method [1], so we extract the number from the paper and down-
loaded all the datasets available for our comparison. There are sev-
eral relationships to observe from this table. First, the numbers in
Whole 1 and Skeleton 1 are all less than the numbers in Whole 2
and Skeleton 2. This is simply because in the variant 2 algorithm
we look for more chances to delete a cell, and the test in variant 1
algorithm is just a special case of that in variant 2 algorithm. Sec-
ond, the numbers in Skeleton 1 and Skeleton 2 are smaller than those
in Itoh as the former two are built on top of the latter one to seek
further possibility of reduction. The most intriguing part is the com-
parison between Whole 2 and Skeleton 2, where Whole 2 wins most
of the time while only loosing for the HIPIP and Hydrogenatom.
And the same time, these two datasets are also where Whole1 lost
most when compared to Itoh. After a detailed analysis we found be-
cause these datasets present thin layers of equal values which may
be pricked into fragmented parts by the Whole 2 approach, but can
be handled properly by the volume thinning approach.

For the comparison between Whole 2 and Bajaj, the reason why
Whole 2 wins all the time is also self-evident, as explained previ-
ously that the tests performed in Bajaj can be deemed as a spe-
cial case of what is performed in Whole 2. Overall, the Whole 2

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1106

Data set Dimension Range # of Extremum Points # of Skeleton Cells
MR Brain 256 256 109 0 � 65535 1489073 2160246
CT Head 256 256 113 0 � 65535 764819 1410784
CT Engine 256 256 110 0 � 255 220783 791428
SOD 97 97 116 0 � 255 2758 41902
HIPIP 64 64 64 -0.55625 � 0.58136 1465 10520
Hydrogenatom 128 128 128 0 � 255 44 1372
Aneurism 128 128 128 0 � 255 6034 33134
Bonsai 128 128 128 0 � 255 43479 155850
Skull 128 128 128 0 � 255 276530 495554
Foot 128 128 128 0 � 255 127554 234405

Table 1: Characteristics of input data sets used in this performance study.

Data set Whole 1(F) Whole 1 (F+E) Whole 1 (F+E+V)
MR Brain 656908 335590 283335
CT Head 832534 428352 356679
CT Engine 838520 487104 419687
SOD 154338 80523 62619
HIPIP 92582 53486 41262
Hydrogenatom 112412 41122 27891
Aneurism 5411 3589 3241
Bonsai 63234 32626 27931
Skull 243459 119357 98049
Foot 73504 39055 32878

Table 3: Comparison of the number of seed cells among the variant 1 of our approach running on the whole dataset, under different connec-
tivity implementations.

can reduce the dataset size by up to � � times smaller (as shown by
the Aneurism dataset) when compared with Itoh, and up to # times
smaller (as shown by the MR Brain dataset) when compared with
Bajaj.

Table 5 presents the timing results of our variant 2 algorithm,
so far the best implementation of ours. It makes use of the (� �
� ���) connectivity, removes the cells with constant values and
equal-valued cells, and performs the union property test. We do
not report the triangle interpolation time, as the focus of this paper
is on the seed-set generation. We also do not include the skeleton
generation time by the volume thinning approach as it is not our
contribution. In fact, our code is still far from being optimized.
Nevertheless, these results show that with a moderate class of PC,
all the seed-sets could be generated with a reasonable speed. And
most important of all, these constructed seed-sets could be stored or
even used for building an interval tree to quickly answer repeatedly
iso-value queries.

To prove correctness, we have also verified the resulting seed-
sets produced by all variants of our algorithms. We have devised a
way to check if seed-set is indeed a seed-set by testing all possible
iso-values. For datasets with only integer scalar values, we just need
to test each integer within the scalar value range. For datasets with
floating point scalar values, we first find the union of all floating
point scalar values, then exhaustively perform iso-value query with
values coming only from the set of union. It can be shown that by
testing such values, we could enumerate all possible cases of how
all the cells of a dataset intersect with all possible iso-surfaces.

To summarize, we have proposed an algorithm which makes the
following contribution. First, it is extremely simple to implement,
while at the same time performs much better than most existing al-
gorithm. 2. It generalizes some existing scheme (such as the one
by Bajaj et al. [1]) while still preserving the linear time complex-
ity for building a seed-set at the preprocessing time. 3. It can be

Data set Time of Whole 2 Time of Skeleton 2
MR Brain 6.047 2.750
CT Head 5.625 2.765
CT Engine 5.500 3.234
SOD 0.859 0.781
HIPIP 0.172 0.063
Hydrogenatom 1.109 0.922
Aneurism 0.641 0.546
Bonsai 1.109 0.813
Skull 1.828 1.281
Foot 1.140 0.844

Table 5: Running time of the variant 2 on all datasets, with only cell
searching time reported. Numbers are in seconds.

easily combined with other approaches, such as volume thinning,
to further reduce the size of a seed-set. 4. It adds two minor opti-
mizations by removing the cells of constant values and equal-valued
cells, which sometimes may help reduce the seed-set significantly.

5 Conclusion

We have proposed and implemented a new approach to identify a
seed-set from a volume dataset. This approach, though very sim-
ple, takes just linear time of preprocessing to construct a relatively
small seed-set. Most importantly, due to its simplicity, it could also
be combined with other seed-set finding approaches. In particular,
our approach could be applied together with the volume thinning
approach, to yield an even better result than applying volume thin-
ning alone. Overall our algorithm could reduce the seed-set size

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1107

Data set Itoh Whole 1 Whole 2 Skeleton 1 Skeleton 2 Bajaj
MR Brain 2160246 283335 209332 425159 307039 639891
CT Head 1410784 356679 162069 334120 281006 423366
CT Engine 791428 419687 115918 284245 220231 180048
SOD 41902 62619 7530 17807 11294 13004
HIPIP 10520 41262 3930 5671 3652 4616
Hydrogenatom 1732 27891 3141 763 400 N/A
Aneurism 33134 3241 2507 5973 4061 N/A
Bonsai 155850 27931 18970 41039 29942 N/A
Skull 495554 98049 47983 120530 93304 N/A
Foot 234405 32878 24617 50267 36708 N/A

Table 4: Comparison of the number of seed cells between Itoh et al.’s volume thinning approach and variant 1 of our approach running on the
skeleton produced by Itoh et al.’s approach, under the connectivity of face, edge and vertex.

by up to � � times smaller when compared with the original volume
thinning approach. There are two directions that we plan to pursue
in the future. First, we will generalize our work to handle tetrahe-
dral volume datasets as well. Although tetrahedral volume datasets
present more complex topology, in terms of face, edge and vertex
connectivity, it is in fact simpler than the case of regular volume
datasets. Second, just like the work done by Kreveld et al. [11], we
will work on deriving an approximation algorithm which could find
a seed-set with provably small size; however, we wish to lower the
time complexity from ���	��
�� �� � to ���	��� .

References

[1] C. L. Bajaj, V. Pascucci, and D. R. Schikore. Fast Isocon-
touring for Improved Interactivity. In Proceedings on 1996
Symposium on Volume Visualization, pages 39–46, October
1996.

[2] C. L. Bajaj, V. pascucci, and D. R. Schikore. Fast Isocontour-
ing for Structured and Unstructured Meshes in Any Dimen-
sion. In IEEE Visualization ’97 Late Breaking Hot Topics,
1997.

[3] C. L. Bajaj, V. pascucci, and D. R. Schikore. Seed Sets
and Search Structures for Accelerated Isocontouring. Techni-
cal Report 97-034, Department of Computer Science, Purdue
University, 1997.

[4] J. L. Bentley, K. L. Clarkson, and D. H. Levine. Fast Lin-
ear Expected-Time Algorithms for Computing Maxima and
Convex Hulls. Algorithmica, 9:168–183, 1993.

[5] W. Chen, H. Hwang, and T. Tsai. Efficient Maximal-Finding
Algorithms for Random Planar Samples. Discrete Mathemat-
ics and Theoretical Computer Science, 6:107–122, 2003.

[6] P. Cignoni, P. Marino, C. Montani, E. Puppo, and
R. Scopigno. Speeding Up Isosurface Extraction Using Inter-
val Trees. IEEE Transactions on Visualization and Computer
Graphics, 3(2):158–170, April 1997.

[7] H. Edelsbrunner. Dynamic Data Structures for Orthogonal
Intersection Queries. Technical Report Report F59, Inst. In-
formationsverarb.,Tech. University Graz, 1980.

[8] R. S. Gallagher. Span Filtering: An Optimization Scheme for
Volume Visualization of Large Finite Element Models. In
IEEE Visualization ’91, pages 68–75, October 1991.

[9] T. Itoh and K. Koyamada. Automatic Isosurface Propagation
Using an Extrema Graph And Sorted Boundary Cell Lists.
IEEE Transactions on Visualization and Computer Graphics,
1(4):319–327, December 1995.

[10] T. Itoh, Y. Yamaguchi, and K. Koyamada. Volume Thinning
for Automatic Isosurface Propagation. In IEEE Visualization
’96, pages 303–310, October 1996.

[11] M. J. Kreveld, R. Oostrum, C. J. Bajaj, V. Pascucci, and
D. Schikore. Contour Trees and Small Seed Sets for Isosur-
face Traversal. In Symposium on Computational Geometry,
pages 212–220, 1997.

[12] M. Levoy. Display of Surfaces from Volume Data. IEEE
Computer Graphics and Applications, 8(3):29–37, March
1988.

[13] M. Levoy. Efficient Ray Tracing of Volume Data. ACM Trans-
actions on Graphics, 9(3):245–261, 1990.

[14] Y. Livnat, H. Shen, and C. R. Johnson. A Near Opti-
mal Isosurface Extraction Algorithm Using the Span Space.
IEEE Transactions on Visualization and Computer Graphics,
2(1):73–84, March 1996.

[15] W. E. Lorensen and H. E. Cline. Marching Cube: A High
Resolution 3D Surface Construction Algorithm. Computer
Graphics, 21(4):163–169, July 1987.

[16] H. Shen, C. D. Hansen, Y. Livnat, and C. R. Johnson. Isosur-
facing in Span Space with Utmost Efficiency. In IEEE Visu-
alization ’96, pages 287–294, October 1996.

[17] J. Wilhelms and A. V. Gelder. Octrees for Faster Isosurface
Generation. ACM Transactions on Graphics, 11(3):201–227,
July 1992.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1108

