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Abstract 

In this paper, an algorithm for dominant point 

detection is proposed. It uses the concept of break 

points to determine an asymmetric region of support 

of each point on the curves. The curvature is then 

estimated by the cosine values to assess the degree of 

possibility of a point being a dominant point. Finally, 

The dominant points are located by finding the local 

curvature extreme among the determined asymmetric 

region of support. 
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approximation, curvature, region of support. 

 

1. Introduction 

Attneave [2] pointed out that information on a 

curve is concentrated at the dominant points with 

curvature extreme. Over the years, many dominant 

point detection algorithms have been developed. Two 

categories of algorithms for detecting dominant 

points are: (1) polygonal approximation approaches 

and (2) corner detection approaches. 

Sklansky and Gonzalez [12] sequentially 

partitioned the curve by cone-intersection. Wall and 

Danielsson [14] segmented the curve at the points 

which its area deviation per length unit exceeds a 

preset value, sequentially. Ramer [7] split the curve 

into two smaller curves at the point with maximum 

deviation until the maximum deviation is less than a 

preset threshold, recursively. Ansari and Delp [1] 

detected the points with maximal curvature by 

Gaussian smoothing method as starting points for the 

following split-and-merge procedure. Kankanhalli [6] 

started by specifying four dominant points and their 

support regions to recursively extract the other 

dominant points. Ray and Ray [9] proposed the 

concept of rank of a point and followed a 

split-and-merge procedure to approximate the curves. 

Dunham [4] determined the optimal approximated 

polygon by the dynamic programming technique. Yin 

[17] approximated polygons by employing the 

genetic algorithm to find the optimal or near-optimal 

solution. 

Rosenfeld and Johnston [10] extracted the vertices 

with local maximum and minimum cosine values as 

corners. Rosenfeld and Weszka [11] improved it by 

averaging the cosine values as the estimated 

curvatures. Wu and Wang [16] detected the dominant 

points by the curvature-based polygonal 

approximation method. Wang et al. [15] proposed the 

bending value to detect corners. 

In early algorithms, the region of support is set to 

the same for all of the points on the curve. A large 

region of support will smooth out fine features and a 

small one will generate too many dummy dominant 

points. Therefore, it is difficult to select a common 

region of support for a multi-scaled curve. 

Teh and Chin [13] pointed out that the detection of 

dominant points primary on the precise determinant 

of region of support. They used chord length and 

distance to determine the region of support for each 



point independently. 

Ray and Ray [8] indicated that an asymmetric 

region of support is more reasonable and more 

natural than a symmetric region of support. That is, 

the left support and the right support for the point of 

the interest are not the same. Once the left support 

and the right support have been determined, the 

k-l-cosine value is computed as the estimated 

curvature. 

Cornic [3] addressed that, as for the Teh and Chin 

algorithm, the Ray and Ray algorithm is not robust in 

presence of noise. Evaluating the significant of point 

by the other points of the curve is proposed. He used 

the chain code properties of digital straight line to 

compute two vectors of significance. The dominant 

points are then detected by a logical unction. 

However, the computation is complex in determining 

left support and right support. In addition, it is 

difficult to select a best logical function (strategy) on 

the dominant point identification step. 

In this paper, we focus on developing a simple 

method to determine an asymmetric region of 

support. The break point detection procedure is 

applied to find the candidates of dominant points on 

the curve. The left and right regions of support are 

then determined in the same time. The experimental 

results show that the method is efficient and effective 

in detecting dominant points. In section 2, we will 

illustrate the dominant point detection methods as 

well as the proposed algorithm. Section 3 will 

present the experimental results of the new strategy. 

Some concluding remarks are then given in section 4. 

 

2. Dominant Point Detection 

The points with local maximum curvature are 

considered as the dominant points. For a continuous 

curve, curvature of a point is defined as the rate of 

change of slope as a function of arc length. That is, 

the curvature κ=dθ/ds. However, the above 

definition does not hold for a digital curve, due to 

that there exist no mathematical definition for the 

digital curve. Therefore, most of the existing 

algorithms focus on curvature estimation by use of 

the information of the neighbors. The presented 

method intends to determine the region of support for 

each point quickly. 

A digital closed curve C can be defined as the set 

consisting of n consecutive points 

,...,n},,)|ii,yi(xi{PC 21==                  (1) 

where n is the number of points, Pi is the i th point 

with coordinate (xi, yi), and points Pi-1 and Pi+1 are 

neighbors of point Pi (modulo n). 

The Freeman’s chain code [5] of C consists of the 

n chain codes and is denoted as c1c2…cn, where 

ci=ci±n and all indices are modulo n. All integers are 

modulo n. That is, each of the vectors is assigned to 

an integer ci varying from 0 to 7, where π
4

1
ci is the 

angle between the x-axis and the vector, for i=1, 

2, …, n (see Fig. 1).  

 

 
Fig. 1. Freeman’s chain codes. 

 

It is reasonable to exclude those linear points, 

since the points on straight line cannot be considered 

as the dominant points [16]. The survived points are 

candidates of dominant points and denoted as the 

break points. The linear points can be removed by 



tracking the chain codes. The following rule is 

applied to identify those linear points. 

 

Rule 1. If ci-1=ci, then the point Pi is a linear point. 

Otherwise, it is a break point. 

 

An example of chain-coded curve is shown in Fig. 

2. The points P2 and P3 are linear points 

(c1=c2=c3=0), and the points P1 and P4 are break 

points (c22=2≠0=c1 and c3=0≠7=c4). By tracking the 

chain codes of the curve, the break points can be 

located. They are marked as “○” in Fig. 2. 

 

 

Fig. 2. Break point detection by the relationship 

between points Pi and the chain codes ci on the curve. 

Chain codes: 0007776555444333100222. (○) break 

point; (●) linear point. 

 

It will reduce the computation time both in 

determination of support region and curvature 

estimation, if only the set of break points are 

considered as the possible dominant points. In fact, 

once the break points have been identified, the left 

support as well as the right support for each point can 

be determined quickly. The considering region of 

support is asymmetric as in Ray and Ray [8]. That is, 

the length of the right region of support and that of 

the left region of support should be determined 

independently. An intuitive approach is to use the 

information of break points while determining the 

region of support. The determination of support can 

be done by use of its previous and next break points 

as the left and right supports, respectively. The points 

between previous break point and the next break 

point consist the region of support for the point of 

interest. For example, the points P4 and P8 are the left 

and right supporting points of the point P7, 

respectively (see Fig. 2). The region of support for 

the point P7 is defined as the set of points P4 to P8. 

Suppose that there are m break points on the curve 

and the i th break point Bi is the bi th point on the 

curve. The lengths of left and right regions of support 

for Bi are denoted as li and ki, respectively. The 

region of support of each break point can be 

determined by the following rules 

 

Rule 2. For the break point Bi, the left arm 

terminated at Bi-1 and the right arm terminated at Bi+1. 

The length of left region of support li=bi-bi-1, while 

the length of right region of support ki=bi+1-bi. The 

length of region of support ri=bi+1-bi-1+1. The region 

of support for the break point Bi consists of the set 

}
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The k-l-cosine value is used to estimate curvature of 

each break point. For the break point Bi, it is defined 

as 
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Once the k-l-cosine values have been determined, 

the next step is to identify the dominant points. Five 

conditions of suppressing the break point Bi from the 

set of candidates of dominant points are given as 

follows. 

Condition A. cosikl < ε                      (3) 

Condition B. cosikl < cosjkl, for j=i-1 or i+1     (4) 

Condition C. cosikl = cosi-1,kl and ri < ri-1        (5) 

Condition D. cosikl = cosi+1,kl and ri < ri+1       (6) 

Condition E. cosikl = cosi+1,kl and ri = ri+1       (7) 

 

It is necessary to suppress those break points 

whose curvature less than a preset threshold ε 

(Condition A). Condition B indicates that a dominant 

point should have local maximum curvature. For two 

neighboring break points, the point with smaller 

length region of support is removed (Conditions C 

and D). Further, if two consecutive points has the 

same curvature and the same length region of support, 

discard the later one (Condition E). The survived 

break points with local maximum over its region of 

support are denoted as the dominant points. 

Therefore, we can locate of dominant points by the 

following rule. 

 

Rule 3. If one of the Conditions A to E is satisfied, 

then the break point Bi is removed from the set of 

candidates of dominant points. 

 

 Overall, the proposed method is summarized as 

follows: 

Step 1. Extract break points from Freeman’s chain 

codes by Rule 1. 

Step 2. Determine region of support for each break 

point (ki and li, i=1, 2, ..., m) by Rule 2. 

Step 3. Compute the estimated curvatures for all of 

the break points (cosikl, i=1, 2, ..., m) by Eq. 

(2). 

Step 4. Identify the dominant points by Rule 3. 

 

3. Experimental Results 

The proposed method has been applied to four 

commonly used curves in many studies [8]. They are 

the chromosome curve (Fig. 3(a)), infinity curve (Fig. 

4(a)), leaf curve (Fig. 5(a)), and semicircle curve (Fig 

6(a)). In the experiment, the curvature threshold ε is 

set to –0.5. By tracking the chain codes, the break 

points can be determined, and they are shown in Figs. 

3(b), 4(b), 5(b), and 6(b), for the four types of curves, 

respectively. 

 

 
Fig. 3. The chromosome curve: (a) original, (b) break 

points, and (c) dominant points. 

 

 

Fig. 4. The infinity curve: (a) original, (b) break 

points, and (c) dominant points. 



In order to assess the performance of the 

proposed method, six performance evaluation criteria 

were used in the experiment. Most of them were used 

by Conic [3]. They are the number of the dominant 

points, inverse of compression ratio, sum of square 

error, maximum error, weighted sum of square error, 

and weighted maximum error. 

 

Fig. 5. The leaf curve: (a) original, (b) break points, 

and (c) dominant points. 

 

 
Fig. 6. The semicircle curve: (a) original, (b) break 

points, and (c) dominant points. 

 

(1) Number of the dominant points (nd): It is 

desirable to have the number of dominant points 

as small as possible. 

(2) Inverse of compression ratio (nd/n): One of the 

objectives for dominant point detection is to 

reduce the amount of data. The smaller the 

inverse of compression ratio is, the more 

effective in data reduction the method is. 

(3) Sum of square error (E2): This criterion assesses 

the distortions caused by the approximated curve. 

The smaller the sum of square error is, the better 

descriptive ability the method is. It is defined as 
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where ei is the distance from Pi to the 

approximated segment. 

(4) Maximum error (E1):  This criterion assesses the 

approximated errors. The smaller the maximum 

error is, the better fitness the method is. It is 

defined as 
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(5) Weighted sum of square error (WE2): The 

weighted sum of square error is to compromise 

the compression ratio and the sum of square error. 

It is defined as 

22 E
n
dn

WE ×=                    (10) 

(6) Weighted maximum error (WE1): The weighted 

maximum error is to compromise the 

compression ratio and the maximum error. It is 

defined as 

11 E
n
dn

WE ×=                     (11) 

 

The objective for detecting dominant points is to 

minimize all of the six criteria, whereas it seems to 

be impossible to obtain an optimal solution. The 



 

objective of this paper is not to propose an optimal 

solution to dominant point detection. Alternatively, it 

attends to show that the new method is very simple 

and it can improve the performance of the family of 

region of support determining algorithms. The 

experimental results of our method and of the other 

methods are listed in Table 1. The presented result of 

the Conic’s method is that of the best performance 

indicated in his paper. 

 

Table 1. Results of the proposed method and of the 

other methods. 

Curve Method nd nd/n E2 E1 WE2 WE1

Chromosome 

(n=60) 

T & C 

R & R 

Cornic 

Our 

15 

18 

17 

18 

0.25 

0.30 

0.28 

0.30 

7.20 

4.81 

5.54 

3.72 

0.71 

0.65 

0.86 

0.60 

1.88

1.44

1.57

1.12

0.18

0.20

0.24

0.18

Infinity 

(n=45) 

T & C 

R & R 

Cornic 

Our 

13 

15 

10 

13 

0.29 

0.33 

0.22 

0.29 

5.93 

4.39 

4.30 

5.01 

1.00 

0.72 

0.78 

0.73 

1.71

1.46

0.96

1.45

0.29

0.24

0.17

0.21

Leaf 

(n=120) 

T & C 

R & R 

Cornic 

Our 

29 

32 

* 

24 

0.24 

0.27 

* 

0.20 

14.96 

14.18 

* 

13.70 

0.99 

0.99 

* 

0.99 

3.62

3.78

*

2.74

0.24

0.26

*

0.20

Semicircles 

(n=102) 

T & C 

R & R 

Cornic 

Our 

22 

27 

30 

22 

0.22 

0.26 

0.29 

0.22 

20.61 

11.50 

9.19 

12.00 

1.00 

0.88 

0.88 

0.88 

4.45

3.04

2.70

2.59

0.22

0.23

0.26

0.19

* not provided 

 

For the chromosome curve, Teh & Chin’s method 

detects the minimum number of dominant points, but 

it has the largest E2. It is seen that our method has the 

smallest E2, E1, WE2, and WE1. That is, our method 

has the better performance than the other methods. 

For infinity curve, Cornic’s method seems to have 

the best performance. However, our method has 

smaller sum of square error than that of Cornic’s 

method. In addition, our method detect the same 

number of dominant points to that of Teh & Chin’s 

method, whereas it is superior to Teh & Chin’s 

method since all of the other criteria of our method 

are smaller than that of Teh & Chin’s method. The 

new method has higher compression ratio than that of 

Ray & Ray’s method, and it has the smaller values of 

WE1 and WE2. The proposed method has the smallest 

nd for the leaf curve (Cornic’s method doest not 

provide the result in his paper). Further, it has the 

best performance on all of the other criteria while 

comparing to the other methods. That is, the new 

method can detect a set of the most significant points 

that has the minimum number of points and it can 

approximate the original curve very well. Again, the 

same finding can be seen for the semicircle curve. 

Especially, it detects a set of symmetric dominant 

points for the semicircle curve. 

The detected dominant points superimposed to the 

respective original curves are shown in Figs. 3(c), 

4(c), 5(c), and 6(c), respectively. Overall, the new 

method proposes a simple method to determine 

region of support for each point, and it perform very 

well while comparing to the other methods. 

 

4. Conclusions 

Dominant points are those points that have 

curvature extreme on the curve and they can suitably 

describe the curve for both visual perception and 

recognition. Teh-Chin [13] proposed an adaptive 

method to determine region of support for each point. 

Ray and Ray [8] further suggested that an 

asymmetric region of support is more reasonable and 

more natural than a symmetric region. Cornic [3] 

used the information of the other points to determine 

the support region. 

In this paper, the concept of linearity is used to 



find a set of break points. The asymmetric region of 

support for each break point is then determined in the 

same time. The proposed method is fast and it needs 

no input parameters. From the experimental results, it 

is show that the proposed method is efficient and 

effective in detecting dominant points. 
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