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中文摘要 
   這一篇論文提出一個新的紋路分析方法
稱之為紋路特徵編碼法。紋路特徵編碼法是將

原本的明亮度紋路影像轉變為特徵影像。在此

特徵影像中每一個影像元素點以一個特徵值

來表示。這個特徵植的統計圖與其共發矩陣被

使用來產生紋路特徵以便於作紋路區分。傳統

的明亮度共發矩陣與紋路頻譜也同時用來分

析自然與超音波肝臟影像。實驗結果顯示使用

紋路特徵編碼法明顯優於其它兩者。 

關鍵字:紋路分析，紋路特徵編碼法，明亮度

共發矩陣，紋路頻譜 

 
Abstract 
 This paper proposes a new texture analysis 

method namely texture feature coding method 

(TFCM).   The texture feature coding method 

transforms a gray-level image into feature image 

whose each pixel is represented by a texture 

feature number (TFN).  The TFN histogram 

and TFN co-occurrence matrix are derived to 

generate many texture features for texture 

classification.  The gray-level co-occurrence 

matrix (GLCM) and texture spectrum (TS) have 

been used for comparison in discriminating 

some of Brodatz’s natural texture images and 

ultrasonic liver images in experiments.  

Experimental results reveal that the results using 

the texture feature coding methods is superior to 

other two.   

Keywords: Texture classification, Texture 

feature coding method, Gray-level co-occurrence 

matrix, Texture spectrum 

1. Introduction 
  Texture analysis is an important technique in 

many applications of analysis for classification 

or segmentation of image.  In the texture 

segmentation, the pixels are grouped together to 

form regions of uniform texture based on the 

distribution of local features, whereas in the 

texture classification, the problem is to classify 

an instance of a textured region in an image as 

one of a set of classes.  The general methods 

for feature extraction are estimate the local 

textures at each pixel in a texture images and 

thus derive a set of statistics from the 

distributions of the local features. There are 

several methods for defining the textural features. 

Each method has its own way to define the 

features that are used in the classification 

problem. In the practice, structural and statistical 

approaches are the two major methods for 

extracting texture features. In the structural 

methods, texture is regarded as the repetition of 

some basic primitive patterns with a certain rule 

of placement.  The Fourier spectrum analysis [1] 

is a well-known method for determining the 

primitive and the displacement rule.  In the 

statistical method, texture is considered as the 

distribution of texture features that are extracted 

on a local area on the textural image.  The 

gray-level co-occurrence matrix (GLCM) [2] 
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and texture spectrum (TS) [3] are two widely 

used texture analysis methods in the category.  

In this paper, we propose a new texture analysis 

method called texture feature coding method. It 

is used to analyze the Brodatz’s texture images 

and ultrasonic liver images for classification.  

  This paper is organized as follows. In 

section 2 we describe the two methods.  In 

section 3 of this paper we propose a new texture 

analysis method namely texture feature coding 

method (TFCM) that contains the advantages of 

both the GLCM and TS of texture analysis.  

Section 4 discusses the performance of TFCM 

with the GLCM and TS method by testing some 

of Brodatz’s natural texture images. Finally, the 

conclusion of this paper is given.     

2. Previous Works 
 GLCM and TS methods of texture analysis 

are briefly described here. Techniques of both 

methods are utilized in the development of the 

TFCM method. 

2. 1 Gray-Level Co-occurrence Matrix [1] 

 A co-occurrence matrix is generally 

referred to as a gray-level co-occurrence matrix 

whose entries are transitions between all pairs of 

two gray levels (not necessarily distinct) [1]. The 

gray-level transitions are calculated based on 

two parameters, displacement d and angular 

orientation θ. More precisely, let i and j be two 
gray levels and  denote the number 

of transitions between two pixels whose gray 

levels are i and j with d-pixels apart and angular 
orientation θ. In other words,  is the 

number of pixel-pairs at locations (x, y) and (w, z) 

satisfying the following conditions; 
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measure to describe the distance between two 

pixels of spatial locations at (x, y) and (w, z) with 

d-pixels apart and along angular orientation θ. 
Normalizing  yields the probability 

or the relative frequency of gray-level 

transitions. 
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Where N is the number of total gray-level 

transitions in the co-occurrence matrix.  

Based on the gray-level co-occurrence 

matrix, Haralick [1] proposed 13 feature 

measures for texture analysis under a specific 

d-pixels apart and angular orientation θ.  There 

are angular second moment, correlation, 

variance, inverse difference moment, entropy, 

sum entropy, difference entropy, information 

measure of correlation, sum average, contrast, 

sum variance, difference variance.  Because of 

the descriptive and easily computable nature, the 

co-occurrence features have been widely used in 

most of the texture analysis problems.   

2. 2 Texture Spectrum [3] 

 The texture spectrum was first proposed 

by He and Wang in [3]. The idea is to consider a 

so-called texture unit described by Fig. 1 with 

V0

,Vi

, the central pixel, designated as the pixel 

currently examined and its 8 neighboring pixels 

. Three values {0,1,2} will be assigned 

to 

 0 >i

Vi

0V=

 respectively according to V , 

,  as given below. 
0Vi <

Vi Vi

In equation (2), the ∆  is denoted to 

tolerance of variation. Obviously, there are 

 combinations for the  in equation 

(2). The distribution of occurrence of all texture 
numbers  generated by equation (2) is 

called texture spectrum.  As the texture unit 

represents the local texture information of a 
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given pixel and its neighborhood, the statistics of 

all the texture units in an image reveal its global 

texture aspects.   Several features are useful for 

classification and defined in [3], being, 
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Figure 1. 3x3 texture unit of texture spectrum

01

2 3 4

5

678

 

pixel. central  theof level gray theV

here         w
 if  2
  if  1
  if  0

0

0

0

0

=









∆>−
=

∆<−
=

VV
VV
VV

E

i

i

i

i   (2) 

18

1
3 −

=
⋅= ∑ j

j
jE VN

i
 

black-white symmetry (BWS), geometric 

symmetry (GS), degree of direction (DD), 

orientation features (MHS, MVS, MDS1 and 

MDS2) and central symmetry (CS).  

3. Texture Feature Coding Method 
 In this section, we propose a novel 

approach to generating texture feature numbers, 

called Texture Feature Coding Method (TFCM). 

The design rationale of this method is based on 

gray-level variations of a  texture unit. 33×

3. 1 Texture Feature Number Generation 

 TFCM is a coding scheme, which 

transforms an original image into a texture 

feature image whose pixels are represented by 

texture feature numbers. The texture feature 

number of each pixel X is generated on the basis 

of gray-level changes of its 8 surrounding pixels, 

called a texture unit, a term was used in He and 

Wang's work [3] described in Fig. 1. 

X 

2 2 

2 2 1 

1 

1 1 

Fig. 2. 3x3 texture unit of TFCM  

 Unlike He and Wang's texture spectrum, 

we consider the connectivity of the texture unit. 

The 8 neighboring pixels in Fig. 2 constitute the 

8-connectivity of the texture unit, which can be 

divided into the first-order 4-connectivity pixels 

and second-order 4-connectivity pixels. The four 

pixels labeled 1 satisfy the first-order 

4-connectivity of the texture unit because they 

are immediately adjacent to the pixel X. They 

will be denoted by first-order connectivity pixels. 

The other four pixels labeled 2 satisfy the 

second-order 4-connectivity of the texture unit, 

which are diagonally adjacent to X and will be 

denoted by second-order connectivity pixels.  

In order to code pixel X in Fig. 2, TFCM 

produces a pair of integers (α , β ) where α  

and β  represent gray-level variations of 

first-order connectivity and second-order 

connectivity respectively. As shown in Fig. 3, 

two scan lines along the 0o-180o and 90o-270o 

directions produce two sets of three successive 

first-order connectivity with pixel X in the 

middle of the horizontal and vertical lines 

forming by "+". Similarly, two scan lines along 

the diagonal directions 45o-225o and 135o-315o 

forming by "×" also produce two sets of three 

successive second-order connectivity pixels as 

shown in Fig. 4.  
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 Assume that the scan direction is from top 

to down and left to right, the three successive 

pixels can be arranged as (a, b, c) in the 

scanning order.  For example, if  (a ,b ,c)  

represents pixels scanned by the vertical line of 

the first-order connectivity in Fig. 3, the top 

pixel is denoted by a, pixel X by b and the 

bottom pixel by c.  Suppose that (Ga,Gb,Gc) 

corresponds the gray levels of three pixels (a, b, 

c) respectively.  If we consider two successive 

gray-level changes between two pairs (Ga,Gb) 

and (Gb,Gc), there are four different types of 

variations.  The four types of gray-level 

variation defined by equation (3) can be graphed 

by the gray-level graphical structure shown in 

Fig. 5.  Type (i) describes the case that the gray 

levels of a, b and c are very close within the 

tolerance . Type (ii) is the case that one pair 

of gray levels is within , but the gray-level 

variation of the other pair variation exceeds . 

Type (iii) is the case where the gray levels of a, 

b, c are continuously decreasing or increasing 

with gray-level differences larger than ∆ . In 

Type (iv), the gray-level variation is first 

decreasing then increasing or first increasing 

then decreasing which the increments and 

decrements exceed . 

∆
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∆

∆
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Fig. 5. Types of gray-level graphical structure  variations  
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 According to this definition of gray-level 

graphical structure variation. The higher the type 

number is, the greater gray-level variation will 

occur.  Since both α  and , corresponding 

to first and second order connectivity 

respectively, have two scan lines, each of which 

can produce a type of gray-level variation, 

β

α  

and  can be assigned by a pair of gray-level 

graphical structure variations. The total number 

of combinations of arbitrary two gray-level 

graphical structure variations (including self 

combinations) is 

β

10
2

)14(4 =+ .  The 10 

combinations are listed in Fig.6.  

Fig. 3. First-order 4-connectivity   Fig. 4. Second-order 4-connectivity 
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Fig. 6. The variation generation of first-order ( α ) or 
second-order ( ) 4-connectivity β
 

For example, if , there is a 

combination of (ii) and (iii). More precisely the 

columns represent the horizontal scan line 

0o-180o for 

11or   =βα

α  or the diagonal line 45o-225o 
for β , and the rows represent the vertical scan 

line 90o-270o for α  or the asymmetric 

diagonal line 135o-315o for β . Finally, the 

texture feature number of each pixel is generated 

by taking the product of α  and β . Let the 

gray level of the pixel with spatial location (x, y) 

 



be denoted by G(x, y) and the corresponding 

texture feature number by TFN(x, y). Then 

),(),(),( yxyxyxTFN βα ×=        (4)  

where α (x, y) and β (x, y) are values obtained 

using Fig. 6 for the pixel at spatial location (x, 

y).  

3.2 Texture Feature Number Histogram and 

Texture Feature Number Co-occurrence Matrix  

 According to equation (4), there are 55 

used texture feature number among {1,2…529}. 

Therefore we can compress 529 values to 54 

values by removing unused texture feature 

numbers. By re-labeling we map that these 55 

values to the values 0 to 54, i.e., .  

In this case, we can define a texture feature 

number histogram by 

,54}{0,1,2,L

  }54,2,1,0{,)()( L∈= ∆
∆ n

N
nNnp      (5) 

where  is the gray-level  variation tolerance 

given in equation (3),  is the frequency 

of occurrence of the texture feature number n 

and N is the total number of pixels in the feature 

image.  In Section 2.1, the co-occurrence 

matrix was defined on gray levels of an image. 

However, in the TFCM approach we define a 

co-occurrence matrix on texture feature numbers 

of the feature image obtained by TFCM, called 

texture feature number co-occurrence matrix. In 

analogy with equation (1), a probability 

distribution of transitions between any pair of 

arbitrary two texture feature numbers can be 

defined similarly by  

∆

)(nN∆

}54,,2,1,0{,,
),(

),,( ,,
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∆ ji
N

jiN
djip

t
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where  is the gray-level variation tolerance 
given in equation (3),  is defined 

similarly as in equation (1) with the gray-level 

variation tolerance , i and j are texture feature 

numbers rather than gray levels as defined in 

equation (1) and  is the normalization factor 

which is the total number of TFN transitions.  
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3.3.  Texture Feature Descriptors 

 In this section, we derive 7 texture feature 

descriptors based on the definitions of equation 

(5) and (6). The first 4 feature descriptors are 

derived from the texture feature number 

histogram given by equation (5) and can be 

regarded as the zero-th order correlation 

descriptors since there is no correlation of TFNs 

involved. The 5-th and 6-th descriptors are based 

on the texture feature number co-occurrence 

matrix in equation (6), and can be thought of as 

first-order correlation descriptors because they 

consider transitions between two TFNs. The 7-th 

descriptor considers the joint occurrence of the 

TFNs on the same pixels’ spatial location (x, y) 

under different gray-level variance tolerance.  

1) Coarseness:  

∑∑ ∆=
x y

PCoarse 54(  where  is the specific 

choice of the gray-level variation tolerance.  A 

pixel corresponding to TFN 41 represents a 

drastic change in its 8-connectivity 

neighborhood. So, the total number of these 

TFNs of pixel (x, y) in the feature image also 

provides a good indication of coarseness. 

∆

2) Homogeneity:  

∑∑ ∆=
x y

PHom )0(  A pixel corresponding to TFN 

0 represents no significant change in its 

8-connectivity neighborhood. So, the total 

number of these TFNs of pixel (x, y) in the 

feature image provides a good indication of 

homogeneity. 

3) Mean Convergence:  
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σ
µ  where ∆µ and are the 

mean and standard deviation of the TFCM under 

the .   This MC feature descriptor indicates 

how close the texture approximates the mean. 
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4) Variance:  
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npnVar µ . The variance measures 

deviation of TFNs from the mean. 

5) Code Entropy:  
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where ),,( θdjip∆  is the -th entry of the 

TFN co-occurrence matrix. 
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6) Code Similarity:  
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j

 is as 

defined above with .  This feature 

descriptor is used to calculate the density of 

same TFNs in its 8-connectivity neighborhood. 

i =

7) Resolution Similarity:  

∑∑
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=
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yxjiPRS 2)(1
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. This feature descriptor 

provides information about the joint probability 

 of a pixel at (x, y) whose TFN is i at 

 and TFN is j at specific . The higher 

the RS, the less the change in TFNs of the same 

pixel, thus, higher RS feature implies the texture 

is more rough. 

∆

 

4. Experimental Results 
 In order to evaluate the performance of the 

proposed method in texture classification, a set 

of sample images was extracted from Brodatz’s 

natural texture image. 13 sets of natural texture 

images have been used for this purpose.   They 

are the images of bark, straw, herringbone weave, 

woolen cloth, pressed calf leather, beach sand, 

water, raffia, pigskin, brick wall, plastic bubbles 

shown in Fig. 7.  Six texture images of each set 

under different rotation, each of resolution 

pixels with 256 gray levels were 

extracted from each Brodatz’s texture image.  

Then each image was divided into 16 

sub-images, each of resolution  pixels.  

16 sub-images from the image with rotation 0

256256 ×

6464×
o 

were taken as the training samples, whereas the 

80 sub-images of the other images were selected 

as the test samples for classification. In 

experiments, the tolerance of variation  is 

selected as 3.   Figure 8 shows sample images 

with different rotation and their corresponding 

TFN histograms of TFCM method and texture 

spectrums of TS method. 

∆

4.1 Classification using the TFN histogram 

 To demonstrate the discrimination 

performance of the TFN histogram, we use a 

supervised classification with the minimum 

distance rule to classify nature images.  The 

procedure of our experiment is described as 

follows: 

Step 1. When the supervised texture 

classification algorithm is applied, we select 64 

sample images to train the TFN histogram.  

Step 2. For each texture type k, calculate the 

TFN histogram of the corresponding training 

samples and denote it as Sk=Sk(j), k=0,1,…,13 

and  j=0,1,…,54. 

Step 3. Calculate the TFN histogram for each 

considered test sub-images and denote it as T, 

T=T(j).  

Step 4. Calculate the distance of TFN histogram 

between the considered test sub-image and all 

the training result Sk as 

∑ −=
54

0
)()(),( jSjTSTD kk             (7) 

 



Step5. The test sub-image will be assigned to 

class i if the D(T, Si) is the minimum among all 

classes.  

The experimental result listed in Table 1 

shows 98.94% average accuracy rate. Similar 

experiments are also taken in by using the 

texture spectrum of TS method.  The 

classification results listed in Table 2.  Its 

correct classification rate only reaches to 62.4%.   

The experimental results reveal that the TFCM 

method effectively captures the rotation effects 

on real texture images than the TS method.  

Furthermore, the TFCM is nearly rotation 

invariant.  

 4.2 Texture classification with the texture 

features 

The features from the TFCM, GLCM and 

TS were calculated over each sample sub-images 

of all the thirty texture image classes of Fig. 7.  

Among the 28 textural features used in 

classifying Brodatz’s texture image, seven were 

TFCM feature, 13 were GLCM features and 

remaining eight were TS features.  These 

textural features were compared using a 

common statistical classification technique. 

Bayesian minimum risk classifier was used for 

this purpose.  In the Bayesian classifier, the 

random sample x is assigned to each class i 

based on the minimum loss rule.  A 

multivariate Gaussian probability density 

function was assumed for the Bayesian classifier, 

with each density specified by the mean vector 

and covariance matrix. The minimum loss was 

computed by maximizing the decision function  

iii
T

iii CmxCmxwPxd ln
2
1)]()[(

2
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where is the decision function for class i, 

x the sample feature vector,  the covariance 

matrix, m

)(xdi

iC

i the mean feature vector for class i, 

and the priori probability of occurrence of 

class w

)( iwP

i.  Classification process was carried out 

in the following way.  All the texture features 

extracted from each method were used for 

classification and the results were compared.    

The corresponding classification results by using 

the Bayesian classification are summarized in 

Table 3.  

Table 3 shows the classification error rate 

in classifying the thirteen selected Brodatz’s 

texture images with all features from each 

method.  The average error in classifying the 

thirteen texture sets from the GLCM in four 

different directions ranged from 19.2 to 24.8%.  

The GLCM in the four different directions were 

summed up and the 13 texture features were 

calculated to feed as inputs to the Bayesian 

classifier.  These features from the GLCM with 

an average error of 19.2% do not improve the 

classification accuracy.  The feature from the 

TS with an average error of 33.1% showed poor 

performances among the features from the three 

methods in classifying the Brodatz’s texture 

images.  The features from the TFCM 

performed well in classifying the thirteen texture 

sets with the lowest classification error 

compared to the other two methods.  Similar to 

GLCM method to produce the TFN 

co-occurrence matrices with four different 

directions, we generate four texture feature sets 

of the TFCM method and feed to Bayesian 

classifier for classification.  The 5-th and 6-th 

features of each texture feature set generate from 

the different co-occurrence matrix, however, the 

first four and the last texture features are the 

same among the four texture feature sets.  The 

four textural feature sets from the TFN 

 



co-occurrence matrices result average 

classification error rates from 1.4 to 2.7%. 

Summed up the four TFN co-occurrence 

matrices, corresponding to four different 

directions, to calculate the texture feature set and 

feed to the classifier for classification.  The 

corresponding classification error rate is 2.9%.  

In chronic liver diseases the severity of 

infected patients may range from healthy carrier 

to cirrhosis. The conventional diagnostic method 

for patients with diffuse parenchyma liver 

diseases depends mainly on needle biopsy of the 

liver. However, the pathological measurement of 

these diseases, such as hepatitis and cirrhosis 

may be severely biased due to sampling error in 

the biopsy specimen. Furthermore, it is an 

invasive procedure that may result in morbidity 

or even mortality. Therefore, developing a 

reliable noninvasive clinical method of 

evaluating histological changes in sonograms 

will be a major advance in diagnosis and 

monitoring of chronic liver diseases.  

 Several characteristics of liver 

sonography have been used to evaluate diffuse 

parenchyma liver diseases. These include 

changes of echotexture, echogenicity, liver 

surface, inferior edge and diameter of hepatic 

and cystic vein. However, the measurement of 

these characteristics was always subjective based 

on the clinical doctor’s observation.  The 

disease changes of the liver from normal to 

cirrhosis can be reflected to the changes of 

echotexture in local texture area. Thus, if we can 

establish correlation between the changes of 

local texture and liver disease states, using this 

information will be a great advantage for 

classification of liver sonography. 

In this section we apply the texture feature 

coding method, co-occurrence matrix method 

and texture spectrum method for classification 

the ultrasonic liver images.  Fig 9 shows three 

instances of ultrasonic liver images.  The 

experiments were conducted using 90 test 

images, which were classified into three liver 

disease classes. . The 30 training liver sample 

images, proved by liver biopsy and equally 

divided into three disease groups that are normal 

liver, hepatitis and cirrhosis, are used to train 

these parameters of the d-dimensional 

multivariate Gaussian functions.  These images 

were proven by liver biopsy and equally divided 

into 3 groups.  Five analysis methods were 

evaluated based using these 90 test images. We 

first analyze the classification rates of the five 

methods.  Their confusion matrices are listed in 

Table 4. In Table 5, the rows of the tables 

represent the correct results proven by biopsy 

and the columns of tables are classification 

resulting from the classification techniques 

compared.  The results show that the result 

using the texture feature coding method is better 

than the other two.  

4. Conclusion 
A new texture analysis method called texture 

feature coding method (TFCM) has been 

developed and tested.  The performance of this 

method has been compared with GLCM and TS 

by testing some Brodatz’s natural texture images.  

The experimental results reveal that the TFCM is 

nearly rotation invariant and shows better 

performance than the GLCM and TS. The 

classification error with TFCM, GLCM and TS 

were 2.9%, 19.2% and 33.1%.  Extensive 

studies should be carried out to test the 

performance of the TFCM in applications such 

 



as remote sensing, biomedical and color images, 

etc.       
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D9 (Grass) D12 (Bark) D15 (Straw) D16 (Herringbone 
weave) D19 (Woolen cloth) 

   
D24 (Pressed calf 

leather) D29 (Beach sand) D38 (Water) D68 (Wood grain) D84 (Raffia) 

 

D92 (Pigskin) D94 (Brick wall) D112 (Plastic bubbles) 

Fig.7. 13 texture images extracted from Brodatz’s Album 

 



Table 1.  The results of test set classified by using TFN histogram method.  In Table 1, the rows of the 
tables represent the correct texture cluster and the columns of tables are classification resulting from TFN 
histogram. The correct classification rate is 98.94%. 

 D9 D12 D15 D16 D19 D24 D29 D38 D68 D84 D92 D94 D112 
D9 80  5           

D12  80            
D15   75           
D16    80    1      
D19     80     2    
D24      80        
D29       80       
D38        80 3     
D68         77     
D84          78    
D92           80   
D94            80  
D112             80 

 
 
Table 2.  The results of test rotational texture set classified by using TS spectrum.  In Table2, the rows of 

the tables represent the correct texture cluster and the columns of tables are classification resulting from TS 
spectrum.  The correct classification rate is 62.40%. 

 D9 D12 D15 D16 D19 D24 D29 D38 D68 D84 D92 D94 D112 
D9 54         15   12 

D12  41          15  
D15   41      14  3   
D16    44   8 11    11 3 
D19  12   39    10 9    
D24     14 62        
D29 12      60    14 2 9 
D38  2  16    62      
D68   15      46     
D84  10 10 15 16 8   10 56  6 11 
D92 14    11 10 12 7   53   
D94  11 14 5        46  
D112             45 

 
 

Table 3.  The classification error rates are computed with all features from the three methods. The 

displacement of GLCM and TFCM is selected as one pixel.  
  Texture image class  
  D9 D12 D15 D16 D19 D24 D29 D38 D68 D84 D92 D94 D112 

Average

Error (%)

Method Features Classification error (%)  

GLCM                

0o 1-13 21 26 13 33 22 26 30 18 38 25 19 32 26 23.8 

45o 1-13 24 24 16 22 22 23 34 11 22 10 27 34 29 22.9 

90o 1-13 36 30 20 19 24 19 36 10 11 22 21 42 33 24.8 

135o 1-13 23 22 14 29 18 22 32 9 22 23 17 33 22 20.5 

Total 1-13 26 19 17 19 25 21 12 11 17 19 23 22 19 19.2 

TS 1-8 38 45 48 31 24 32 39 33 24 25 29 29 34 33.1 

TFCM                

0o 1-7 1 0 0 0 3 2 2 1 3 0 2 0 4 1.4 

45o 1-7 3 0 1 0 2 1 3 2 3 1 2 3 5 2.0 

90o 1-7 3 1 2 1 4 3 2 0 4 3 3 3 6 2.7 

135o 1-7 4 0 1 1 1 4 0 0 3 2 1 4 5 2.7 

Total 1-7 3 0 3 3 3 5 2 2 2 3 2 5 5 2.9 

 



 

  

D12 (Bark, 00) D12 (Bark, 300) D12 (Bark, 600) D12 (Bark, 900) D12 (Bark, 1200) D12 (Bark,1500) 
(a) Six texture images with different rotation of Bark (D12) texture image set 

  
D12 (Bark, 00) D12 (Bark, 300) D12 (Bark, 600) 

  
D12 (Bark, 900) D12 (Bark, 1200) D12 (Bark,1500) 

(a) TFN histogram of TFCM method 

  
D12 (Bark, 00) D12 (Bark, 300) D12 (Bark, 600) 

  
D12 (Bark, 900) D12 (Bark, 1200) D12 (Bark,1500) 

(b) Texture spectrum of TS method 
Fig. 8. Six texture images with different rotation of Bark (D12) texture image set and their corresponding (a) 
normalized TFN histogram of TFCM method and texture spectrum of TS methods. 
 
 
 
 
 

 



 
          (a) normal cases     (b)hepatitis case   (c)cirrhosis              

Figure 9. Three samples of ultrasonic liver images.  The image (a) is a normal liver.  

The images in (b) and (c) are hepatitis and cirrhosis, respectively. 

 

Table 4 Confusion matrices of TFCM, CM and TS. 

   Normal Hepatitis Cirrhosis 

Normal 26 4 0 

Hepatitis 3 24 3 

Cirrhosis 0 1 29 

(a) Method 1 --- TFCM (texture feature coding method) 

   Normal Hepatitis Cirrhosis 

Normal 22 4 4 

Hepatitis 4 20 6 

Cirrhosis 0 4 26 

(b) Method 2 – CM (co-occurrence matrix method) 

 Normal Hepatitis Cirrhosis 

Normal 16 8 6 

Hepatitis 8 18 4 

Cirrhosis 5 7 18 

(c) Method 4—TS (texture spectrum method) 

Table 5. Correct classification rates of the five methods evaluated in this paper 

Methods Correcting rates False-negative rates 

TFCM 86.7% 4.4% 

CM 75.7% 8.9% 

TS 57.78% 12.2% 
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