
 1

Visual Based Software Construction: Visual Requirement Authoring
tool and Visual Program Generator1

Deng-Jyi Chen2, Ming-Jyh Tsai, and Jia-chen Dai
Institute of Computer Science and Information Engineering

National Chiao-Tung University, Hsin-chu, TAIWAN 300
Email: djchen@csie.nctu.edu.tw

David TK Chen3
Computer Science and Information Department

FORDHAM University, NY, USA

Abstract
Most software development errors are caused by

incorrect or ambiguous requirement specifications
gathered during the requirement elicitation and analysis
phase. For the past decades, both academic researchers
and software engineers have been seeking better
software requirement analysis and representation
approaches for overcoming the problem mentioned
above. Another equally important issue in software
engineering area is how to reduce the cost of developing
and maintaining the application software.

In this paper, we propose a Visual Based Software
Construction Approach that uses the visual based GUI
requirement scenario, created by a Visual Requirement
Authoring Tool, to depict the requirement of the
application software, and then generates the target
application software according to the visual requirement
scenario obtained in the visual requirement authoring
phase. Specifically, the proposed software construction
approach supports a Visual Requirement Authoring tool
that allows requirement facilitators to produce GUI
based requirement scenario and specifications. It also
supports a Visual Program Generator that allows
programmer to generate the target application system as
specified in the visual requirement representation. The
target application software can be generated based on
the function binding features provided in the Visual
Program Generator to bind each GUI component with
the associated application function.

The proposed approach has been applied to construct
a commercial PC camera’s application software. Part of
this application example will be illustrated using the
proposed approach to demonstrate the feasibility and
applicability of the proposed approach. The application
software development cost and maintenance effort can
be reduced while applying the proposed software
construction approach.
Keyword: Visual requirement, Requirement Scenario,
Program generator, Multimedia, Software Construction
Methodology.
1This project is supported in part by the NSC, in part by Media Tech
cooperation, and in part by the Bestwise International Computing Co.,
Taiwan.
2 All correspondence should be sent to Professor D. J. Chen at Computer
Science and Information Engineering Department of National Chiao
Tung University, Hsin-Chu, Taiwan.

1. Introduction

An important phase in the software life cycle focuses
on eliciting the requirements from users [5]. Users and
system designers generally have no common
terminology or domain knowledge while establishing
the requirements for the software development. As
widely recognized, requirement representation form can
largely affect the communication between software end
users and designers. Traditional requirement

representation form (textual based narration) usually
leads to misunderstandings, irrelevant, or ambiguous
requirements. Furthermore, voluminous textual
requirement documentation arising from requirements
gathering process is typically difficult to comprehend. It
has been shown in [1] that Visual Requirement
Representation (VRR) based on the multimedia
technology has many advantages over the traditional
Text-based Requirement Representation (TRR). This
includes the easiness of communication between users
and developers, early feedback, better expression ability,
and so on. A more detailed treatment is in [1] and [15].

Multimedia technology has played an important role
in modern computing because it offers more natural and
user-friendly interactions with an automated system.
This is particularly true for systems utilizing graphical,
icon or window-based input and output. Therefore, we
often utilize multimedia technology to display software
GUI requirements by static graphical appearance as
shown in Figure 1-1 as attached.

However, aside from the static graphic appearance,
the software requirement specifications have dynamic
behaviors. For example, clicking on the “Take a
Snapshot” function button initializes the “Take a
Snapshot” dialogue box; then the next step is to choose
image size and adjust brightness and contrast. Finally,
take a picture and save it. The series of actions described
as above is called dynamic behavior. Obviously, this
dynamic behavior cannot be displayed using the above
mentioned static graphic appearance. Consequently, to
assist the dynamic behavior of software requirement
specifications, we often used explanatory text and flow
charts. However, clear explanations of the details of each
dynamic behavior results in excessive explanatory text
and flow charting; it just makes it harder for the user to
understand the requirement specification.

After the user’s requirement specifications is
produced, in the conventional way, the programmer
implements the requirement specifications using an
application software development system such as
Borland C++ Builder or Microsoft Visual C++ to write
both the corresponding functional program and GUI
program for this application system. The
implementation of the user’s requirement specifications
here is to implement the GUI lay out specification. The
way makes the programmer’s work heavier and longer
during software development because the programmer
not only has to write the functional program but also has
to implement the user’s requirement specifications (the
GUI program). If there are any changes of software
requirement specifications afterwards, the programmer
has to re-implement it and rewrite the program, which
increases the maintenance cost.

In this paper, we propose a Visual Based Software
Construction Approach that uses the visual based GUI
requirement scenario, created by a Visual Requirement
Authoring Tool, to depict the requirement of the

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

771

 2

application software, and then generates the target
application software according to the visual requirement
scenario obtained in the visual requirement authoring
phase. Specifically, the proposed software construction
approach supports a Visual Requirement Authoring tool
that allows requirement facilitators to produce GUI
based requirement scenario and specifications. It also
supports a Visual Program Generator that allows
programmer to generate the target application system as
specified in the visual requirement representation. The
target application software can be generated based on the
features provided in the Visual Program Generator that
provides the binding capability between a GUI
component and the associated application function.

With the proposed approach, the programmer can
concentrate on application function programming and
does not need to write code for GUI requirement
specification. In the meantime, the relevant functional
program is independent which is much easier during
maintenance. Therefore, it not only shortens the time
during software development but also reduces the cost of
maintenance.

2. Related Work

There are little specific tools available for creating
visual software requirements. Rational Rose, Microsoft
Visio, Microsoft PowerPoint, and Macromedia Flash are
some related tools that can be used as editing tools for
the visual software requirement creation. We studied and
compared these different tools (see table 2-1 as attached)
for creating Visual software requirements based on the
identified features for creating visual representation. In
any comparison studies, two basic issues must be
addressed which are 1) what to compare and 2) how to
compare. In what to compare, we propose some
common features for creating multimedia presentation
for the visual requirement representation. These
common features include:
 (1) Providing different types of Multimedia
components (or icons) gallery,
 (2) Adjusting position and size of component by
dragging and dropping,
 (3) Supporting connection and switching of different
scene,
 (4) Authoring of interactive relationship and

interactive action without writing any textual
script programming,

 (5) Integrating with the program generator.
In how to compare, we simply marked it as N, for no
such feature or non-applicable, and Y, for supporting
such feature.

When the correct software requirement specifications
are obtained, an application development system such as
Borland C++ Builder [2] can be chosen to write the
programs to produce an executable application system
that meets the GUI requirement specifications. Two of
the application software development systems, Borland
C++ Builder and Microsoft C++, are application system
development programming languages that primarily use
C++; this enables the user to create Windows application
programs, DLLs, and so forth that can be executed on
the Windows system. The third application system
development tool, Microsoft Visual Basic, uses the
BASIC programming language.

Those three application software development
systems support many UI controls and UI controls
property which helps the designer to easily layout the
user’s requirement specifications. Then, the designer

simply double clicks the UI button to write the program
related to the UI.
 The disadvantages of generating an application
system with any of the above mentioned application
software development systems are listed below.
(1) Programs must be written to switch between user
interfaces.
(2) User interface does not have multimedia
components; if you want it, you must write a program.
(3) The programmer not only writes the program but
also implements GUI, which makes the programmer’s
work heavier.
(4) If the user’s GUI requirement specification is
changed, the programmer would have to re-implement
it.

3. Visual Based Software Construction

Framework

In this section, we present the framework of the
proposed Visual Based Software Construction Approach.
See Figure 3-1 as attached. The framework has two
major subsystems: the Visual Requirement Authoring
System which is used to create visual requirement
representation and the Visual Program Generator which
is used to generate the target application software
according to the visual requirement generated by the
visual requirement authoring system.

The requirement facilitator uses the existing MRC to
produce the Visual Requirements Representation via
Visual Requirement Authoring System. If there is no
existing MRC, the art designer uses the Component
Constructor to produce a new MRC and then adds it to
the MRC manager for further use in the Visual
Requirement Authoring System. When the editing
process is completed, a visual requirement
representation is produced. We then take the produced
Visual Requirement Representation as an input for the
visual program generator which uses the function
binding system to bind the software component and the
user self-defined functional program according the GUI
visual requirement Representation, and utilize an
application software development system to generate the
target application system.

The advantages of visual requirement over traditional
textual requirement have been discussed in details in [1].
The visual requirement authoring system can be used for
the purpose of representing visual GUI requirement
specification and this task can be done alone by the
requirement facilitator without GUI programmer’s
interaction. If the user’s GUI requirement specification is
changed, then the GUI requirement facilitator or GUI
designer just uses the authoring system to create a new
GUI without brothering programmer to re-write GUI
code. Thus it reduces the GUI construction and
modification effort.

The visual program generator, on the other hand,
provides a binding system for system integrator or
project leader to integrate the target application software
by assembling existing MRC and the user-defined
functional modules according to the GUI requirement
layout (part of the visual requirement scenario). Thus, it
reduces program construction and maintenance effort.

4. The Visual Requirement Authoring
System and Visual program Generator

In this section, we present the system architecture of
the proposed Visual based Software Construction

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

772

 3

Framework. Specifically, the Visual Authoring System
and Visual Program Generator will be elaborated in
section 4.2 and 4.3 respectively.

4.1 System architecture

The system architecture of the Visual Software
Construction Framework is depicted in Figure 4-1 as
attached.

As shown in Figure 4-1, the system architecture
includes Visual Requirement Authoring System (left
hand side of Figure 4-1) and Program Generator (right
hand side of Figure 4-1). The system operation
procedure is depicted in Figure 4-2 as attached.
The system operation procedures are summarized

below:
Step 1) the requirement facilitator selects scene

background for GUI layout. In this step, the
requirement facilitator can decide how many
scenes for the complete visual requirement
representation.

Step 2) actor setting in each scene is conducted by
adding new actor, deleting or copying actors by
using scene authoring system. The requirement
facilitator can choose appropriate GUI button
(MRC or actor) from the MRC database for the
actor setting).

Step 3) scenario setting (time and space interaction
among chosen actors) for actors in the scene is
conducted by using scenario (or interactive)
authoring system to carry out the simulation of the
dynamic behavior interaction. The requirement
facilitator can preview the authoring result (GUI
visual requirement) using the player (the
previewing system). If the result does not meet the
need of end users, or needed to be changed for any
reasons, then requirement facilitator simply repeats
the authoring process from Step 1) to Step 3) until
the visual requirement specification is satisfied.

Step 4) binding of each GUI button with the associated
application function (binding setting) is performed.
The project leader or system integrator will choose
the appropriate application function (usually in
*.dll form) from the application function library
and perform the binding with the associated GUI
button. If the desired application function is not
available from the existing application library then
programmer will need to define and implement
the application function and will be compiled and
integrated before the binding process can be
performed.

Step 5) the GUI source code is compiled to generate the
target application system by using the Borland
C++ Builder programming system.

4.2 Visual Requirement Authoring System

The Visual Requirement Authoring System’s
(VRAS) major goal is to let requirement facilitators
easily lay out GUI requirement specification for the
target application system without writing any
textual-based programs and to receive earlier feedback
from end users. As shown in Figure 4-1, the VRAS
contains three subsystems: scene authoring system,
scenario authoring system, and preview system. These
three subsystems are described below.
1.) Scene Authoring System The main goals are
authoring the scenes, achieving interaction between
scenes, and defining interaction among actors.

2.) Interaction Authoring System:
It is also known as scenario setting system which is
responsible for the interactive definition, time and space
relationship, and dynamic behavior among actors.
3.) Preview System:
It is used to preview the visual requirement scenario
created by the authoring system. It interpreters the time
and space relationship and scenario definition among
actors according to the script program generated by the
authoring system.

Figure 4-3 as attached illustrates the visual
requirements authoring process. We initially create a
project for the system. Next, one or more scenes can be
created for the project. We can reuse a scene if a reusable
scene pattern is found. Otherwise an empty requirement
framework is created. For every scene, actors (or MRC)
are selected from MRC database and placed on the
scene. This work is completed by the scene authoring
system. For all selected actors in the scene, we use the
scenario authoring system to define their actions and
describe relationships to perform a scenario. A visual
requirement scenario is then produced. We can use the
preview system to preview it, and examine whether this
scenario meets the user requirements.

4.3 Program Generator

 The program generator’s major goal is to reduce the
cost of the application system development and
maintenance. The program generator uses the confirmed
visual requirement representation as input then uses the
function binding system to bind each GUI component
with the corresponding application software function,
external executable file, and user’s defined program.
The final step is through the GUI program generation
system to generate a target application system.
 The program generator has four subsystems:
function binding system, user interface source code
generator, play system, and the compile environment. A
detailed description is in the following subsections.

4.3.1 Function Binding System The major goal of the
function binding system is to be able to directly embed
the software component into the visual requirement
representation (or user’s requirement specifications). The
software component is designed by the programmer,
after which, through the embedding of the function
binding system into the scene and formulation of the
interactive relationship, the interactive description
information is written into the script files

4.3.2 UI Source Code Generator The UI Source code
Generator needs to use the information of the
user-defined program existed in the function binding
information. Consequently, after using the function
binding system, it is necessary to obtain the script files,
so that the UI Source code Generator could be operated.

4.3.3 The UI Interpreting System Like the preview
system in the visual authoring system, the UI
interpreting system is used to present the generated GUI
visual requirement specification after the binding
process.

From the Figure 4-1, we can see that the UI
Interpreting system includes the following three
subsystems.

1.) UI Source Code Generation This part is
generated from UI source code generator.

2.) Software Component Management

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

773

 4

System A software component management
system allows the software component to
assist the components in dispatching
messages when it is loaded into the system.
This achieves the goal of smooth
communication between components.

3.) UI Container The UI container goal is to
play the already authored Scene, allowing
multimedia playing, and to interact with the
user during the play.

4.3.4 Compile Environment The defined
programs by the user can be added to the UI
interpreting system. After this, we still need a
compilation environment to compile these
components, allowing us to obtain the final
application system execution files. We take
Borland C++ Builder to compile these
components.

5. Application Example - Create a Digital

Camera Application System

The application software we constructed for a
commercial PC camera is based on Visual Based
Software Construction Approach. This commercial
product is distributed by Bestwise International
Computing Inc.

6. Conclusion

 In this research, we first show that user requirements
can be visualized. We utilized a visual requirement
authoring system to convert the user’s requirement from
a textual documentation to a visual requirement
representation. Such a visual requirement representation
has the following benefits:
1) Replace voluminous textual documentations.
2) Provide a more natural means of communication

between user and system designer.
3) Elicit an early feedback from user, more expressive in

describing user’s demands.
4) Lay out requirement representation without writing

textual program.
Second, we take directly the confirmed visual

requirement presentation as input for the program
generator to perform the function binding and to
generate the target application system as specified. This
approach not only can shorten the time during software
development but also can reduce the cost of
maintenance. The proposed visual based software
construction approaches had been applied to produce a
commercial product in PC camera’s video capturing
application service and illustrate its feasibility and
applicability.

7. Reference
[1]Deng-Jyi Chen, Wu-Chi Chen, Krishna M. Kavi,

“Visual requirement representation”, the Journal of
System and Software 61 (2002), pp129-143.

[2]Borland C++ Builder, Available:
http://www.Borland.com.

[3] Microsoft Visual C++ and BASIC, Available:
http://www.Microsoft.com.

[4]Macromedia Flash, Available:
http://www.Macromedia.com.

[5]Ian Sommerville, Software Engineering, AW,
pearson.

[6] Jyi-Sheng Tyan, “The Design and Implementation of
a Script Language and Playback for Scenario-Based
Electronic Book,” Master Thesis of NCTU Taiwan,
1999.

[7] Chwan-Hung Wang, “Visual-Based User Interface
Requirement representation,” Master Thesis of
NCTU, Taiwan, 2002.

[8] Chorng-Shiuh Koong, “The Design and
Implementation of a Script Language and Playback
System for Electronic Story Book,” Master Thesis of
NCTU, Taiwan, 1995.

[9] Shih-Fang Chuang, “The Design and
Implementation of a Visual Language for Scenario
Based Electronic Book,” Master Thesis of NCTU,
Taiwan, 1999.

[10] Deng-Jyi Chen and S. K. Huang, "Interface of
Reusable Software Components", the Journal of
Object-Oriented Programming, Vol. 5, No. 8, pp
42-53, January 1993.

[11] Ohnishi A. “A Visual Software Requirements
Definition Method”, IEEE Proceedings: The first
International Conference on Requirements
Engineering, April 18-22, 1994, Colorado Springs,
Colorado, pp31-40

[12] Ohnishi, A.; Tokuda, N. “Visual Software
Requirements Definition E”, computer software
and application conference, 1997.

[13]Ohnishi, A. “Audio-visual Software Requirements
Specification”, Multimedia software engineering,
1998.

[14] Jia-Chen Dai, “Visual Based User Interface
Generator”, Master Thesis of NCTU, Taiwan,
2002.

[15] Wu-Chi Chen, “A Visual and Reuse-based
Paradigm for Software Construction,” Ph.D.
Dissertation, NCTU, Taiwan, 1998.

[16] Chorng-Shiuh Koong, “A component-based Visual
Scenario Construction Environment for
Non-Programming Users to create Interactive
Electronic Books,” Ph.D. Dissertation, NCTU,
Taiwan, 2000.

Attachment [Figure]

Figure 1-1 Static graphic appearance of application system

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

774

 5

Figure 4-1 System Architecture of Visual based Software Construction.

Figure 4-2 System Operation Procedures

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

775

 6

Attachment [Table]

 Table 2-1 Comparison editing tools
 Software tool

What to compare

Rational Rose Microsoft
Visio[3]

Microsoft
PowerPoint

[3]

Macromedia
Flash [4]

Providing different types of Multimedia components (or
icons) gallery

N N Y Y

Adjusting position and size of component by dragging and
dropping

Y Y Y Y

Supporting connection and switch of scene N N Y Y

Authoring of interactive relationship and interactive action
without writing any textual script programming

N N N N

Integrating with the program generator N N N N

Figure 4-3 Visual Requirement Authoring process [1].

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

776

