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Abstract  Boolean expressions are extensively used 
in software specifications. It is important to generate 
a small-sized test set for Boolean expressions 
without sacrificing the fault-detection capability. 
MUMCUT is an efficient test case generation 
strategy for Boolean expressions in Irreducible 
Disjointed Normal Form (IDNF). In the real world, 
however, Boolean expressions written by a software 
designer or programmer are not normally in IDNF. 
In this paper, we apply MUMCUT to generate test 
cases for general Boolean expressions and develop a 
mutation-based empirical evaluation on the 
effectiveness of this application. The experimental 
data show that MUMCUT can still detect single 
seeded faults in up to 98.20% of general Boolean 
expressions. We also analyze patterns where test 
cases generated by MUMCUT cannot detect the 
seeded faults. 
 
Keywords: Test Case Generation, Boolean 
Specifications, Software Testing 
 
1. Introduction 
 

Boolean expressions are extensively used to 
represent the decisions/conditions in a specification 
or program. It is important to check whether they are 
implemented correctly for the purpose of quality 
assurance, since they play an important role in the 
specification or program. 

In the last decade, a lot of research work has 
been devoted to the testing on Boolean expressions, 
logic formulas or predicates [8]. The work on the 
testing of Boolean expressions can be divided into 
two major categories: structural approach and fault-
based approach. 

In the structural approach, the basic idea is to 
generate a test suite to cover the elements of decision 

according to the coverage criteria [16]. From the 
perspective of the coverage, structural Boolean 
expression-oriented testing can be further classified 
into decision coverage, condition coverage, decision 
/condition coverage and path coverage [9]. In 
decision coverage, for example, test cases are 
generated so that every program decision has taken 
the values True and False. 

In fault-based testing, test cases are generated to 
detect specified types of fault in a specification or 
program [2, 10, 15]. There have been studies related 
to fault-based testing of Boolean expressions. 
Weyuker et al. [15] proposed a meaningful impact 
strategy for testing Boolean formulas in Irreducible 
Disjointed Normal Form (IDNF). Offutt and Liu [10] 
proposed a procedure to generate test data for SOFL 
specification where conditions or predicates are 
assumed to be in Disjointed Normal Form (DNF). 
Kuhn [8] described a method for computing the 
conditions that must be covered by a test set for the 
test set to guarantee detection of the particular fault 
class. Tatsuhiro [13] improved on Kuhn’s fault 
hierarchy. Chen and Lau [2] proposed a set of more 
efficient test case generation and selection strategies 
for Boolean specifications in IDNF. 

We observe that existing fault-based testing 
techniques are developed for Boolean expressions in 
DNF or IDNF. In the real world, however, Boolean 
expressions written by a designer or programmer are 
usually in General Form (GF, also called arbitrary 
form [11]). In additional, we have empirically 
evaluated fault relationships between GF and IDNF 
in previous experiments and the result shows that, in 
up to 75.7% of the cases, one fault in GF can result 
in more than one fault in its equivalent IDNF [5]. 
Hence, it is of great interest to see how efficient 
MUMCUT will be for Boolean expressions in GF. 
We can almost draw a conclusion that there is a big 

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

926



gap between the existing research and realistic 
situations. This also restricts the applicability of the 
existing work. 

Our main motivation in this paper is to 
investigate how efficient MUMCUT is when applied 
to general Boolean expressions. MUMCUT [2] is a 
fault-based test case generation strategy for Boolean 
expressions in IDNF, and the test suite generated by 
MUMCUT can detect seven single faults in a 
Boolean expression in IDNF. For general Boolean 
expressions, we want to see whether a test suite 
generated by MUMCUT can still detect a seeded 
single fault and empirically evaluate the fault 
detection capability of MUMCUT. 

The rest of this paper is organized as follows: 
Section 2 introduces MUMCUT and related 
techniques. Section 3 presents the approach to 
applying MUMCUT, and Section 4 introduces an 
empirical evaluation on the effectiveness of 
MUMCUT. Section 5 introduces the related work 
and Section 6 concludes the paper. 
 
2. Background 
In this section, we introduce the basic concepts and 
previous work related to this research. 
 
Test Cases and Test Case Adequacy 

In software testing practice, testers are required 
to generate test cases to execute the program. A test 
case is an input on which the program under test is 
executed during testing. A test set/suite is a set of 
test cases for testing a program [16]. Given a test 
criterion, we can judge whether a test set is adequate. 
For Boolean expressions, a test case is an ordered 
truth-value list where each value is the assignment of 
a Boolean variable. For example, consider Boolean 
expression B1 {B1 = a + b}, a test case   for B1 is {a 
= 0, b = 0}, and the complete test suite for B1 is {00, 
01, 11, 10}. If the decision coverage criterion is used, 
{00, 10}, {00, 11} and {00, 10} are the adequate test 
sets. 

 
Fault-based testing and Mutation Analysis 

Software testing often aims at detecting faults in 
a program [16]. If it is assumed there are some 
specific fault types in a specification or program, and 
if test cases are generated to detect these faults, then 
this approach is called fault-based testing. 

In fault-based testing, mutation analysis [6] is 
widely used to verify the adequacy of a test suite 
based on the specific testing criteria. Given a 
Boolean expression B, a derivation M is obtained by 
seeding faults into B, M is called a mutant of B, and 
the process to obtain M from B is called mutation. 

In our experiment, mutation technique is used 
to derive the Boolean expression mutants. These 
mutants contain only one fault when they are 
compared with the original Boolean expressions. The 
faults concerned in this paper include Expression 

Negation Fault (ENF), Literal Negation Fault (LNF), 
Term Omission Fault (TOF), Term Negation Fault 
(TNF), Operator Reference Fault (ORF), Literal 
Omission Fault (LOF), Literal Insert Fault (LIF) and 
Literal Reference Fault (LRF)1. 

 
IDNF Transformation 

Given a Boolean expression, it can be 
represented in several forms. A Boolean expression 
in DNF is formed by the disjunctive terms, and a 
disjunctive term can be formed by the conjunctive 
literals (Boolean variables). A Boolean expression in 
DNF is said to be in IDNF when none of the 
Boolean literals or terms can be deleted without 
altering the value of the Boolean expression for 
some test cases [2, 15]. 

Given a general Boolean expression, it can 
always be transformed into an equivalent one in 
DNF using some laws, such as distribution law, 
commutative law and so on. A Boolean expression 
in DNF can also be transformed into an equivalent 
one in IDNF using the algorithm in [7]. For example, 
a Boolean expression in GF 

“a * (!c + !b + !d) + !a * (c + b + d) 
+ b * (!c + !d) + !b * (c + d) + !c * d + c * !d” 

can be transformed into 
“a * !c + !a * c + a * !b + b * !c + !a * b 
+ !b * c + !a * d + !b * d + !c * d + a * !d 
+ b * !d + c * !d” 

in DNF. It can also be transformed into two different 
equivalent IDNFs 

“!a * d + !b * d + !c * d + a * !d + b * !d 
+ c * !d” 

and 
 “!a * d + !b * d + b * !d + c * !d + a * !c”. 

 
MUMCUT 

MUMCUT is a fault-based test case selection 
strategy for generating test cases from Boolean 
specifications, proposed by Chen and Lau [2]. It is 
the integration of the MUTP strategy [4], the MNFP 
strategy [2] and the CUTPNFP strategy [3]. These 
strategies were developed based on two important 
concepts, namely Unique True Point (UTP) and 
Near False Point (NFP) [15]. Accordingly, UTP and 
NFP are defined on Boolean expressions in IDNF. 
Compared with the existing test case selection 
strategies for Boolean expression in IDNF, the 
MUMCUT strategy is more efficient. For example, 
MAX-A and MAX-B are two strategies developed 
by Weyuker et al. [15] based on UTP and NFP. 
Under the assumption that only one fault is 
introduced into the implementation, the empirical 
research shows that the MUMCUT strategy uses on 
the average 74% and 67% of the test cases required 

                                                           
1 Compare these with the seven types of fault defined in [2].  The 
eight faults here are defined in the context of GF rather than IDNF. 
Detailed definitions and examples are available in [5].  
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by the MAX-A and the MAX-B strategies, 
respectively [2]. 

 
Two related experiments 

Recognizing that the realistic Boolean 
expressions are more often written in arbitrary form, 
we have conducted an empirical research on the fault 
relationship between GF and IDNF [5]. In more 
detail, we investigated statistically that one fault 
introduced into a Boolean expression in GF will 
result in how many faults in its equivalent in IDNF. 
We also developed an algorithm and a tool to 
generate a benchmark of Boolean expressions in 
arbitrary form for the subsequent experiments [12]. 

We shall not repeat the discussion of some 
techniques that have been discussed in our previous 
experiments and also required in this experiment, 
provided this does not affect the comprehension of 
this paper. 

 
3. Applying MUMCUT to the Testing of 
General Boolean Expressions 

 
Given a Boolean expression in arbitrary form, 

we first use an algorithm to transform it into one 
IDNF, then we use MUMCUT to generate a set of 
test cases, finally these test cases can be used as a 
test suite to detect some specific faults in Boolean 
expression in arbitrary form. In the view of users, 
they do not need to know about this process, since 
what they need to do is providing Boolean 
expressions in arbitrary form and acquiring test cases 
generated by MUMCUT strategy. 

However, MUMCUT is not always effective in 
the context of general Boolean expressions. For a 
Boolean expression in IDNF B, a test suite T is 
generated by MUMCUT, it can guarantee that all 
seven single types of fault mentioned in [2] can be 
detected when T is used as test cases for B. For 
general Boolean expressions, one fault will result in 
simultaneous occurrence of several faults in its 
equivalent in IDNF. In this situation, the generated 
test cases satisfying MUMCUT cannot guarantee the 
detection of all faults introduced into a Boolean 
expression in IDNF. 
 
4. An Empirical Evaluation 
In this section, we present an empirical evaluation on 
the fault detection capability of MUMCUT in the 
context of general Boolean expressions. 
 
4.1 Principle 

 
We statistically check whether one fault in 

general Boolean expressions can be detected when a 
set of test cases generated by MUMCUT (also called 
MUMCUT-adequate test cases) are used. From the 
perspective of mutation, it is equal to whether the 

mutants with one fault can be distinguished from the 
original Boolean expression under these test cases. If 
answer is yes, we say that the mutant is killed. 

Given a Boolean expression O, a mutant M, and 
a test suite TS (t1, t2, …, tn ), we say that M is killed if 
and only if at least one test case ti from TS can 
differentiate the truth value of M and O, noted as 
Killed(M, O, TS). In other words, 

)()(: iii tMtOTSt ≠∈∃  
Given a Boolean expression O, a mutant M, and 

a MUMCUT-adequate test suite TS (t1, t2, …, tn) 
generated based on M, we say that MUMCUT is 
effective for this mutant if and only if at least one test 
case ti from TS can kill the mutant M with O as the 
oracle. 

In this experiment, we employ mutation 
technique to obtain a mutant M of the original 
Boolean expression in GF O. If one or more test 
cases from the generated test suite TS can 
distinguish the difference between O and M (that is, 
M is killed when O is used as a test oracle), we say 
MUMCUT is effective. Figure 1 shows how to 
evaluate whether a MUMCUT-adequate test suite TS 
can detect a fault in a Boolean expression in GF M 
(that is, kill M) with O as the test oracle. 

Several critical steps involved in the experiment 
include: 
1) Boolean Expression Samples. To be more 
convictive, a large number of Boolean expressions in 
GF are required. In our previous experiment, we 
have developed a parameterized generator to 
generate general Boolean expressions [6]. In this 
experiment, we use this tool to generate Boolean 
expression samples. 
 
2) Mutation. To control the size of mutants and at 
the same time satisfy mutation adequacy to some 
extent, we also developed a set of mutation strategies 
for mutant generation [5]. It is noted only one fault is 
seeded into mutants when the mutation is conducted. 

Boolean expression
in GF   O 

IDNF Transform

Mutant in GF 
M 

Mutant in IDNF 
         MI 

Mutation: Seed a fault

Test Case generation

A MUMCUT- 
adequate Test Suite

   TS 

Evaluation 

MUMCUT is still effective?

Figure 1. A mutation-based evaluation of the 
extension of MUMCUT 
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In this experiment, eight types of fault mentioned in 
section 2 are considered. 
 
3) IDNF Transformation. The Converter [5], a tool 
developed by us for IDNF transformation, is used to 
transform Boolean expressions in GF into ones in 
IDNF. 
 
4) Test Case Generation. Given a Boolean 
expression in IDNF, BEAT [1], a tool is developed 
to implement MUMCUT strategy, is used to generate 
a MUMCUT-adequate test suite. 
 
5) Evaluation. A MUMCUT-adequate test suite TS, 
that is generated based on the mutant in IDNF MI, is 
used to evaluate whether the M can be killed with O 
as test oracle. Here, M is the mutant of O, and MI is 
the IDNF of M. In the implementation, we will use 
TS to kill MI with OI (OI is the IDNF of O) as test 
oracle because of the following observation. 
 

O is a Boolean expression in GF, M is a mutant 
of O, OI and MI is the IDNF of O and M, 
respectively, TS is a test suite. Then, 

Killed (MI, OI, TS ) = Killed (M, O, TS) 
 
Our previous experiments have also involved 

the first three steps mentioned above [5, 12]. In this 
experiment, we focus on evaluation and use an 
instance to illustrate the evaluation process as 
follows. 

1) A Boolean expression OG in arbitrary form 
is “!e * c + c * (h * !g * i * !e + g * !i * !d) * !d * !e 
+ g”. 

2) Assume an Operator Reference Fault 
happens to the first operator and change it from “*” 
to “+”. A mutant MG like “!e + c + c * (h * !g * i 
* !e + g * !i * !d) * !d * !e + g” is obtained. 

3) Transform OG and MG into Boolean 
expressions in IDNF. We get O(“!e * c + g”) and  
M(“!e + c + g”). 
       4) Generate a MUMCUT-based test suite T of M 
using BEAT. T = {000, 010, 110, 011} 
       5) Get t1 from T (t1 = “000”) and create the 
literal-assign pair table LA = {c = “0”, e = “0”, g = 
“0”}. 
       6) Evaluate the truth-value TM of M with LA 
and TM = “1” (since !e + c + g = 1 + 0 + 0 = 1). 
Similarly, we evaluate the truth-value TO of O with 
LA and TO = “0”(since !e * c + g = 1 * 0 + 0 = 0). 
       7) “True” is returned since TO ≠TM. 

In this example, a MUMCUT-adequate test 
suite kills an ORF mutant. In other words, 
MUMCUT is still effective to detect the seeded fault. 
In some situations, however, MUMCUT may not be 
effective. Our experiment is to investigate the failure 
rate of MUMCUT and why it fails. 
 

4.2 Settings 
 
When a Boolean expression contains more than 

12 Boolean variables, its IDNF transformation will 
be very slow. It will also take a long time for BEAT 
to generate a MUMCUT-adequate test suite for a 
Boolean expression consisting of more than 15 
Boolean variables. 

To be practical, we use the Boolean expression 
generator BEGen [12] to generate 800 samples of 
Boolean expressions in GF as the experiment object. 
We restrict the parameter settings of BEGen as 
follows: 

 The maximum number of literals is 12 (namely, 
the characters from a to l as positive literals and 
their negations such as “!a” as negative literals). 

 The maximum number of terms of a Boolean 
expression is 12. 

 The maximum number of literals in a term is 6. 
 The seven operators are “*”, “+”, “!”, “+ ( )”, 

“+ !( )”, “* ( )” and “* !( )”. 
 

4.3 Result and analysis 
 

Table 1 shows the result of the empirical 
evaluation on the effectiveness of MUMCUT for 
general Boolean expressions. 

 
Table 1. The result of empirical evaluation  
Muta
-tion 
Type

BE 
Sample

Valid 
Mutant

 
Killed 

Not 
Killed 

Effective
ness 
% 

ENF 100 91 91 0 100.00%
LNF 100 775 770 5 98.97% 
TOF 100 295 270 25 91.53% 
TNF 100 382 377 5 98.695 
LOF 100 263 261 2 99.24% 
LIF 100 235 229 6 97.45% 
LRF 100 336 332 4 98.81% 
ORF 100 686 678 8 98.83% 
Total 800 3063 3008 55 98.20% 

 
In Table 1, 800 Boolean expression samples are 

evenly divided into eight groups and each of them is 
used for one kind of fault mutation. Column 3 shows 
the valid mutants of a variety of mutation. Since 
there may be some redundant components in a 
Boolean expression, mutants without these 
redundant component is still equivalent of the 
original Boolean expression. For example, Given a 
Boolean expression in GF BG “!e + c + !e * (h * !g 
+ g * !d) + g”, its equivalent IDNF BI is “!e + c + g”. 
Assume a mutant MG of BG is “!e + c + !e * (h * !g ) 
+ g”. Compared with BG, a Term Omission Fault 
happens to MG (namely the term “g * !d” is omitted.)  
The equivalent IDNF MI of MG is “!e + c + g”. In 
this situation, MG is not a valid mutant since MI is 
equal to BI. Further more, some implicit equal 
IDNFs are difficult to identify. For example, assume 
that BI is “!a*!b + a*b + a*c” and MI is “!a*!b + 
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a*b + !b*c”. It seems to be a Literal Reference Fault 
(LRF), but these two IDNFs are equivalent. In our 
experiment, we have identified and discarded these 
equivalent mutants. 

The empirical evaluation result shows that in 
98.20% situations MUMCUT is effective when it is 
used for the fault-based testing on Boolean 
expressions in GF where there is only one fault is 
seeded. It means that MUMCUT is still effective in 
testing Boolean expressions in the realistic situation. 
In our experiment, there are totally 55 not-killed 
mutants. When we further examine those instances 
that cannot be killed by test cases generated by 
MUMCUT, we discover five failure patterns as 
follows. Certainly, test cases generated by 
MUMCUT cannot detect faults in the combination of 
these five failure patterns too. 

 
Pattern 1: Two-Reflective-literal Conjunctive Term 
Omission Without Losing Literals 

Original Boolean expression: “abc + AB”  
Mutant Boolean expression: “abc”. 

Pattern extension includes: 
“abcT + !a!b”  “abcT” and 
“(abc + !a!b)T”   “abcT”. Here, “T” is a null 

term or a term without the occurrence of “a”, “b” or 
“c”. 

 
Pattern 2: Disjunctive Term Omission Without 
Losing Literals 

Original Boolean expression “ab + bc + ac = ab + 
c (a + b)”  Mutant Boolean expression “ab + 
c”. 

Pattern extension includes: 
“ab + c(a + b) T”  “ab + c T” and 
“(ab + c(a + b))T” “(ab + c)T”. Here, “T” is a 

null term or a term without the occurrence of “a”, 
“b” or “c”. 

 
Pattern 3: Term Omission With Losing Literals 

Original Boolean expression: “ab + bc”  
Mutant Boolean expression: “ab” 

Pattern extension includes: 
“abT + bc”  “abT”, 
“ab + bcT”    “ab” and 
“(ab + bc)T”    “abT”. Here, “T” is a null 

term or a term without the occurrence of “a”, “b” or 
“c”. 

 
Pattern 4: Distribution One-Complemental-Literal 
Conjunctive Term Omission Without Losing Literals 

Original Boolean expression: “acde + bc + ab!d” 
 Mutant Boolean expression: “acde + bc”. 

Pattern extension includes: 
“acdeT + bc + ab!d”  “acdeT + bc”, 
“acde + bc + ab!dT”  “acde + bc” and 
“(acde + bc + ab!d)T “  “(acde + bc)T”. 

Here, “T” is a null term or a term without the 
occurrence of “a”, “b”, “c”, “d” and “e”. 

Pattern 5: Concurrent Term and Literal Omission 
without Losing Literals 
  Original Boolean expression: “ab!c + a!bc + !abc” 

 Mutant Boolean expression: “ab + ac”. 
  Pattern extension includes: 

(ab!c + a!bc + !abc)T  (ab + ac)T. Here, “T” 
is a null term or a term without the occurrence of “a”, 
“b” or “c”. 
 

The empirical evaluation result also indicates 
that the fault-detection capability of MUMCUT 
varies with fault types. As for Term Omission Fault 
(TOF), MUMCUT can only detect faults in 91.53 
situations. In our previous work [5], we found when 
one fault is seeded into a general Boolean expression, 
in most situations it resulted in more than one fault 
in its equivalent IDNF. Further, there are more 
chances where the multiple-literal term is omitted in 
their equivalent IDNF and above-mentioned patterns 
occur with the higher frequency. This explains why 
the fault-detection capacity of MUMCUT for TOF is 
lower than others. As to Expression Negation Fault 
(ENF), any test case is able to kill a mutant, since the 
truth-value of mutant and the original Boolean 
expression are always different. The fault-defection 
capability of MUMCUT for the remaining six types 
of fault is very close. Table 2 demonstrates the 
occurrence of these five patterns in different fault 
types. 
 
 
Table 2. The distribution of five failure patterns  

Mutation
Type 

P1 P2 P3 P4 P5 Total 

ENF 0 0 0 0 0 0 
LNF 0 2 2 0 1 5 
TOF 3 4 15 3 0 25 
TNF 0 0 5 0 0 5 
LOF 0 1 1 0 0 2 
LIF 2 3 1 0 0 6 
LRF 1 2 1 0 0 4 
ORF2 5 2 4 1 0 8 + 4 
Total 11 14 29 4 1 55 + 4 

 
Further, the result also provides a useful 

guideline for developers. We should pay more 
attention to the faults difficult to detect, such as TOF. 
 
4.4 Limitations 

 
In this experiment we developed a mutation 

strategy to produce the limited size of mutants 
because of the practicability concerns. The restricted 
number of mutants may be a limitation of the 
validity of the empirical evaluation. Another possible 
limitation in the evaluation of overall effectiveness 
comes from the mutant ratio of different faults, since 

                                                           
2 In this type of fault, the combination of failure patterns occurs in 
four mutants. 
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it is hard to predict which type of fault is more 
frequent in the real world. Finally, the number of 
general Boolean expressions may also affect the 
validity of this evaluation. 
 
5. Related Work 

 
This work complements and extends research in 

fault-based testing of Boolean specifications. For the 
most part, the research has focused on the systematic 
test generation, selection, and empirical evaluation 
of test suites, and these test suites are used to detect 
several special fault types of Boolean expressions in 
the specific forms, such as DNF, CNF and IDNF. 
We outline below the work related to our project. 

Weyuker et al. [15] investigated and proposed a 
family of meaning impact strategies for 
automatically generating test cases for any 
implementation intended to satisfy a given 
specification that is a Boolean formula. These 
strategies are based on two basic concepts, namely 
unique true points and near false point. These 
strategies are effective to detect five operator faults, 
such as variable negation faults. They also require 
that the Boolean expressions under test should be in 
IDNF. 

Chen and Lau [3, 4] proposed a set of more 
efficient test case generation strategies called 
MUMCUT for Boolean expressions in IDNF, 
including MUTP, MNFP and CUTPNFP. These 
strategies are also based on the unique true point and 
near false point, and can detect seven single faults in 
a Boolean expression. MUMCUT also requires that 
Boolean expressions under test should be in IDNF. 

IDNF Boolean expressions are a small subset of 
all Boolean expressions in the real world [2, 5, 11]. 
In this paper, we have applied MUMCUT to 
generate test cases for general Boolean expressions. 
The generated test cases are expected to detect 
common faults. Finally, our work enables 
MUMCUT to obtain its application in the whole set 
of Boolean expressions. 

To evaluate the effectiveness of the proposed 
strategy, a lot of empirical studies have been 
reported in [3, 4, 14, 15]. As we know, all existing 
empirical studies have used the same set of Boolean 
expression samples, first used by Weyuker et al. [15], 
to examine the effectiveness of their strategy. These 
samples consist of twenty Boolean specifications 
taken from the specification for a real aircraft 
collision avoidance system (TCAS II). Chen and Lau 
[3, 4] also used these Boolean specifications samples 
in their previous empirical evaluation related to 
MUMCUT, such as MUTP and CUTPNFP. 

In this paper, we use a generator [12] developed 
by us to produce a large number of Boolean 
expression samples in arbitrary forms. This enhances 
the representativeness of experimental samples. 
Furthermore, our empirical evaluation shows an 

effectiveness of 98.20%, while the empirical 
evaluation in [2] reported an effectiveness of 99.8% 
using 20 Boolean expression samples from [15]. 
 
6. Conclusion 

 
We have applied MUMCUT to generate test 

cases for general Boolean expressions and reported 
an empirical evaluation of the fault detection 
capability of MUMCUT in the realistic situation. 

MUMCUT is a fault-based test case generation 
strategy for Boolean expressions in IDNF. When it is 
applied to a general Boolean expression B, we first 
transform it into an IDNF I, and then employ the 
MUMCUT strategy to generate a test suite T for I. 
Subsequently, the test suite T can be used as test 
cases of the original Boolean expression B. 

We have also developed a mutation–based 
experiment to empirically evaluate effectiveness of 
MUMCUT. Given a general Boolean expression, 
mutation technique is used to generate a set of 
mutants where only one fault is seeded. A test suite 
generated by MUMCUT is used to decide whether a 
mutant can be killed and the original Boolean 
expression is used as an oracle. Our empirical 
evaluation showed that, in 98.20% of the situations, 
MUMCUT was effective in the context of fault-
based testing of general Boolean expressions. 

As future work, we plan to conduct another 
empirical evaluation on the effectiveness of 
MUMCUT when more than one fault is seeded into 
general Boolean expressions. We also plan to 
develop test case generation strategies or techniques 
for the failure patterns observed in this study. 
 
Acknowledgements 

This research is supported in part by an ARC 
Discovery Grant (Project No. DP0345147) and a 
grant of the Research Grants Council of Hong Kong 
(Project No. 1083/00E). 
 
References 
 
[1] T.Y. Chen, D.D. Grant, M.F. Lau, S.P. Ng, and V.R. 
Vasa, BEAT: Boolean expression fault-based test case 
generation, in Proceedings of International Conference on 
Information Technology: Research and Education, IEEE 
Computer Society Press, Los Alamitos, California, 2003, 
pp. 64-69 
 
[2] T.Y. Chen and M.F. Lau. Test case selection strategies 
based on Boolean Specification, Software Testing, 
Verification and Reliability, Vol. 11, 2001, pp. 165-180 
 
[3] T.Y. Chen and M.F. Lau, An empirical evaluation on 
the greedy CUTPNFP strategy for Boolean specification 
based testing, in Proceedings of the 5th Joint conference 
on Information Science (JCIS), 2000, pp. 627-630 
 

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

931



[4] T.Y. Chen and M.F. Lau, An empirical study on the 
effectiveness of the greedy MUTP strategy, in Proceedings 
of Software Engineering Research and Practice 
(SERP ’98), IEEE Computer Society Press, Los Alamitos, 
California, 1998, pp. 338-344 
 
[5] T.Y. Chen, K.Y. Sim, and C.A. Sun, A simulation 
analysis of fault relationship between GF and IDNF, 
submitted for publication 
 
[6] R.A. DeMillo, R.J. Lipton, and F.G. Sayward, Hints on 
test data selection: help for the practicing programmer, 
IEEE Computer, Vol. 11, No. 4, 1978, pp. 34-41 
 
[7] R. Galivanche and S.M. Reddy, A parallel PLA 
minimization program, in Proceedings of the 24th 
ACM/IEEE Design Automation Conference, ACM Press, 
New York, 1987, pp. 600-607 
 
[8] K. R. Kuhn, Fault classes and error detection capability 
of specification-based testing, ACM Transactions on 
Software Engineering and Methodology, Vol. 8, No. 4, 
1999, pp. 411-424 
 
[9] N. Juristo, A. M. Moreno, and S. Vegas, Reviewing 25 
years of testing technique experiments, Empirical Software 
Engineering, Vol. 9, No. 1, 2004, pp. 7-44 
 
[10] J. Offutt and S. Liu, Generating test data from SOFL 
specifications, Journal of Systems and Software, Vol. 49, 
No. 1, 1999, pp. 49-62 

[11] V. Okun, P.E. Black, and Y. Yesha, Comparison of 
fault classes in specification-based testing, Information 
and Software Technology, Vol. 46, No. 8, 2004, pp. 525-
533 
 
[12] C.A. Sun and K.Y. Sim, A FSM-based parameterized 
generator for Boolean expressions, To appear in the 
proceedings of ICENCO-2004, Dec. 27-30 2004, Cairo, 
Egypt. 
 
[13] T. Tsuchiya and T. Kikuno, On fault classes and error 
detection capability of specification-based testing, ACM 
Transactions on Software Engineering and Methodology, 
Vol. 11, No. 1, 2002, pp. 58-62 
 
[14] M.A. Vouk, A. Paradkar, and K.-C. Tai, Empirical 
studies of predicate-based software testing, in Proceedings 
of International Symposium on Software Reliability 
Engineering (ISSRE), IEEE Computer Society Press, Los 
Alamitos, California, 1996, pp. 55-65 
 
[15] E.J. Weyuker, T. Goradia, and A. Singh, 
Automatically generating test data from a Boolean 
specification, IEEE Transactions on Software Engineering, 
Vol. 20, No. 5, 1994, pp. 353-363 
 
[16] H. Zhu, A.V. Hall, and H.R. May, Software unit test 
coverage and adequacy, ACM Computing Survey, Vol. 29, 
No. 4, 1997, pp. 366-427 
 
 

 

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

932




