
An Empirical Evaluation and Analysis of the Fault-Detection Capability
of MUMCUT for General Boolean Expressions

Chang-ai Sun 1, Kwan Yong Sim 2, T.H. Tse 3, and T.Y. Chen 4
1, 4 School of Information Technology
Swinburne University of Technology

 Melbourne, VIC 3122, Australia
{ csun, tchen }@it.swin.edu.au

2 School of Engineering
Swinburne University of Technology
93576 Kuching, Sarawak, Malaysia

ksim@swinburne.edu.my

3 Department of Computer Science
The University of Hong Kong

Pokfulam, Hong Kong
thtse@hku.hk

Abstract Boolean expressions are extensively used
in software specifications. It is important to generate
a small-sized test set for Boolean expressions
without sacrificing the fault-detection capability.
MUMCUT is an efficient test case generation
strategy for Boolean expressions in Irreducible
Disjointed Normal Form (IDNF). In the real world,
however, Boolean expressions written by a software
designer or programmer are not normally in IDNF.
In this paper, we apply MUMCUT to generate test
cases for general Boolean expressions and develop a
mutation-based empirical evaluation on the
effectiveness of this application. The experimental
data show that MUMCUT can still detect single
seeded faults in up to 98.20% of general Boolean
expressions. We also analyze patterns where test
cases generated by MUMCUT cannot detect the
seeded faults.

Keywords: Test Case Generation, Boolean
Specifications, Software Testing

1. Introduction

Boolean expressions are extensively used to
represent the decisions/conditions in a specification
or program. It is important to check whether they are
implemented correctly for the purpose of quality
assurance, since they play an important role in the
specification or program.

In the last decade, a lot of research work has
been devoted to the testing on Boolean expressions,
logic formulas or predicates [8]. The work on the
testing of Boolean expressions can be divided into
two major categories: structural approach and fault-
based approach.

In the structural approach, the basic idea is to
generate a test suite to cover the elements of decision

according to the coverage criteria [16]. From the
perspective of the coverage, structural Boolean
expression-oriented testing can be further classified
into decision coverage, condition coverage, decision
/condition coverage and path coverage [9]. In
decision coverage, for example, test cases are
generated so that every program decision has taken
the values True and False.

In fault-based testing, test cases are generated to
detect specified types of fault in a specification or
program [2, 10, 15]. There have been studies related
to fault-based testing of Boolean expressions.
Weyuker et al. [15] proposed a meaningful impact
strategy for testing Boolean formulas in Irreducible
Disjointed Normal Form (IDNF). Offutt and Liu [10]
proposed a procedure to generate test data for SOFL
specification where conditions or predicates are
assumed to be in Disjointed Normal Form (DNF).
Kuhn [8] described a method for computing the
conditions that must be covered by a test set for the
test set to guarantee detection of the particular fault
class. Tatsuhiro [13] improved on Kuhn’s fault
hierarchy. Chen and Lau [2] proposed a set of more
efficient test case generation and selection strategies
for Boolean specifications in IDNF.

We observe that existing fault-based testing
techniques are developed for Boolean expressions in
DNF or IDNF. In the real world, however, Boolean
expressions written by a designer or programmer are
usually in General Form (GF, also called arbitrary
form [11]). In additional, we have empirically
evaluated fault relationships between GF and IDNF
in previous experiments and the result shows that, in
up to 75.7% of the cases, one fault in GF can result
in more than one fault in its equivalent IDNF [5].
Hence, it is of great interest to see how efficient
MUMCUT will be for Boolean expressions in GF.
We can almost draw a conclusion that there is a big

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

926

gap between the existing research and realistic
situations. This also restricts the applicability of the
existing work.

Our main motivation in this paper is to
investigate how efficient MUMCUT is when applied
to general Boolean expressions. MUMCUT [2] is a
fault-based test case generation strategy for Boolean
expressions in IDNF, and the test suite generated by
MUMCUT can detect seven single faults in a
Boolean expression in IDNF. For general Boolean
expressions, we want to see whether a test suite
generated by MUMCUT can still detect a seeded
single fault and empirically evaluate the fault
detection capability of MUMCUT.

The rest of this paper is organized as follows:
Section 2 introduces MUMCUT and related
techniques. Section 3 presents the approach to
applying MUMCUT, and Section 4 introduces an
empirical evaluation on the effectiveness of
MUMCUT. Section 5 introduces the related work
and Section 6 concludes the paper.

2. Background
In this section, we introduce the basic concepts and
previous work related to this research.

Test Cases and Test Case Adequacy

In software testing practice, testers are required
to generate test cases to execute the program. A test
case is an input on which the program under test is
executed during testing. A test set/suite is a set of
test cases for testing a program [16]. Given a test
criterion, we can judge whether a test set is adequate.
For Boolean expressions, a test case is an ordered
truth-value list where each value is the assignment of
a Boolean variable. For example, consider Boolean
expression B1 {B1 = a + b}, a test case for B1 is {a
= 0, b = 0}, and the complete test suite for B1 is {00,
01, 11, 10}. If the decision coverage criterion is used,
{00, 10}, {00, 11} and {00, 10} are the adequate test
sets.

Fault-based testing and Mutation Analysis

Software testing often aims at detecting faults in
a program [16]. If it is assumed there are some
specific fault types in a specification or program, and
if test cases are generated to detect these faults, then
this approach is called fault-based testing.

In fault-based testing, mutation analysis [6] is
widely used to verify the adequacy of a test suite
based on the specific testing criteria. Given a
Boolean expression B, a derivation M is obtained by
seeding faults into B, M is called a mutant of B, and
the process to obtain M from B is called mutation.

In our experiment, mutation technique is used
to derive the Boolean expression mutants. These
mutants contain only one fault when they are
compared with the original Boolean expressions. The
faults concerned in this paper include Expression

Negation Fault (ENF), Literal Negation Fault (LNF),
Term Omission Fault (TOF), Term Negation Fault
(TNF), Operator Reference Fault (ORF), Literal
Omission Fault (LOF), Literal Insert Fault (LIF) and
Literal Reference Fault (LRF)1.

IDNF Transformation

Given a Boolean expression, it can be
represented in several forms. A Boolean expression
in DNF is formed by the disjunctive terms, and a
disjunctive term can be formed by the conjunctive
literals (Boolean variables). A Boolean expression in
DNF is said to be in IDNF when none of the
Boolean literals or terms can be deleted without
altering the value of the Boolean expression for
some test cases [2, 15].

Given a general Boolean expression, it can
always be transformed into an equivalent one in
DNF using some laws, such as distribution law,
commutative law and so on. A Boolean expression
in DNF can also be transformed into an equivalent
one in IDNF using the algorithm in [7]. For example,
a Boolean expression in GF

“a * (!c + !b + !d) + !a * (c + b + d)
+ b * (!c + !d) + !b * (c + d) + !c * d + c * !d”

can be transformed into
“a * !c + !a * c + a * !b + b * !c + !a * b
+ !b * c + !a * d + !b * d + !c * d + a * !d
+ b * !d + c * !d”

in DNF. It can also be transformed into two different
equivalent IDNFs

“!a * d + !b * d + !c * d + a * !d + b * !d
+ c * !d”

and
 “!a * d + !b * d + b * !d + c * !d + a * !c”.

MUMCUT

MUMCUT is a fault-based test case selection
strategy for generating test cases from Boolean
specifications, proposed by Chen and Lau [2]. It is
the integration of the MUTP strategy [4], the MNFP
strategy [2] and the CUTPNFP strategy [3]. These
strategies were developed based on two important
concepts, namely Unique True Point (UTP) and
Near False Point (NFP) [15]. Accordingly, UTP and
NFP are defined on Boolean expressions in IDNF.
Compared with the existing test case selection
strategies for Boolean expression in IDNF, the
MUMCUT strategy is more efficient. For example,
MAX-A and MAX-B are two strategies developed
by Weyuker et al. [15] based on UTP and NFP.
Under the assumption that only one fault is
introduced into the implementation, the empirical
research shows that the MUMCUT strategy uses on
the average 74% and 67% of the test cases required

1 Compare these with the seven types of fault defined in [2]. The
eight faults here are defined in the context of GF rather than IDNF.
Detailed definitions and examples are available in [5].

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

927

by the MAX-A and the MAX-B strategies,
respectively [2].

Two related experiments

Recognizing that the realistic Boolean
expressions are more often written in arbitrary form,
we have conducted an empirical research on the fault
relationship between GF and IDNF [5]. In more
detail, we investigated statistically that one fault
introduced into a Boolean expression in GF will
result in how many faults in its equivalent in IDNF.
We also developed an algorithm and a tool to
generate a benchmark of Boolean expressions in
arbitrary form for the subsequent experiments [12].

We shall not repeat the discussion of some
techniques that have been discussed in our previous
experiments and also required in this experiment,
provided this does not affect the comprehension of
this paper.

3. Applying MUMCUT to the Testing of
General Boolean Expressions

Given a Boolean expression in arbitrary form,

we first use an algorithm to transform it into one
IDNF, then we use MUMCUT to generate a set of
test cases, finally these test cases can be used as a
test suite to detect some specific faults in Boolean
expression in arbitrary form. In the view of users,
they do not need to know about this process, since
what they need to do is providing Boolean
expressions in arbitrary form and acquiring test cases
generated by MUMCUT strategy.

However, MUMCUT is not always effective in
the context of general Boolean expressions. For a
Boolean expression in IDNF B, a test suite T is
generated by MUMCUT, it can guarantee that all
seven single types of fault mentioned in [2] can be
detected when T is used as test cases for B. For
general Boolean expressions, one fault will result in
simultaneous occurrence of several faults in its
equivalent in IDNF. In this situation, the generated
test cases satisfying MUMCUT cannot guarantee the
detection of all faults introduced into a Boolean
expression in IDNF.

4. An Empirical Evaluation
In this section, we present an empirical evaluation on
the fault detection capability of MUMCUT in the
context of general Boolean expressions.

4.1 Principle

We statistically check whether one fault in

general Boolean expressions can be detected when a
set of test cases generated by MUMCUT (also called
MUMCUT-adequate test cases) are used. From the
perspective of mutation, it is equal to whether the

mutants with one fault can be distinguished from the
original Boolean expression under these test cases. If
answer is yes, we say that the mutant is killed.

Given a Boolean expression O, a mutant M, and
a test suite TS (t1, t2, …, tn), we say that M is killed if
and only if at least one test case ti from TS can
differentiate the truth value of M and O, noted as
Killed(M, O, TS). In other words,

)()(: iii tMtOTSt ≠∈∃
Given a Boolean expression O, a mutant M, and

a MUMCUT-adequate test suite TS (t1, t2, …, tn)
generated based on M, we say that MUMCUT is
effective for this mutant if and only if at least one test
case ti from TS can kill the mutant M with O as the
oracle.

In this experiment, we employ mutation
technique to obtain a mutant M of the original
Boolean expression in GF O. If one or more test
cases from the generated test suite TS can
distinguish the difference between O and M (that is,
M is killed when O is used as a test oracle), we say
MUMCUT is effective. Figure 1 shows how to
evaluate whether a MUMCUT-adequate test suite TS
can detect a fault in a Boolean expression in GF M
(that is, kill M) with O as the test oracle.

Several critical steps involved in the experiment
include:
1) Boolean Expression Samples. To be more
convictive, a large number of Boolean expressions in
GF are required. In our previous experiment, we
have developed a parameterized generator to
generate general Boolean expressions [6]. In this
experiment, we use this tool to generate Boolean
expression samples.

2) Mutation. To control the size of mutants and at
the same time satisfy mutation adequacy to some
extent, we also developed a set of mutation strategies
for mutant generation [5]. It is noted only one fault is
seeded into mutants when the mutation is conducted.

Boolean expression
in GF O

IDNF Transform

Mutant in GF
M

Mutant in IDNF
 MI

Mutation: Seed a fault

Test Case generation

A MUMCUT-
adequate Test Suite

 TS

Evaluation

MUMCUT is still effective?

Figure 1. A mutation-based evaluation of the
extension of MUMCUT

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

928

In this experiment, eight types of fault mentioned in
section 2 are considered.

3) IDNF Transformation. The Converter [5], a tool
developed by us for IDNF transformation, is used to
transform Boolean expressions in GF into ones in
IDNF.

4) Test Case Generation. Given a Boolean
expression in IDNF, BEAT [1], a tool is developed
to implement MUMCUT strategy, is used to generate
a MUMCUT-adequate test suite.

5) Evaluation. A MUMCUT-adequate test suite TS,
that is generated based on the mutant in IDNF MI, is
used to evaluate whether the M can be killed with O
as test oracle. Here, M is the mutant of O, and MI is
the IDNF of M. In the implementation, we will use
TS to kill MI with OI (OI is the IDNF of O) as test
oracle because of the following observation.

O is a Boolean expression in GF, M is a mutant
of O, OI and MI is the IDNF of O and M,
respectively, TS is a test suite. Then,

Killed (MI, OI, TS) = Killed (M, O, TS)

Our previous experiments have also involved

the first three steps mentioned above [5, 12]. In this
experiment, we focus on evaluation and use an
instance to illustrate the evaluation process as
follows.

1) A Boolean expression OG in arbitrary form
is “!e * c + c * (h * !g * i * !e + g * !i * !d) * !d * !e
+ g”.

2) Assume an Operator Reference Fault
happens to the first operator and change it from “*”
to “+”. A mutant MG like “!e + c + c * (h * !g * i
* !e + g * !i * !d) * !d * !e + g” is obtained.

3) Transform OG and MG into Boolean
expressions in IDNF. We get O(“!e * c + g”) and
M(“!e + c + g”).
 4) Generate a MUMCUT-based test suite T of M
using BEAT. T = {000, 010, 110, 011}
 5) Get t1 from T (t1 = “000”) and create the
literal-assign pair table LA = {c = “0”, e = “0”, g =
“0”}.
 6) Evaluate the truth-value TM of M with LA
and TM = “1” (since !e + c + g = 1 + 0 + 0 = 1).
Similarly, we evaluate the truth-value TO of O with
LA and TO = “0”(since !e * c + g = 1 * 0 + 0 = 0).
 7) “True” is returned since TO ≠TM.

In this example, a MUMCUT-adequate test
suite kills an ORF mutant. In other words,
MUMCUT is still effective to detect the seeded fault.
In some situations, however, MUMCUT may not be
effective. Our experiment is to investigate the failure
rate of MUMCUT and why it fails.

4.2 Settings

When a Boolean expression contains more than

12 Boolean variables, its IDNF transformation will
be very slow. It will also take a long time for BEAT
to generate a MUMCUT-adequate test suite for a
Boolean expression consisting of more than 15
Boolean variables.

To be practical, we use the Boolean expression
generator BEGen [12] to generate 800 samples of
Boolean expressions in GF as the experiment object.
We restrict the parameter settings of BEGen as
follows:

 The maximum number of literals is 12 (namely,
the characters from a to l as positive literals and
their negations such as “!a” as negative literals).

 The maximum number of terms of a Boolean
expression is 12.

 The maximum number of literals in a term is 6.
 The seven operators are “*”, “+”, “!”, “+ ()”,

“+ !()”, “* ()” and “* !()”.

4.3 Result and analysis

Table 1 shows the result of the empirical
evaluation on the effectiveness of MUMCUT for
general Boolean expressions.

Table 1. The result of empirical evaluation
Muta
-tion
Type

BE
Sample

Valid
Mutant

Killed

Not
Killed

Effective
ness
%

ENF 100 91 91 0 100.00%
LNF 100 775 770 5 98.97%
TOF 100 295 270 25 91.53%
TNF 100 382 377 5 98.695
LOF 100 263 261 2 99.24%
LIF 100 235 229 6 97.45%
LRF 100 336 332 4 98.81%
ORF 100 686 678 8 98.83%
Total 800 3063 3008 55 98.20%

In Table 1, 800 Boolean expression samples are

evenly divided into eight groups and each of them is
used for one kind of fault mutation. Column 3 shows
the valid mutants of a variety of mutation. Since
there may be some redundant components in a
Boolean expression, mutants without these
redundant component is still equivalent of the
original Boolean expression. For example, Given a
Boolean expression in GF BG “!e + c + !e * (h * !g
+ g * !d) + g”, its equivalent IDNF BI is “!e + c + g”.
Assume a mutant MG of BG is “!e + c + !e * (h * !g)
+ g”. Compared with BG, a Term Omission Fault
happens to MG (namely the term “g * !d” is omitted.)
The equivalent IDNF MI of MG is “!e + c + g”. In
this situation, MG is not a valid mutant since MI is
equal to BI. Further more, some implicit equal
IDNFs are difficult to identify. For example, assume
that BI is “!a*!b + a*b + a*c” and MI is “!a*!b +

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

929

a*b + !b*c”. It seems to be a Literal Reference Fault
(LRF), but these two IDNFs are equivalent. In our
experiment, we have identified and discarded these
equivalent mutants.

The empirical evaluation result shows that in
98.20% situations MUMCUT is effective when it is
used for the fault-based testing on Boolean
expressions in GF where there is only one fault is
seeded. It means that MUMCUT is still effective in
testing Boolean expressions in the realistic situation.
In our experiment, there are totally 55 not-killed
mutants. When we further examine those instances
that cannot be killed by test cases generated by
MUMCUT, we discover five failure patterns as
follows. Certainly, test cases generated by
MUMCUT cannot detect faults in the combination of
these five failure patterns too.

Pattern 1: Two-Reflective-literal Conjunctive Term
Omission Without Losing Literals

Original Boolean expression: “abc + AB”
Mutant Boolean expression: “abc”.

Pattern extension includes:
“abcT + !a!b” “abcT” and
“(abc + !a!b)T” “abcT”. Here, “T” is a null

term or a term without the occurrence of “a”, “b” or
“c”.

Pattern 2: Disjunctive Term Omission Without
Losing Literals

Original Boolean expression “ab + bc + ac = ab +
c (a + b)” Mutant Boolean expression “ab +
c”.

Pattern extension includes:
“ab + c(a + b) T” “ab + c T” and
“(ab + c(a + b))T” “(ab + c)T”. Here, “T” is a

null term or a term without the occurrence of “a”,
“b” or “c”.

Pattern 3: Term Omission With Losing Literals

Original Boolean expression: “ab + bc”
Mutant Boolean expression: “ab”

Pattern extension includes:
“abT + bc” “abT”,
“ab + bcT” “ab” and
“(ab + bc)T” “abT”. Here, “T” is a null

term or a term without the occurrence of “a”, “b” or
“c”.

Pattern 4: Distribution One-Complemental-Literal
Conjunctive Term Omission Without Losing Literals

Original Boolean expression: “acde + bc + ab!d”
 Mutant Boolean expression: “acde + bc”.

Pattern extension includes:
“acdeT + bc + ab!d” “acdeT + bc”,
“acde + bc + ab!dT” “acde + bc” and
“(acde + bc + ab!d)T “ “(acde + bc)T”.

Here, “T” is a null term or a term without the
occurrence of “a”, “b”, “c”, “d” and “e”.

Pattern 5: Concurrent Term and Literal Omission
without Losing Literals
 Original Boolean expression: “ab!c + a!bc + !abc”

 Mutant Boolean expression: “ab + ac”.
 Pattern extension includes:

(ab!c + a!bc + !abc)T (ab + ac)T. Here, “T”
is a null term or a term without the occurrence of “a”,
“b” or “c”.

The empirical evaluation result also indicates
that the fault-detection capability of MUMCUT
varies with fault types. As for Term Omission Fault
(TOF), MUMCUT can only detect faults in 91.53
situations. In our previous work [5], we found when
one fault is seeded into a general Boolean expression,
in most situations it resulted in more than one fault
in its equivalent IDNF. Further, there are more
chances where the multiple-literal term is omitted in
their equivalent IDNF and above-mentioned patterns
occur with the higher frequency. This explains why
the fault-detection capacity of MUMCUT for TOF is
lower than others. As to Expression Negation Fault
(ENF), any test case is able to kill a mutant, since the
truth-value of mutant and the original Boolean
expression are always different. The fault-defection
capability of MUMCUT for the remaining six types
of fault is very close. Table 2 demonstrates the
occurrence of these five patterns in different fault
types.

Table 2. The distribution of five failure patterns

Mutation
Type

P1 P2 P3 P4 P5 Total

ENF 0 0 0 0 0 0
LNF 0 2 2 0 1 5
TOF 3 4 15 3 0 25
TNF 0 0 5 0 0 5
LOF 0 1 1 0 0 2
LIF 2 3 1 0 0 6
LRF 1 2 1 0 0 4
ORF2 5 2 4 1 0 8 + 4
Total 11 14 29 4 1 55 + 4

Further, the result also provides a useful

guideline for developers. We should pay more
attention to the faults difficult to detect, such as TOF.

4.4 Limitations

In this experiment we developed a mutation

strategy to produce the limited size of mutants
because of the practicability concerns. The restricted
number of mutants may be a limitation of the
validity of the empirical evaluation. Another possible
limitation in the evaluation of overall effectiveness
comes from the mutant ratio of different faults, since

2 In this type of fault, the combination of failure patterns occurs in
four mutants.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

930

it is hard to predict which type of fault is more
frequent in the real world. Finally, the number of
general Boolean expressions may also affect the
validity of this evaluation.

5. Related Work

This work complements and extends research in

fault-based testing of Boolean specifications. For the
most part, the research has focused on the systematic
test generation, selection, and empirical evaluation
of test suites, and these test suites are used to detect
several special fault types of Boolean expressions in
the specific forms, such as DNF, CNF and IDNF.
We outline below the work related to our project.

Weyuker et al. [15] investigated and proposed a
family of meaning impact strategies for
automatically generating test cases for any
implementation intended to satisfy a given
specification that is a Boolean formula. These
strategies are based on two basic concepts, namely
unique true points and near false point. These
strategies are effective to detect five operator faults,
such as variable negation faults. They also require
that the Boolean expressions under test should be in
IDNF.

Chen and Lau [3, 4] proposed a set of more
efficient test case generation strategies called
MUMCUT for Boolean expressions in IDNF,
including MUTP, MNFP and CUTPNFP. These
strategies are also based on the unique true point and
near false point, and can detect seven single faults in
a Boolean expression. MUMCUT also requires that
Boolean expressions under test should be in IDNF.

IDNF Boolean expressions are a small subset of
all Boolean expressions in the real world [2, 5, 11].
In this paper, we have applied MUMCUT to
generate test cases for general Boolean expressions.
The generated test cases are expected to detect
common faults. Finally, our work enables
MUMCUT to obtain its application in the whole set
of Boolean expressions.

To evaluate the effectiveness of the proposed
strategy, a lot of empirical studies have been
reported in [3, 4, 14, 15]. As we know, all existing
empirical studies have used the same set of Boolean
expression samples, first used by Weyuker et al. [15],
to examine the effectiveness of their strategy. These
samples consist of twenty Boolean specifications
taken from the specification for a real aircraft
collision avoidance system (TCAS II). Chen and Lau
[3, 4] also used these Boolean specifications samples
in their previous empirical evaluation related to
MUMCUT, such as MUTP and CUTPNFP.

In this paper, we use a generator [12] developed
by us to produce a large number of Boolean
expression samples in arbitrary forms. This enhances
the representativeness of experimental samples.
Furthermore, our empirical evaluation shows an

effectiveness of 98.20%, while the empirical
evaluation in [2] reported an effectiveness of 99.8%
using 20 Boolean expression samples from [15].

6. Conclusion

We have applied MUMCUT to generate test

cases for general Boolean expressions and reported
an empirical evaluation of the fault detection
capability of MUMCUT in the realistic situation.

MUMCUT is a fault-based test case generation
strategy for Boolean expressions in IDNF. When it is
applied to a general Boolean expression B, we first
transform it into an IDNF I, and then employ the
MUMCUT strategy to generate a test suite T for I.
Subsequently, the test suite T can be used as test
cases of the original Boolean expression B.

We have also developed a mutation–based
experiment to empirically evaluate effectiveness of
MUMCUT. Given a general Boolean expression,
mutation technique is used to generate a set of
mutants where only one fault is seeded. A test suite
generated by MUMCUT is used to decide whether a
mutant can be killed and the original Boolean
expression is used as an oracle. Our empirical
evaluation showed that, in 98.20% of the situations,
MUMCUT was effective in the context of fault-
based testing of general Boolean expressions.

As future work, we plan to conduct another
empirical evaluation on the effectiveness of
MUMCUT when more than one fault is seeded into
general Boolean expressions. We also plan to
develop test case generation strategies or techniques
for the failure patterns observed in this study.

Acknowledgements

This research is supported in part by an ARC
Discovery Grant (Project No. DP0345147) and a
grant of the Research Grants Council of Hong Kong
(Project No. 1083/00E).

References

[1] T.Y. Chen, D.D. Grant, M.F. Lau, S.P. Ng, and V.R.
Vasa, BEAT: Boolean expression fault-based test case
generation, in Proceedings of International Conference on
Information Technology: Research and Education, IEEE
Computer Society Press, Los Alamitos, California, 2003,
pp. 64-69

[2] T.Y. Chen and M.F. Lau. Test case selection strategies
based on Boolean Specification, Software Testing,
Verification and Reliability, Vol. 11, 2001, pp. 165-180

[3] T.Y. Chen and M.F. Lau, An empirical evaluation on
the greedy CUTPNFP strategy for Boolean specification
based testing, in Proceedings of the 5th Joint conference
on Information Science (JCIS), 2000, pp. 627-630

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

931

[4] T.Y. Chen and M.F. Lau, An empirical study on the
effectiveness of the greedy MUTP strategy, in Proceedings
of Software Engineering Research and Practice
(SERP ’98), IEEE Computer Society Press, Los Alamitos,
California, 1998, pp. 338-344

[5] T.Y. Chen, K.Y. Sim, and C.A. Sun, A simulation
analysis of fault relationship between GF and IDNF,
submitted for publication

[6] R.A. DeMillo, R.J. Lipton, and F.G. Sayward, Hints on
test data selection: help for the practicing programmer,
IEEE Computer, Vol. 11, No. 4, 1978, pp. 34-41

[7] R. Galivanche and S.M. Reddy, A parallel PLA
minimization program, in Proceedings of the 24th
ACM/IEEE Design Automation Conference, ACM Press,
New York, 1987, pp. 600-607

[8] K. R. Kuhn, Fault classes and error detection capability
of specification-based testing, ACM Transactions on
Software Engineering and Methodology, Vol. 8, No. 4,
1999, pp. 411-424

[9] N. Juristo, A. M. Moreno, and S. Vegas, Reviewing 25
years of testing technique experiments, Empirical Software
Engineering, Vol. 9, No. 1, 2004, pp. 7-44

[10] J. Offutt and S. Liu, Generating test data from SOFL
specifications, Journal of Systems and Software, Vol. 49,
No. 1, 1999, pp. 49-62

[11] V. Okun, P.E. Black, and Y. Yesha, Comparison of
fault classes in specification-based testing, Information
and Software Technology, Vol. 46, No. 8, 2004, pp. 525-
533

[12] C.A. Sun and K.Y. Sim, A FSM-based parameterized
generator for Boolean expressions, To appear in the
proceedings of ICENCO-2004, Dec. 27-30 2004, Cairo,
Egypt.

[13] T. Tsuchiya and T. Kikuno, On fault classes and error
detection capability of specification-based testing, ACM
Transactions on Software Engineering and Methodology,
Vol. 11, No. 1, 2002, pp. 58-62

[14] M.A. Vouk, A. Paradkar, and K.-C. Tai, Empirical
studies of predicate-based software testing, in Proceedings
of International Symposium on Software Reliability
Engineering (ISSRE), IEEE Computer Society Press, Los
Alamitos, California, 1996, pp. 55-65

[15] E.J. Weyuker, T. Goradia, and A. Singh,
Automatically generating test data from a Boolean
specification, IEEE Transactions on Software Engineering,
Vol. 20, No. 5, 1994, pp. 353-363

[16] H. Zhu, A.V. Hall, and H.R. May, Software unit test
coverage and adequacy, ACM Computing Survey, Vol. 29,
No. 4, 1997, pp. 366-427

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

932

