
Approximation Algorithms for Constructing Evolutionary Trees
�

Chia-Mao Huang and Chang-Biau Yang
Department of Computer Science and Engineering,

National Sun Yat-sen University, Kaohsiung, Taiwan
cbyang@cse.nsysu.edu.tw

Abstract

In this paper, we shall propose heuristic algo-
rithms to construct evolutionary trees under the
distance base model. When the distance ma-
trix is metric, the problem is called the trian-
gle minimum ultrametric tree problem (

�
MUT).

For the
�

MUT, we shall propose an approxima-
tion algorithm, with error ratio ��� logα n ��� 1 �	
1 
 44 � logn ��� 1, where α 	�� 5 
 1

2 . We shall also
propose a heuristic algorithm to obtain a good
leaf node circular order. The heuristic algorithm
is based on the clustering scheme. And then
we shall design a dynamic programming algo-
rithm to construct the optimal ultrametric tree
under some fixed leaf node circular order. The
time complexity of the dynamic programming is
O � n3 � , if the scoring function is the minimum
tree size or L1-min increment.

Key words: computational biology, evolution-
ary tree, approximation algorithm, dynamic pro-
gramming

1 Introduction

An evolutionary tree is an important tool to
show branching diagrams and the history of life.
And now, we can obtain the DNA (Deoxyribonu-
cleic Acid) sequence from the organisms. The
DNA sequence is the most original information
of one life. Thus, we shall use the DNA informa-
tion to infer an evolutionary tree close to the real
evolutionary process [15].

Many researchers have studied the construc-
tion of evolutionary trees [1, 4, 5, 7]. However,
we are not sure what the real evolutionary pro-
cess is. So, many various construction models for
�
This research work was partially supported by the Na-

tional Science Council of the Republic of China under con-
tract NSC-90-2213-E-110-043.

evolutionary trees have been proposed. There are
also many various scoring functions to evaluate
an evolutionary tree. Most evolutionary tree opti-
mization problems are NP-hard [2, 3, 16], except
some very special scoring functions with some
special input data [6].

In this paper, we shall use the distance base
model to construct the evolutionary tree. The
model is based on the computing results of the
distances between species. First, we use the DNA
sequence to compute the distance between every
pair of species. Then, we construct the evolution-
ary tree from these distance data. For examples,
the neighbor joining (NJ) method [13] and the un-
weighted pair group method with maximum (UP-
GMM) [11] are often used to construct the evolu-
tionary tree from the distance data. The evolution
of organisms will change their DNA sequences,
and these evolution events can be viewed as in-
sertion, deletion, point mutation, rearrangement
or inversion of DNA sequences. Thus, we can
compute the number of event occurrences, and
accordingly calculate the distance between two
species [10, 12, 14]. In this model, the distance
between any two species in the evolutionary tree
is similar to the original distance.

The organization of this paper is as follows.
In Section 2, we shall first present some defi-
nitions about the evolutionary tree problem. In
Section 3, we shall define the binary splitting tree
problem and propose an algorithm to construct
a binary splitting tree with height no more than

� logα n � , where α 	�� 5 
 1
2 and n is number of leaf

nodes. In Section 4, we shall propose an approxi-
mation algorithm to construct the minimum ultra-
metric tree under the metric distance matrix and
prove that the error ratio is within � logα n ��� 1 �	
1 
 44 � logn ��� 1, where α 	 � 5 
 1

2 . And in Section
5, we shall propose a heuristic algorithm to con-
struct a leaf node circular order, and also design
a dynamic programming algorithm to solve the
optimal ultrametric tree problem under a certain

1



leaf node circular order. Then, in Section 6, we
show our experiment results and compare them
with the UPGMM method. Finally, we shall give
some conclusions in Section 7.

2 Preliminaries

In this section, we shall give some definitions
about the evolutionary tree and various scoring
functions to estimate the goodness of an evolu-
tionary tree.

Definition 1 An n � n distance matrix M is used
to represent the distances among n species, where
dM

i j denotes the distance between the ith species
and the jth specie. Moreover, M is a symmetric
matrix, that is, dM

i j 	 dM
ji .

Definition 2 An n � n distance matrix M is met-
ric if the distances among any three points sat-
isfy the triangle inequality, that is, for any three
points x � y � z, dM

xy � dM
xz � dM

yz .

Definition 3 An n � n metric M is ultrametric
if and only if for any three points i � j � k, dM

i j �
max

�
dM

ik � dM
jk � . In other words, for any triangle,

the two longer sides have the same length.

In the following, dT
i � j is used to denote the dis-

tance between the ith species and the jth species
in an evolutionary tree T , and w � T � denotes the
total weight assigned to the tree edges.

Definition 4 Given a set S of species, the set
of leaves in an evolutionary tree is equal to S.
And in the tree, each internal node represents the
common ancestor of the species on the leaves of
the subtree.

In a rooted evolutionary tree, each internal
node has exactly two children. And, in an un-
rooted tree, the degree of each internal node is
exactly 3.

Fact 1 [6] Given an ultrametric matrix M, there
exists a unique rooted evolutionary tree, called
an ultrametric tree, T such that dT

i � j 	 dM
i � j. In ad-

dition, for any internal node v, the distances from
v to all leaf nodes in the subtree rooted at v are
the same.

Definition 5 Given an arbitrary distance matrix
M, the MUT (minimum ultrametric tree) problem
is to construct an ultrametric tree T such that the
total weight assigned to the tree edges is mini-
mized and dT

i � j � dM
i � j ��� i � j.

Definition 6 Given a metric distance matrix M,
the
�

MUT (minimum ultrametric tree for a met-
ric) problem is to construct an ultrametric tree
T such that the total weight assigned to the tree
edges is minimized and dT

i � j � dM
i � j ��� i � j.

Definition 7 [19] Given an ultrametric distance
matrix M associated with a tree topology T , the
MUTT (minimum ultrametric tree with a given
topology) problem is to assign each tree edge a
weight such that the total weight is minimized and
dT

i � j � dM
i � j ��� i � j.

Theorem 1 [19] The MUTT problem can be
solved in O � n2 � time, where n is the number of
species.

There are also many various scoring functions
to estimate the goodness of an evolutionary tree.
Given an n � n distance matrix M, several popular
scoring functions [6] for measuring an evolution-
ary tree T are as follows.

� minimum tree size: dT
i � j � dM

i � j ��� i � j and
the total weight of the tree is minimized.
The MUT,

�
MUT and MUTT problems are

based on this scoring function.

� L1-min increment: dT
i � j � dM

i � j ��� i � j and

∑
i � j � d

T
i � j 	 dM

i � j � is minimized.

� Lk-min increment: dT
i � j � dM

i � j ��� i � j and

∑
i � j � d

T
i � j 	 dM

i � j � k is minimized.

� L∞-min increment: dT
i � j � dM

i � j ��� i � j and

max
i � j � d

T
i � j 	 dM

i � j � is minimized.

Because the evolution of organisms repeatedly
changes their DNA sequence, the distance may
be shorter than the real distance of evolution.
Thus, we usually use minimum tree size, L1-min
increment, Lk-min increment and L∞-min incre-
ment scoring functions for measuring an evolu-
tionary tree [17].

3 The Binary Splitting Tree Problem

For solving the
�

MUT problem, we first have
to solve the binary splitting tree problem. In this
section, we shall first define the binary splitting
tree problem and then propose an algorithm to
construct a binary splitting tree with height no
more than � logα n � , where α 	 � 5 
 1

2 and n is
number of leaf nodes.

2



Definition 8 Given a tree T 	 � V � E � , for any
two nodes v1 � v2 � V, the path connecting v1

and v2 is denoted as pathT � v1 � v2
� . And

E � pathT � v1 � v2
� � denotes the set of edges con-

tained in pathT � v1 � v2
� .

Definition 9 Given an unrooted tree T 	 � V � E � ,
the binary splitting tree τ 	 � V � Vτ � Eτ

� is a rooted
binary tree such that and V and Vτ are the set of
the leaf nodes and the set of internal nodes, re-
spectively, in τ, Eτ denotes the set of tree edges in
τ, and for any two nodes v1 � v2 � VL and any two
nodes v3 � v4 � VR, where VL and VR contain the
leaf nodes in the left and right subtrees rooted
at node u � τ, respectively, E � pathT � v1 � v2

� ���
E � pathT � v3 � v4

� � 	 φ.

Definition 10 For given an unrooted tree T , the
binary splitting tree problem is to find a binary
splitting tree.

For example, consider Figure 1. Figure 1 (a)
shows an unrooted tree T , and Figure 1 (b) and
(c) show two binary splitting trees of T . In Fig-
ure 1 (b), the binary splitting tree is built eas-
ily. Nodes v1 and v2 are connected by edge
e1, nodes v4, v3 and v5 are connected, by edges
e3 and e4, and

�
e1 � �

�
e3 � e4 � 	 φ. It is simi-

lar in the subtree
�
v4 � v3 � v5 � . However, Figure

1 (c) is more complicated.
�
v2 � v1 � v3 � are con-

nected by edges
�
e1 � e2 � , and

�
v4 � v5 � are con-

nected by edges
�
e3 � e4 � . It is clear that

�
e1 � e2 � ��

e3 � e4 � 	 φ.
�
v2 � and

�
v1 � v3 � have the sim-

ilar situation. Thus, the tree is a binary split-
ting tree. Figure 1 (d) is not a binary splitting
tree, because edges

�
e1 � e2 � e3 � connect nodes�

v1 � v4 � , and
�
e2 � e4 � connect nodes

�
v2 � v3 � v5 � ,

and
�
e1 � e2 � e3 � �

�
e2 � e4 �

�	 φ.
Next, we shall propose an algorithm to con-

struct the binary splitting tree and show that the
height of the tree is no more than � logα n � , where

α 	 � 5 
 1
2 and n is the number of leaf nodes.

Theorem 2 [18] For any tree T 	 � V � E � , there
exists a node v � V such that the T can be split
from v into k, k � 2, subtrees and the number of
nodes in any subtree is no more than 1

2 �V � .
Definition 11 An unrooted tree is a k-way tree if
the degree of each node is no more than k.

Before constructing a binary splitting tree from
an unrooted (k-way) tree, we have to convert the
k-way tree, k � 4, to a 3-way tree by adding some
virtual nodes.

(a)


v
1
 v
2
 v
3
v
4
 v
5


v
1
v
2
 v
3
v
4
 v
5


e
1
 e
3


e
2


v
1


e
4


v
2
 v
3


v
4
 v
5


(b)


(c)

v
1
 v
2
 v
3
v
4
 v
5


(d)


Figure 1: An example for the binary splitting tree.
(a) A tree. (b) A binary splitting tree. (c) Another
binary splitting tree. (d) Not a binary splitting
tree.

Definition 12 Given a k-way tree T 	 � V � E � , its
corresponding 3-way tree T � 	 � V � V � � E � � is de-
fined as follows. Let U 	 �

ui � ui � V � degree � ui
� �

4 � . Suppose �U � 	 h. Let ci 	 degree � ui
� , and vi1,

vi2, ����� , vi � ci be adjacent to ui. Vi 	
�
v � i j � 3 � j �

ci 	 1 � , 1 � i � h. Ei 	 E 	 � � u1 � vi1
� � � ui � vi2

� �	�� � ui � v � i3 � � � v � i3 � vi3
� � � v � i3 � v � i4 � � � v � i4 � vi4

� �
����� �
� v � i � ci � 2 � v � i � ci � 1

� � � v � i � ci � 1 � vi � ci � 1
� � � v � i � ci � 1 � vi � ci

� � �
1 � i � h. Then V � 	
� 1 � i � h Vi and E � 	
� 1 � i � n Ei. The nodes in V � are called virtual
nodes.

For example, Figure 2 (a) shows a k-way
tree, k 	 4. By Definition 12, U 	 �

g � ,
V1 	

�
v � 13 � 	

�
w � . E1 	 E 	 � � g � c � � � g � d � ���� � g � w � � � w � c � � � w � d � � , V � 	 V1 and E � 	 E1, as

shown in Figure 2 (b).

Theorem 3 Given a k-way tree, k � 4, a 3-way
tree T � 	 � V � V � � E � � can be constructed such that
there exists a node v � V or v � V � to split T � into
p subtrees, p 	 2 or p 	 3, and the number of
nonvirtual nodes in any subtree is no more than
� 12 �V � � .

Theorem 3 is based on Theorem 2. The only
difference between Theorem 2 and Theorem 3 is
the latter includes the concept of virtual nodes.
Note that in Theorem 3, the splitting node v is
included in one of the subtrees.

Our algorithm for constructing a binary split-
ting tree with height no more than � logα n � ,
where α 	 � 5 
 1

2 , is as follows.

3



f


g


a


b


c

d


e


f


g


a


b


c

d


e


w (virtual node)


(a)


(b)


Figure 2: Conversion from a 4-way tree to a 3-
way tree. (a) A 4-way tree. (b) A 3-way tree.

T
A


(a)


(b)


(c)


T
B
 T
C


T
A
 T
BC


T
A


T
B

T
C


v


r
 r


r'


Figure 3: The binary splitting tree.

Algorithm BST (Binary Splitting Tree)

Input: An unrooted tree T 	 � V � E � , �V � 	 n.

Output: A binary splitting tree τ 	 � V � Vτ � Eτ
�

with height no more than � logα n � , where

α 	 � 5 
 1
2 .

Step 1: Convert T to a 3-way tree T � 	
� V � V � � E � � .

Step 2: If �V � 	 1, B contains only one node v �
V , Vτ 	 φ and Eτ 	 φ, and stop.

Step 3: By Theorem 3, find node v � V to
split T � into 3-way subtrees TA 	
� VA � V � A � E � A � , TB 	 � VB � V � B � EB

� and
TC 	 � VC � V � C � EC

� such that �VC � �
�VB � � �VA � � 1

2 �V � .
Step 4: If �VA � � 3 � � 5

2 �V � , combine TB and TC

into TBC. In other words, split T into two

subtrees TA and TBC. If �VA � � 3 � � 5
2 �V � ,

go to Step 7.

Step 5: Let TA and TBC be T . Recursively apply
this algorithm and obtain binary split-
ting trees τA 	 � VA � VτA � EτA

� and τBC 	
� VBC � VτBC � EτBC

� , respectively.

Step 6: Create a root r, build a binary splitting
tree τ rooted at r with the left and right
subtree being τA and τBC, respectively, as
shown in Figure 3 (b). In other words,
τ 	 � V � Vτ � Eτ

� , where V 	 VA � VBC, Vτ 	
VτA

� VτBC
� �

r � and Eτ 	 EτA
� EτBC

�� � r � root of τA
� � � r � root ofτBC

� � .
Stop.

Step 7: If �VA � � 3 � � 5
2 �V � , keep the splitting

done in Step 3. In other words, split T
into three subtrees TA, TB and TC.

Step 8: Let TA, TB and TC be T . Recur-
sively apply this algorithm and obtain bi-
nary splitting τA 	 � VA � VτA � EτA

� , τB 	
� VB � VτB � EτB

� and τC 	 � VC � VτC � EτC
� , re-

spectively.

Step 9: Create a root r and subroot r � , build a bi-
nary splitting tree τ rooted at r, as shown
in Figure 3 (c). Precisely, τ 	 � V � Vτ � Eτ

� ,
where V 	 VA � VB � VC, Vτ 	 VτA

� VτB
�

VτC
� �

r � r � � and Eτ 	 EτA
� EτB

� EτC
�� � r � root of τA

� � � r � r � � � � r � � root of τB
� � � r � �

root of τC
� � .

Stop.

4



f


g


a


b


c

d


e


w (virtual node)


T
B


T
C


T
A


Figure 4: Splitting a tree to three subtrees.

For example, Figure 2 (a) shows a 4-way tree,
in which there are four nodes adjacent to node
g. We first convert the tree into a 3-way tree,
as shown in Figure 2 (b). Then we further split
the 3-way tree from g into three subtrees TA 	�

a � b � f � , TB 	
�
g � e � and TC 	

�
c � d � v � , as shown

in Figure 4. Since �VA � � 3 � � 5
2 , the two smaller

trees TB and TC are merged. Thus, the tree is fi-
nally split into two subtrees TA 	

�
a � b � f � , TBC 	�

c � d � e � g � , as shown in Figure 5 (a) and Figure
5 (b). The merging procedure done in Step 6
is shown in Figure 5 (c). Finally, by Algorithm
BST, a binary splitting tree can be constructed, as
shown in Figure 6.

Theorem 4 Given an unrooted tree of n nodes,
Algorithm BST constructs a binary splitting tree
with height no more than � logα n � , where α 	
� 5 
 1

2 .

Proof: Given an unrooted tree T 	 � V � E � and

�V � 	 n, let π � n � denote the number of levels re-
quired for splitting the corresponding 3-way tree
T � . By Theorem 3, we can split T � into three sub-
trees TA 	 � VA � V � A � EA

� , TB 	 � VB � V � B � EB
� and

TC 	 � VC � V � C � EC
� such that �VC � � �VB � � �VA � �

1
2 �V � .

The possible relations between �VA � and �V � 	
n are as follows. It is assumed that x is an un-
known constant.

Case 1: nx � �VA � � 1
2 n.

We combine TB with TC to get TBC 	
� VBC � EBC

� . It is clear that �VBC � � �VA �
and �VBC � 	 n 	 �VA � � � 1 	 x � n. So we
split T � into TA and TBC with one level.
At the next recursion level, the number
of leaf nodes is reduced from n at the cur-
rent level to no more than � 1 	 x � n.

Case 2: 1
3 n � �VA � � nx.

Because �VB � � �VA � and �VC � � �VA � , it

(a)
 (b)


f


g


a


b


c

d


e


w (virtual node)


{a, b, f}


(c)


r


{c, d, e, g}


Figure 5: Splitting the tree from node g. (a) Sub-
tree TA 	

�
a � b � f � . (b) Subtree TBC 	

�
c � d � e � g � .

(c) The merging procedure.

a
 b
 f
 c
 d
 g
 e


root


Figure 6: A binary splitting tree constructed from
the 4-way tree in Figure 2 (a).

5



is obvious that �VB � � nx and �VC � � nx.
Thus, at the first level, we split T into TA

and TB � TC. At the next level, we split
TB � TC into TB and TC. Hence, the num-
ber of leaf nodes is reduced from n to no
more than nx with two levels.

By Case 1 and Case 2, π � n � 	 max
�
π � � 1 	

x � n � � 1 � π � xn � � 2 � � .

We claim that if x 	 3 � � 5
2 , then π � n � �

� logα n � , where α 	 � 5 
 1
2 . We shall prove this

claim by induction.
It is clear that π � 1 � 	 0.
By induction hypothesis, suppose π � k � �
� logα k � , � k

�
n.

Let x 	 3 � � 5
2 . It is clear that α 	 1

1 � x . We have

π � n � 	 max
�
π � � 1 	 x � n � � 1 � π � xn � � 2 � �

� max
�
logα � 1 	 x � n � 1 � logα xn � 2 �

	 max
�
logα n � logα � 1 	 x � � 1 �

logα n � logα x � 2 �
	 max

�
logα n � logα n �

	 logα n

Thus, the proof is complete. �

4 An Approximation Algorithm for�
MUT

In this section, we shall propose an approxi-
mation algorithm for solving the

�
MUT prob-

lem. Our approximation algorithm uses the min-
imum spanning tree as the backbone to con-
struct a rooted ultrametric tree under the mini-
mum tree size scoring function with error ratio

ε ��� logα n ��� 1, where α 	 � 5 
 1
2 .

Algorithm APP-ULTRA (Approximate Ultra-
metric Tree)

Input: An n � n metric distance matrix M.

Output: An ultrametric tree under the minimum
tree size scoring function with error ratio

ε ��� logα n ��� 1, where α 	 � 5 
 1
2 .

Step 1: Find the minimum spanning tree (MST)
T for the distance matrix M.

Step 2: Apply Algorithm BST to construct a bi-
nary splitting tree B with input T .

Step 3: Given tree topology B, solve the MUTT
problem [19] to construct a weighted
evolutionary tree. The tree is the output.

Before giving the following lemma and theo-
rem, we need define some notations. When we
are given a metric distance matrix M, we use
some notation as follows:

� OPTMUT : the total weight of the optimal so-
lution of the minimum ultrametric tree prob-
lem.

� APPMUT : the total weight of the approxima-
tion solution obtained from Algorithm APP-
ULTRA.

� OPTMST : the total weight of the optimal so-
lution of the minimum spanning tree prob-
lem.

� OPTT SP: the total weight of the optimal so-
lution of the traveling salesperson problem.

We shall use the MST (Minimum Spanning
Tree) to prove the error ratio of our algorithm.

Lemma 1 OPTMST � OPTTSP � 2OPTMUT .

OPTMST � OPTT SP is a clear fact and
OPTT SP � 2OPTMUT has also been proved [8,
19].

Theorem 5 Given an n � n metric distance ma-
trix, Algorithm APP-ULTRA builds an ultramet-
ric tree and APPMUT � � � logα n ��� 1 � OPTMUT ,

where α 	 � 5 
 1
2 .

Proof:
The labels of nodes and edges in the ultramet-

ric tree constructed by Algorithm APP-ULTRA
are shown in Figure 7. The cost of edge ei � j is de-
noted as ci � j, and the height of node vi � j, which is
the length from vi � j to any leaf node in the subtree
rooted at vi � j, is denoted as Height � vi � j � . Let k de-
note the number of levels in the tree. By Theorem

4, k ��� logα n � , where α 	 � 5 
 1
2 .

Then we have the following inequalities.

OPTMST � 2Height � v1 � 1 � 	
k

∑
i � 1

�
ci � 1 � ci � 2i � 1 
 1 �(1)

1
2

OPTMST �
2

∑
j � 1

Height � v2 � j � 	
2

∑
j � 1

�
c2 � 2 j �

k

∑
i � 2 
 1

ci � 2i � 2 
 1 
�� j � 1 � 2 � i � 1 � � (2)

1
2

OPTMST �
4

∑
j � 1

Height � v3 � j � 	
4

∑
j � 1

�
c3 � 2 j �

k

∑
i � 3 
 1

ci � 2i � 3 
 1 
�� j � 1 � 2 � i � 2 � �

6



e
1,1


e
2,1


e
3,1


e
1,2


e
2,4


e
3,8


e
2,2


e
3,4


e
2,3


e
3,5
e
3,2
 e
3,3
 e
3,6
 e
3,7


v
1,1


v
2,1
 v
2,2


v
3,1
 v
3,2
 v
3,3

v
3,4


v
k-1,n/2
e
k-1,1


e
k,1


e
k-1,2


e
k,4
e
k,2
 e
k,3


v
k-1,1


v
k,1
 v
k,2


e
k-1,j


e
k,2j-1
 e
k,2j


v

k-1,(j+1)/2


v

k,j


e
k-1,n/2


e
k,n
e
k,n-1


v
k,n/2


v

k-1,n/4


Figure 7: The ultrametric tree with APP-ULTRA.

...

1
2

OPTMST �
2m � 1

∑
j � 1

Height � vm � j � 	
2m � 1

∑
j � 1

�
cm � 2 j �

k

∑
i � m 
 1

ci � 2i � m 
 1 
�� j � 1 � 2 � i � m � 1 � �
...

1
2

OPTMST �
2k � 1

∑
j � 1

Height � vk � j � 	
2k � 1

∑
j � 1

�
ck � 2 j �

k

∑
i � k 
 1

ci � 2i � k 
 1 
�� j � 1 � 2 � i � k � 1 � �

Let Si � j denote the set of leaf nodes in
the subtree rooted at vi � j. And let OPTMSTi � j
denote the total weight of the minimum span-
ning tree for Si � j. We have Height � vi � j � 	
1
2 maxs1 � s2

�
S
�
d � s1 � s2

� � � 1
2 OPTMSTi � j . Thus,

Equation 1 holds. And, because the ultra-
metric tree is a binary splitting tree (Def-
inition 9), S2 � 1 and S2 � 2 are constructed
to two subtrees without edge repetition.
OPTMST v2 � 1 � OPTMST v2 � 2 � OPTMST , so
Height � v2 � 1 � � Height � v2 � 2 � � 1

2 OPTMST in
Equation 2.

APPMUT � OPTMST � � k 	 1
2
� OPTMST

	 � k � 1
2
� OPTMST

� � k � 1 � OPTMUT

	 � � logα n ��� 1 � OPTMUT

Thus, the approximation algorithm has error

ratio ε ��� logα n ��� 1 , where α 	 � 5 
 1
2 .

�

For the
�

MUT, there is a previous ap-
proximation algorithm [19], with error ratio
� 1 
 5 � � logn � � 1 � . And our algorithm APP-
ULTRA, with error ratio � � logα n � � 1 �	
1 
 44 � logn ��� 1, where α 	 � 5 
 1

2 , has a better ap-
proximation ratio.

5 A Heuristic Algorithm for MUT

For an evolutionary tree with n different leaves,
the order of the leaves from the left to the right is
called the leaf node circular order [8]. For n dif-
ferent leaves, there are N � n � 	 3 � 5 � ������� � 2n 	
5 � 	 ∏n � 3

k � 1 � 2k � 1 � different unweighted unrooted
evolutionary trees [8]. And there are N � n � 	
� 2n 	 3 � ∏n � 3

k � 1 � 2k � 1 � unweighted rooted evolu-
tionary trees [9]. However, given a leaf node
circular order, only � � 2 � n 	 2 � � ! � � � n 	 2 � ! � n 	
1 � ! � different unweighted unrooted evolutionary
trees can be built with that order and � 2n 	
3 � � � 2 � n 	 2 � � ! � � � n 	 2 � ! � n 	 1 � ! � different un-
weighted rooted evolutionary trees can be built.
Some possible numbers are shown in Table 1.

7



The number of unweighted rooted evolutionary
trees without any circular order grows every fast,
so it is very difficult to solve the evolutionary tree
optimization problem. In this section, we shall
first propose a heuristic algorithm to get a good
leaf node circular order. Then, we shall present
an algorithm with dynamic programming to con-
struct the optimal ultrametric tree under a certain
circular order. The concatenation of these two
phases is our heuristic algorithm for solving the
MUT (Minimum Ultrametric Tree) problem.

Our heuristic algorithm to obtain a leaf node
circular order for given an n � n distance matrix
is follows.

Algorithm Circular-Order

Input: A set S of n species and its distance ma-
trix M.

Output: A node circular order L 	
� v1 � v2 ������� � vn

� .
Step 1: Create a new virtual node v0 and dM

v0 � vi
	

∞ for all vi � S.

Step 2: Find d � uv � 	 maxi � j � S
�
dM

i j � . Set L 	
� v0 � v1 � v2 � v3

� , where v3 	 v0 , v1 	 u and
v2 	 v. Set k 	 2. Remove u and v from
S

Step 3: Find a node w � S such that dM
w � vi
	

minx
�

S � v j
�

L
�
dM

x � v j � .

Step 4: If dM
w � vi � 1

� dM
w � vi � 1

, insert w prior to vi

into L, that is, L 	 � v0 � v1 ������� � vi � 1 �
w � vi ������� � vk � vk 
 1

� ; otherwise, insert w
posterior to vi, that is, L 	 � v0 � v1 �
����� � vi � w � vi 
 1 ������� � vk � vk 
 1

� . Reindex L
as � v0 � v1 ������� � vi ������� � vk 
 2

� . Set k 	 k � 1.
Remove w from S.

Step 5: Repeat Step 3 and Step 4, until S be-
comes empty.

Step 6: Delete v0 and vn 
 1 from L, and obtain
L 	 � v1 � v2 ������� � vn

�

In the following, we shall propose a dynamic
programming method to construct the optimal ul-
trametric tree for a certain fixed leaf node circular
order. Our algorithm can work on the minimum
tree size and L1-min increment scoring functions
and its time complexity is O � n3 � . The algorithm
is as follows.

Algorithm OPT-ULTRA

Input: An n � n distance matrix M with its node
circular order � v1 � v2 ������� � vn

� .

{u
p
 ... u
k
}


e
L
 e
R


r


{u
k+1
 ... u
q
}


Opt
p, k
 Opt
k+1,q


f(p, q, k) = e
L
 + e
R


Figure 8: f � p � q � k � for the minimum tree size
scoring function.

Output: An optimal ultrametric tree T with re-
spect to the node circular order.

Step 1: Set a sequence S 	
� v1 � v2 ������� � vn � v1 � v2 ������� � vn � 1

� . Reindex
S as � u1 � u2 ������� � un � un 
 1 ������� � u2n � 1

� .
Step 2: Set Opti � i 	 0, 1 � i � 2n 	 1.

Set Opti � i 
 1 = distance of ui and ui 
 1,
where 1 � i � 2n 	 2.

Step 3: Compute

Opti � j 	
min

i � k � j � 1

�
Opti � k � Optk 
 1 � j �

f � i � j � k � � � f or 1 � i
�

j � 2n 	 1 �
2 � j 	 i � n 	 1

where f � i � j � k � is a predefined scoring
function.

Step 4: Find the minimum of Opti � j, where j 	
i 	 n 	 1, as the cost of the optimal ultra-
metric tree.

Step 5: Construct the ultrametric tree with the
information when we determine the
value of Opti � j.

In the following, we shall show how to calcu-
late the predefined scoring function f � p � q � k � .

Based on the measurement of the minimum ul-
trametric tree size, the scoring function f in the
above algorithm can be defined as follows:

f � p � q � k � 	
max

p � i � q � p � j � q

�
dM

i j � 	�
max

p � i � k � p � j � k

�
dM

i j � � max
k 
 1 � i � q � k 
 1 � j � q

�
dM

i j ��� �
2

8



without circular order with circular order
4 15 10
5 105 98
10 34459425 24310
20 8 
 2 � 1021 17672631900
n � 2n 	 3 � ∏n � 3

k � 1 � 2k � 1 � � 2n 	 3 � � � 2 � n 	 2 � � ! � � � n 	 2 � ! � n 	 1 � ! �

Table 1: Number of possible ultrametric trees that can be built without and with a circular order.

where dM
i � j denotes the distance between ui and

u j. In fact, f 	 � p � q � k � represents the cost of the
root to the subroots of the left subtree � up ����� uk

�
and the right subtree � uk 
 1 ����� uq

� , as shown in
Figure 8.

And based on the measurement of the L1-min
increment, the scoring function f in the above al-
gorithm can be defined as follows:

f � p � q � k �
	 ∑

p � i � k � k 
 1 � j � q

� max
p � i � q � p � j � q

�
dM

i j � 	 dM
i j
�

	 � q 	 k � � k 	 p � 1 � max
p � i � q � p � j � q

�
dM

i j � 	
∑

p � i � k � k 
 1 � j � q

�
dM

i j �

When the scoring function is the minimum ul-
trametric tree size or L1-min increment, f � p � q � k �
can be calculated in O � 1 � time. Thus, the time
complexity of Algorithm OPT-ULTRA is O � n3 � ,
since

max
p � i � q � p � j � q

�
dM

i j � 	 max
�

max
p � i � q � 1 � p � j � q � 1

�
dM

i j � �
max

p 
 1 � i � q � p 
 1 � j � q

�
dM

i j � �
dM

pq � 1 � p � n � 1 � q � n �
can be computed by dynamic programming in
O � n2 � time.

In addition, based on the measurement of the
Lk-min increment, where k � 2, f � p � q � k � can be
defined similarly as follows.

f � p � q � k � 	
∑

p � i � k � k 
 1 � j � q

� max
p � i � q � p � j � q

�
dM

i j � 	 dM
i j
� k

Here, f � p � q � k � can be calculated in O � n2 �
time. Thus, when scoring functions is Lk-min in-
crement, where k � 2, Algorithm OPT-ULTRA
requires O � n5 � time.

Figure 9 shows the computation dependence of
subtrees. For example, Opt1 � 4 needs the results
of Opt1 � 1 � Opt2 � 4 � Opt1 � 2 � Opt3 � 4 and Opt1 � 3 �
Opt4 � 4.

(1, 1)
 (2, 2)
 (3, 3)
 (4, 4)


(1, 2)
 (2, 3)
 (3,4)


(1, 3)
 (2, 4)


(1, 4)


Figure 9: The dependence graph for the dynamic
programming.

In the following, we shall present our heuristic
algorithm to solve the ultrametric tree problem,
which is the combination of Algorithm Circular-
Order and Algorithm OPT-ULTRA.

Algorithm HEU-ULTRA

Input: An n � n distance matrix M and the scor-
ing function for the ultrametric tree prob-
lem.

Output: A good ultrametric tree T .

Step 1: Apply Algorithm Circular-Order on the
input M to construct a good leaf node cir-
cular order L .

Step 2: Apply Algorithm OPT-ULTRA on M
and L to construct an ultrametric tree T .

Step 3: The tree T is the solution of this algo-
rithm.

6 Experiment Results

In this section, we shall how our experiment re-
sults. In our experiment, we use the random data
to test our heuristic algorithm (Circular-Order)
and dynamic programming (OPT-ULTRA). Each
entry in the distance matrix M is between 2 and

9



100 and the number of test instances in each test
set is 100. We compare our results with the UP-
GMM method [11]. In addition, we also use the
combination of the leaf node circular order of
UPGMM with our dynamic programming (UP-
GMM + OPT-ULTRA) for comparison.

In Table 2 and Table 3, we compare UPGMM,
UPGMM + OPT-ULTRA and Circular-Order +
OPT-ULTRA with the scoring functions mini-
mum tree size and L1-min increment, respec-
tively. Each column represents one test set and
there are 100 test instances in each test set. Each
entry represents the number of occurrences that
the performance of the method is superior to
those of the other two methods. If both meth-
ods or all three methods get the top performance,
then the number of occurrences increases one on
each method getting top performance. Thus, the
total number in each column may be greater than
100. For example, in Table 2, when the number
of species is 10, the entry of UPGMM represents
that UPGMM method gets the top performance 8
times in 100 test instances. And, the three meth-
ods may get the same result, so the sum of 8, 26
and 80 is greater than 100.

In Table 2 and Table 3, we can find that UP-
GMM + OPT-ULTRA has better performance.
We get a conclusion that UPGMM combined
with our OPT-ULTRA has significantly improve-
ment. Since UPGMM is based on the mini-
mum tree size scoring function, and Algorithm
Circular-Order (our method) is based on neither
tree minimum tree size nor L1-min increment
scoring function, in Table 2, we can find that
Circular-Order + OPT-ULTRA has worse perfor-
mance than that of pure UPGMM when n is large.
Furthermore, Circular-Order + OPT-ULTRA has
better performance than that of pure UPGMM.
And, in Table 2 and Table 3, when n is small,
Circular-Order + OPT-ULTRA has better perfor-
mance than other methods. Thus, we get a con-
clusion that when number of species is smaller,
our method can get better leaf node circular or-
der. When the number of species becomes larger,
UPGMM shall get better leaf node circular order.
Our OPT-ULTRA method is very effective to im-
prove other methods.

7 Conclusion

In this paper, we propose an approxima-
tion algorithm, APP-ULTRA, with error ratio �
� log 2�

5 � 1
n ��� 1 �	 1 
 44 � logn ��� 1, for solving the

�
MUT problem. Our proof of the error ratio

is based on MST (Minimum Spanning Tree) and
BST (Binary Splitting Tree). And, we define the
BST problem and design an O � n3 � algorithm to
solve this problem. The algorithm can produce
a binary splitting tree with height no more than
� logα n � , where α 	 � 5 
 1

2 and n is the number of
leaf nodes.

Besides, we also propose a heuristic algo-
rithm, Algorithm Circular-Order, to construct a
leaf node circular order for given an n � n dis-
tance matrix, where n is the number of species.
And, we design a dynamic programming algo-
rithm, Algorithm OPT-ULTRA, to solve the opti-
mal ultrametric tree problem under a certain leaf
node circular order. Algorithm OPT-ULTRA can
work on the minimum tree size and L1-min in-
crement scoring functions. The time complex-
ity of the dynamic programming is O � n3 � . In
fact, by our experiment results, we get a clear
conclusion that Algorithm OPT-ULTRA signifi-
cantly improves UPGMM.

References

[1] R. Agarwala, D. Fernandez-Baca, and
G. Slutzki, “Fast algorithms for inferring
evolutionary trees,” In Proceedings of the
30th Allerton Conference on Comm., Con-
trol, and Comput, pp. 594–603, 1992.

[2] W. H. E. Day, “Computational complex-
ity of inferring phylogenies by dissimilar-
ity matrices,” Bulletin of Mathematical Bi-
ology, Vol. 49, No. 4, pp. 461–467, 1987.

[3] W. H. E. Day and D. Sankoff, “Compu-
tational complexity of inferring phyloge-
nies by compatibility,” Systematic Zoology,
Vol. 35, No. 2, pp. 224–229, 1986.

[4] M. Farach and J. Cohen, “Numerical taxon-
omy on data: Experimental results,” ACM-
SIAM Symposium on Discrete Algorithms,
1997.

[5] M. Farach, T. Przytycka, and M. Thorup,
“On the agreement of many trees,” Informa-
tion Processing Letters, Vol. 55, pp. 297–
301, 1995.

[6] M. Farach, S.Kannan, and T.Warnow, “A
robust model for finding optimal evolution-
ary trees,” Algorithmica, Vol. 13, No. 1/2,
pp. 155–179, 1995.

10



Method # of species (n)
5 10 20 50 100

UPGMM 0 8 24 9 3
UPGMM + OPT-ULTRA 16 26 90 100 100

Circular-Order + OPT-ULTRA 100 80 10 0 0

Table 2: Experiment results for the minimum tree size scoring function.

Method # of species (n)
5 10 20 50 100

UPGMM 16 5 3 0 0
UPGMM + OPT-ULTRA 16 23 52 98 100

Circular-Order + OPT-ULTRA 100 85 48 3 0

Table 3: Experiment results for the L1-min increment scoring function.

[7] M. Farach and M. Thorup, “Fast compar-
ison of evolutionary trees,” In Proc. 5th
ACM-SIAM Symp. on Discrete Algorithms,
pp. 481–488, 1994.

[8] C. Korostensky and G. H. Gonnet, “Us-
ing traveling salesman problem algorithms
for evolutionary tree construction,” Bioin-
formatics, Vol. 16, No. 7, pp. 619–627,
2000.

[9] R. C. T. Lee, “Computational biology.”
http://www.csie.ncnu.edu.tw/˜rctlee/ biol-
ogy.html, Department of Computer Science
and Information Engineering, National
Chi-Nan University, 2001.

[10] M. Li, J. H. Badger, X. Chen, S. K. P.
Kearney, and H. Zhang, “An information
based sequence distance and its applica-
tion to whole mitochondrial genome phy-
logeny,” Bioinformatics, Vol. 17, No. 2,
pp. 149–154, 2001.

[11] W. H. Li and D. Graur, Fundamentals of
molecular evolution. MA: Sinauer Asso-
ciates, 1991.

[12] W. J. Masek and M. S. Paterson, “How
to compute string-edit distances quickly,”
Time Warps, String Edits, and Macro-
molecules: The Theory and Practice of
Sequence Comparison (D. Sankoff and
J. Kruskal, eds.), Addison-Wesley Reading,
1983.

[13] N. Saitou and M. Nei, “The neighbor-
joining method: a new method for recon-
structing phylogenetic trees,” Molecular Bi-

ology and Evolution, Vol. 4, pp. 406–424,
1987.

[14] P. H. Sellers, “On the theory and com-
putation of evolutionary distances,” SIAM
Journal of Applied Mathematics, Vol. 26,
pp. 787–793, 1974.

[15] D. L. Swofford and G. J. Olsen, “Phy-
logeny reconstruction,” Molecular System-
atics (D. M. Hillis and C. Moritz, eds.),
pp. 411–501, Sinauer Associates, 1990.

[16] H. T. Wareham, “On the computational
complexity of inferring evolutionary trees,”
Tech. Rep. 9301, Department of Computer
Science, Memorial University of New-
foundland, 1993. Available by anony-
mous ftp from ftp.cs.mun.ca in directory
pub/techreports.

[17] M. Waterman, T. Smith, M. Singh, and
W. Beyer, “Additive evolutionary trees,”
Journal of Theoretical Biology, Vol. 64,
pp. 199–213, 1977.

[18] R. Wong, “Worst-case analysis of network
design problem heuristics,” SIAM J. Alge-
braic Descrete Mathematics, Vol. 1, pp. 51–
63, 1980.

[19] B. Y. Wu, K. M. Chao, and C. Y. Tang, “Ap-
proximation and exact algorithms for con-
structing minimum ultrametric trees from
distance matrices,” Journal of Combina-
torial Optimization, Vol. 3, pp. 199–211,
1999.

11


