
Jú65ÈíÉ[�|×ø_4í�íc

Constructing the maximum consensus tree from rooted

triples

Økø(Bang Ye Wu)
c,�x×ç’m	˙Í Email:bangye@mail.stu.edu.tw

Abstract

We investigated the problem of construct-
ing the maximum consensus tree from rooted
triples. We showed the NP-hardness of the
problem and developed exact and heuristic
algorithms. The exact algorithm is based on
the dynamic programming strategy and runs
in O((m+n2)3n) time and O(2n) space. The
heuristic algorithms were tested and their
performances are shown by comparing with
the optimal solutions. The experimental re-
sults show that the worst and average case rel-
ative error ratios are 1.214 and 1.075 respec-
tively, which are much better than the pre-
viously best approximation ratio of the prob-
lem.
Keywords: computational biology, evolu-
tionary trees, algorithms, dynamic program-
ming, NP-hardness

1 Introduction

Evolutionary trees are used to present the re-
lationship among a set of species. The leaves
in an evolutionary tree correspond to the
species and internal nodes are the ancestors of
the species. Constructing evolutionary trees
is an important problem in computational bi-
ology and there are different approaches. We
investigated the problem of constructing evo-
lutionary trees from rooted triples.

A rooted triple, or triple for brevity, rep-
resents the relationship of three species. As
shown in Figure 1, a triple (a(bc)) speci-
fies lca(a, b) = lca(a, c) > lca(b, c), in which
lca(a, b) is the lowest common ancestor of the
two leaves and relation ”>” means ”is an an-
cestor of ”. For a set of triples, the exact
consensus tree is the tree satisfies all given
triples.

Given a set of triples, the existence of the

exact consensus tree can be determined in
polynomial time [1]. For a set of constraints
of the form lca(a, b) > lca(c, d), the algo-
rithm in [1] determines if there is a tree sat-
isfying all constraints and finds such a tree
if it exists. A triple (a(bc)) is equivalent
to lca(a, c) > lca(b, c) and is a special case
of the constraints considered in [1]. An al-
gorithm for constructing all exact consensus
trees from triples was also developed [5]. Un-
fortunately, it is often impossible to find the
exact consensus tree and we want to find the
tree satisfying as many given triples as pos-
sible. We shall call the optimization prob-
lem the maximum consensus tree from rooted
triples problem, or the MCTT problem for
brevity. In [3], the problem to find the max-
imum consensus tree from constraints of the
form lca(a, b) > lca(c, d) was shown to be NP-
hard and a 3-approximation algorithm was
proposed. The approximation algorithm also
works for the MCTT problem but the com-
plexity of the MCTT problem was left open.
Similar problems for unrooted trees were also
investigated. A quartet represents the rela-
tionship of four species. To determine if there
is a tree satisfying a given set of quartets were
shown to be NP-complete [6]. Therefore the
corresponding optimization problem is obvi-
ously NP-hard.

In this paper, we show that the MCTT
problem is NP-hard. Exact and heuristic al-
gorithms are also presented. The exact algo-
rithm is based on the dynamic programming
strategy and runs in O((m+n2)3n) time and
O(2n) space. The performances of the heuris-
tic algorithms were tested by comparing their
outputs with the exact solutions. The ex-
perimental results show that the worst and
average case relative error ratios are 1.214
and 1.075 respectively, which are much better
than the previously best approximation ratio

ab c ca d

ba d cb d

a d b c

Figure 1: Left: rooted triples (a(bc)), (c(ad)), (b(ad)), (c(bd)); Right: the maximum consensus
tree. The tree satisfies all triples except (c(bd)).

of the problem [3].
The time complexity of the MCTT problem

is shown in Section 2. In Section 3, we present
the exact and heuristic algorithms and the
experimental results. We give a discussion in
Section 4.

2 The computational com-
plexity

In this section, we shall show the NP-hardness
of the MCTT problem by reducing the Feed-
back Arc Set problem to it. We first give the
definition of the Feedback Arc Set problem.

Definition 1: Let G = (V,A) be a directed
graph. A subset A′ of A is a feedback arc
set if every directed cycle in G contains at
least one arc in A′. Given a directed graph
G = (V, A) and an integer k, the Feedback Arc
Set problem asks if there is a feedback arc set
A′ with |A′| ≤ k.

The Feedback Arc Set problem is NP-
complete [4, 2].

Definition 2: Let a and b be nodes of a
tree. The lowest common ancestor of a and b
is denoted by lca(a, b). We write a > b if a is
an ancestor of b.

Definition 3 : A rooted triple, or triple
for brevity, over a species set is a constraint
on the relationship of three species. Let V
be a species set and a, b, c ∈ V , the rooted

triple (a(bc)) over V represents lca(a, b) =
lca(a, c) > lca(b, c) in the desired tree.

We say that a tree satisfies a triple or a
triple is compatible with a tree if the rela-
tionship represented by the triple is satisfied
in the tree.

Definition 4 : Given a set Y of rooted
triples over leaf set V , the maximum consen-
sus tree from triples (MCTT) problem looks
for a binary tree T with leaf set V such that
the number of triples compatible with T is
maximum.

The computational complexity is shown in
the next theorem.

Theorem 1: The MCTT problem is NP-
hard.

Proof: We reduce the Feedback Arc Set
problem to the MCTT problem. Given an
instance G = (V,A) and k of the Feedback
Arc Set problem, we shall construct a set of
rooted triples Y and show that the directed
graph G contains a feedback arc set of k arcs
if and only if there is a tree compatible with
|A| − k triples from Y .

Let x /∈ V . For every arc (u, v) ∈ A, there
is a corresponding triple (u(xv)) in Y . Sup-
pose that A′ is a feedback arc set of G and
|A′| = k . Since A′ is a feedback arc set, re-
moving A′ from G results in a directed acyclic
graph G1 = (V, A1), in which A1 = A \ A′.
Since G1 contains no cycle, we may assign

each vertex v a label f(v) ∈ {1 . . . p} such
that f(u) < f(v) for every (u, v) ∈ A1, where
p ≤ |V | is number of nodes of the longest
path in G1. Let Vi = {v|f(v) = i} and Ti

be an arbitrary evolutionary tree of Vi for
1 ≤ i ≤ p. We construct an evolutionary
tree T of V ∪ {x} as in Figure 2. For any
arc (u, v) ∈ A1, since f(u) < f(v), the cor-
responding triple (u(xv)) in Y is compatible
with T . Therefore all triples corresponding to
arcs in A1 are satisfied, and T is compatible
with |A| − k triples in Y .

Conversely suppose that there is a tree T
compatible with |A|−k triples in Y . Let Y1 be
the set of satisfied triples in Y . As in Fig.2, let
the path from root to x be (r1, r2, . . . , rp, x)
and Vi denote the set of leaves whose com-
mon ancestor with x is ri. For each triple
(u(xv)) ∈ Y1 in which u ∈ Vi and v ∈ Vj ,
since lca(u, x) = lca(u, v) > lca(x, v), we
have j > i. Let A1 be the set of arcs
corresponding to the triples in Y1, that is
A1 = {(u, v)|(u(xv)) ∈ Y1}. Consider the
graph G1 = (V,A1) and label each vertex v
with i if v ∈ Vi. Since all the arcs in A1

are from vertices with small labels to larger
labels, G1 contains no directed cycle. There-
fore A \ A1 is a feedback arc set of G and
contains k arcs.

The above transformation reduces the
Feedback Arc Set problem to the MCTT
problem in polynomial time. Since the Feed-
back Arc Set problem is NP-complete, the
MCTT problem is NP-hard.

3 Algorithms and experi-
mental results

In this section, exact and heuristic algorithms
will be developed. In the remaining of this
paper, Y is the set of the input triples over
species set U . Let n and m be the cardinali-
ties of U and Y respectively.

3.1 An exact algorithm

In this subsection, we shall present an algo-
rithm to find the exact solution of the MCTT
problem.

Definition 5: Let V ⊂ U , we use score(V)
to denote the maximum number of satisfiable
triples in {(a(bc))| b, c ∈ V } ⊂ Y .

Definition 6: Let V ⊂ U , the set of all
bipartitions of V is denoted by B(V).

Definition 7: Let V ⊂ U and (V1, V2) ∈
B(V). We use w(V1, V2) to denote the number
of triples (x(v1v2)) in which v1 ∈ V1, v2 ∈ V2

and x /∈ V .

The exact algorithm uses the dynamic pro-
gramming strategy and is based on the fol-
lowing formula:

score(V) = max
(V1,V2)∈B(V)

{score(V1)

+score(V2) + w(V1, V2)} (1)

Obviously score(U) is the maximum num-
ber of satisfiable triples in Y . The exact al-
gorithm is list below.

Theorem 2 : The algorithm Ex-
act MCTT computes the maximum consen-
sus tree from rooted triples with time com-
plexity O((m + n2)3n) and space O(2n).

Proof: The correctness of the algorithm
is from Equation 1. The algorithm computes
the scores of subsets with cardinalities from
small to large. When computing the score of
set V , the scores of all its subsets have been
found. The storage space used by the algo-
rithms is O(2n+m+n2), O(2n) for the scores
and partitions of all subsets and O(m+n2) for
the triples. Since 2n is larger than m+n2, the
space complexity is O(2n). For each biparti-
tion (V1, V2) of any subset, the time complex-
ity for computing w(V1, V2) is no more than
n2 + m since there are totally m triples and
O(n2) pairs (i, j) of species with i ∈ V1 and
j ∈ V2. Since there are 2k bipartitions for a
set of cardinality k and there are

(
n
k

)
subsets

of U with cardinality k, the time complexity
is

(n2 + m)
n∑

k=1

2k

(
n

k

)
= (n2 + m)(1 + 2)n

= (n2 + m)3n

3.2 Heuristic algorithms

In this subsection, we shall present heuris-
tic algorithms for the MCTT problem. The
heuristic algorithms do not ensure the opti-
mality of the found solutions but it runs in

T1

T2

Tp

....

x

rp

r1

r2

....

Vp

V3

V2

V1

Figure 2: Transformation of an instance of the Feedback Arc Set problem into that of the MCTT
problem. Left: the labeling of a directed acyclic graph; Right: A maximum consensus tree of
the MCTT problem.

polynomial time. The performance of the
heuristics will be shown by comparing with
the optimal solutions found by the exact algo-
rithm represented in the previous subsection.

Our heuristic algorithms Best-Pair-
Merge-First works as follows: Initially
there are n subsets and each contains one of
the species. The algorithms then repeatedly
merge pair of subsets until there is only one
set left. But it is a question to determine the
two subsets to be merged at each iteration.
We shall define a function e score(V1, V2) to
evaluate the score of merging sets V1 and V2.
At each iteration, the algorithm chooses the
two sets with maximum evaluation score.

To evaluate the score, an intuitive method
is to choose sets V1 and V2 with maximum
w(V1, V2). That is, we greedily merge two
sets which satisfy as many triples as possi-
ble. Besides the intuitive method, the follow-
ing two points were also considered and the
scoring function is depends on two parame-
ters if-penalty and ratio-type.

• Merging two sets not only satisfies some
triples but also makes some triples un-
satisfiable. Precisely speaking, merging
V1 and V2 satisfies the triples (x(ij))
but conflicts with the triples (i(xj)) and
(j(xi)), where i ∈ V1, j ∈ V2 and x /∈
V1 ∪ V2. We define the penalty p(V1, V2)
as the number of triples conflicted by
merging the two sets. When the input
parameter if-penalty is true, the algo-
rithm uses w(V1, V2)− p(V1, V2) to select

the two sets to be merged. Otherwise
only w(V1, V2) is considered.

• There may be bias to evaluate the subset
pairs by the number of satisfied triples
since the distribution of the triples may
be not uniform and the cardinalities of
the subsets are different while the pro-
gram is running. Therefore it may be
better to use relative score than the
number of satisfied triples. Two ra-
tios were considered in our algorithm.
One is w(V1, V2)/(w(V1, V2) + p(V1, V2)),
and the other is w(V1, V2)/t(V1, V2), in
which t(V1, V2) is the total number of
triples (x(v1v2)) for all v1 ∈ V1 and
v2 ∈ V2. When the penalty is con-
sidered, the numerator is replaced with
w(V1, V2) − p(V1, V2) in either ratio. A
parameter ratio-type is used to deter-
mine which ratio will be used. If it is
zero, the algorithm does not use the rel-
ative ratio.

The two parameters give us six scoring
functions. The performance of all the alter-
natives were tested. The heuristic algorithm
is listed below. For different combinations of
the two parameter, the function e score is de-
fined in Table 1.

Algorithm Exact MCTT
Input: A set Y of rooted triples over species set U .
All triples are stored in a matrix M of lists.
M [i, j] is a list of the elements of set {x|(x(ij)) ∈ Y }.
Output: A rooted tree T satisfying maximum number of triples in Y .
Step 1: Compute the maximum number of satisfied triples.
For i=1 to n do

For each subset V with cardinality i do
For each bipartition (V1, V2) of V do

Compute w(V1, V2) by counting the number of elements
in M [i, j] \ V for each i ∈ V1 and j ∈ V2;

score(V) = max{score(V1) + score(V2) + w(V1, V2)}, in which
the maximum is taken over all bipartitions of V .
Record the best bipartition of V at Partition(V).

Step 2: Construct the tree by backtracking Partition(U).
Start with V = U .
If V contains only one species, create a leaf node for it.
Otherwise recursively construct trees T1 and T2 for V1 and V2 respectively,
where (V1, V2) is the best bipartition of V recorded at Step 1.
Step 3: Output the tree.

Algorithm Best-Pair-Merge-First(if-penalty,ratio-type)
Step 1: Initialization
Let T = {Ti| 1 ≤ i ≤ n}, in which Ti is the tree contains only one leaf i.
Step 2: Iteratively merging
While there are more than one trees in T do

Select two trees Ti and Tj in T such that e score(V (Ti), V (Tj))
is maximum, in which e score(V (Ti), V (Tj)) depends on the
parameters if-penalty and ratio-type as defined in Table 1 ;

Merge Ti and Tj by adding an common ancestor and replace Ti and Tj

by the merged tree;
Step 3: Output the tree in T .

3.3 The experimental results

3.3.1 The environment of the experi-
ments

Both the exact and heuristic algorithms were
coded in ANSI C and ported on a personal
computer equiped with Intel Pentium III-733
CPU and 64M bytes memory. The platform is
Microsoft WIN32. The triples were generated
randomly over all species.

3.3.2 Running time

We tested the running time for the exact algo-
rithm for n from 10 to 20. Since the algorithm
uses the dynamic programming strategy. The

running time does not vary for different in-
stances. For each n, three data instances were
tested. The results are shown in Table 2.

3.3.3 Error ratios

The performances of the heuristic algorithms
are shown in the following tables. Table 3
and 4 show the worst case ratios for different
numbers of triples. For each case, 100 data
were tested. The error ratio is obtained by
opt(Y)/heu(A, Y), where opt(Y) is the max-
imum number of satisfiable triples in Y and
heu(A, Y) is the number of triples satisfied
by the tree found by heuristic algorithm A.
The last column labeled by Multiple is the

Table 1: The evaluation score e score(V1, V2) for combinations of parameters
if-penalty ratio-type

0 1 2
false w(V1, V2)

w(V1,V2)
w(V1,V2)+p(V1,V2)

w(V1,V2)
t(V1,V2)

true w(V1, V2)− p(V1, V2)
w(V1,V2)−p(V1,V2)
w(V1,V2)+p(V1,V2)

w(V1,V2)−p(V1,V2)
t(V1,V2)

results for the algorithm which runs all the
six heuristics and chooses the best for each
data instance. Table 5 and 6 show the aver-
age and worst case ratios for different number
of species. The number of the tests is 300 for
n = 10, 12, 15, and 30 for n = 18, and 6 for
n = 20.

4 Discussion

In the following paragraphs, the heuristics
will be referred as BPMF(p1,p2), in which the
p1 and p2 are the input parameters. By the
results of experiments, we observed the fol-
lowing:

• By the results of individual data in-
stances (not shown in the paper), we
found that no one of the six heuristics
is absolutely better than another. For
each of them, there are some instances
that it finds better solutions than all the
others. This is also the reason why the
heuristic Multiple performs better than
all the others.

• Taking penalty into consideration im-
proves the performance significantly.
Note that the evaluation score of
BPMF(no-penalty,ratio-type=1) in fact
involves the penalty.

• Heuristics BPMF(no-penalty,ratio-
type=1) and BPMF(penalty,ratio-
type=1) perform very similarly. In over
thousands of tests, there are only few
cases that the scores of their outputs are
different.

• The error ratios are not sensitive to ei-
ther the number of input triples or the
number of species.

We make some remarks as the conclusion.
In most of the applications, the solution qual-
ity is the major concern. Therefore, for small
data instances, the exact algorithm should be
used. For large data instances, we propose

the heuristic Multiple since it takes the ad-
vantages of all the heuristics and runs in poly-
nomial time. When the running time is an im-
portant factor, any one of the heuristics with
penalty considered may be a good choice.

There are also some open problems. We
show the performances of the heuristics by ex-
periments. It is interesting to give a theoretic
analysis of the performance. The computa-
tional complexity of the MCTT problem is
shown in this paper, but the approximability
is still open.

Acknowledgements

The work was partially supported by grant
NSC 90-2213-E-366-005 from the National
Science Council.

References

[1] A.V. Aho, Y. Sagiv, T.G. Szymanski and
J.D. Ullman, Inferring a tree from low-
est common ancestors with an applica-
tion to the optimization of relational ex-
pressions, SIAM Journal on Computing,
vol. 10, no. 3, pp. 405–421, 1981.

[2] M.R. Garey and D.S. Johnson, Comput-
ers and Intractability: A guide to the the-
ory of NP-Completeness, W.H.Freeman
and Company, San Fransisco, 1979.

[3] L. Gasieniec, J. Jansson, A. Lingas and
A. Ostlin, On the complexity of comput-
ing evolutionary trees, in Proceedings of
the 3th Annual International Conference
COCOON’97, pp.134–145, 1997.

[4] R.M. Karp, Reducibility among combi-
natorial problems, in R.E. Miller and
J.W. Thatcher (eds.) Complexity of
Computer Computations, Plenum Press,
New York, pp. 85–103, 1972.

[5] M.P. Ng and N.C. Wormald, Reconstruc-
tion of rooted trees from subtrees, Dis-
crete Applied Mathematics, vol. 69, pp.
19–31, 1996.

[6] M. Steel, The complexity of reconstruct-
ing trees from qualitative characters and
subtrees, Journal of Classification, vol.
9, pp. 91–116, 1992.

Table 2: The running time for Algorithm Exact MCTT
n 10 11 12 13 14 15 16 17 18 19 20
time in sec. < 1 1 2 9 30 104 366 1255 4322 14690 49923

Table 3: The worst case error ratios for different number of triples with n = 10
if-penalty without penalty with penalty Multiple
ratio-type 0 1 2 0 1 2
m = 60 1.455 1.200 1.523 1.214 1.200 1.321 1.192
m = 80 1.333 1.226 1.640 1.226 1.226 1.281 1.176
m = 100 1.424 1.175 1.551 1.194 1.189 1.285 1.150
m = 120 1.384 1.205 1.459 1.205 1.205 1.250 1.205

Table 4: The worst case error ratios for different number of triples with n = 15
if-penalty without penalty with penalty Multiple
ratio-type 0 1 2 0 1 2
m = 100 1.538 1.208 1.579 1.208 1.208 1.250 1.208
m = 200 1.420 1.214 1.559 1.233 1.214 1.263 1.214
m = 300 1.264 1.132 1.452 1.152 1.132 1.164 1.132

Table 5: The average case error ratios for different number of species
if-penalty without penalty with penalty Multiple
ratio-type 0 1 2 0 1 2
n = 10 1.170 1.066 1.245 1.071 1.067 1.085 1.056
n = 12 1.189 1.076 1.254 1.079 1.076 1.092 1.061
n = 15 1.209 1.097 1.286 1.101 1.097 1.115 1.082
n = 18 1.206 1.100 1.277 1.106 1.100 1.116 1.093
n = 20 1.230 1.094 1.292 1.127 1.089 1.104 1.087

Table 6: The worst case error ratios for different number of species
if-penalty without penalty with penalty Multiple
ratio-type 0 1 2 0 1 2
n = 10 1.455 1.226 1.640 1.226 1.226 1.321 1.205
n = 12 1.486 1.293 1.576 1.293 1.293 1.325 1.178
n = 15 1.538 1.214 1.579 1.233 1.214 1.263 1.214
n = 18 1.343 1.237 1.435 1.190 1.237 1.221 1.190
n = 20 1.288 1.125 1.372 1.145 1.116 1.142 1.116

