通路圖形及通路數值
 Rearrangeable Graphs and Rearrangeability Numbers

吴致中 王有禮 王福星

Chih－Chung Wu Yue－Li Wang＊Fu－Hsing Wang
Department of Information Management，National Taiwan University of Science and Technology，Taipei，Taiwan，Republic of China．

Abstract

Given a directed graph $D(V, A)$ ，where $V=\{1,2,3, \ldots, n\}$ is the vertex set and A is the directed arc set．A permutation $\sigma=\left(\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n} \\ \pi_{v_{1}} & \pi_{v_{2}} & \ldots & \pi_{v_{n}}\end{array}\right)$ is said to be realizable on D if there exist n arc－disjoint paths in D that connect vertex v_{i} to vertex $\pi_{v_{i}}, i=1,2 \ldots, n . D$ is said to be rearrangeable if all n ！permutations are realizable on D ．Moreover，the rearrangeability number of D is the minimum multiplicity that every arc needs to be duplicated in order for D to become rearrangeable．In this paper，we prove that complete n－partite digraphs are rearrangeable

^[＊All correspondence should be addressed to Professor Yue－Li Wang，Department of Information Management，Na－ tional Taiwan University of Science and Technology，43，Sec－ tion 4，Kee－Lung Road，Taipei，Taiwan，Republic of China （Phone：886－02－27376768，Fax：886－02－27376777，Email： ylwang＠cs．ntust．edu．tw）．]

graphs．Then，we give the upper and lower bounds of the rearrangeability number of torus networks．

在有向圖 G 中，對於 G 之一排列 π ，若在 G 中存在 n 條從 i 到 $\pi(i), 1 \leq i \leq n$ ，雨兩皆爲邊獨立之路徑，則稱 π 溈 realizable。若所有 $n!$ 個排列皆鳥 realizable，則稱 G 溈一個通路圖形。另一方面，要使 G 爲一通路圖形，其每條邊所需複製的最少次數，稱爲 G 的通路数値。在本篇論文中，將證明完全多分有向圖爲通路圖形。並證明圆盤網路的通路數値之上，下限。

Keyword：Rearrangeable graphs，Rearrangeabil－ ity number，Complete n－partite digraphs，Torus network．

1 Introduction

The topology of a multiprocessor system can be, in general, modeled by a directed graph, where each vertex represents a processor and each arc represents the communication link between two processors. Let $D=(V, A)$ be a directed graph(digraph), where $V=V(D)=\{1,2, \ldots, n\}$ and $A \subseteq V \times$ V. Let $\sigma=\left(\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n} \\ \pi_{v_{1}} & \pi_{v_{2}} & \ldots & \pi_{v_{n}}\end{array}\right)$ be an n permutation of n symbols $v_{1}, v_{2}, \ldots, v_{n}$. An n permutation σ is called realizable on D if n arc disjoint paths can be established in D that connect v_{i} to $\pi_{v_{i}}$, for $i=1,2 \ldots, n$, respectively. Digraph D is rearrangeable if all $n!n$-permutations are realizable in D. Research on the rearrangeability are widely studied on networks, such as hypercubes, Benes Networks and Omega Networks [1, 5, 8, 7, 9]. In [3], Hu et al. showed that complete digraphs and stars are rearrangeable. A related problem is to make a digraph rearrangeable by duplicating arcs. The times of the duplicity is said to be the multiplicity. Let D^{m} be the m-multiple digraph of D which is obtained by duplicating every arc with multiplicity m; notice that $D^{1}=D$. The rearrangeability number $\psi(D)$ is the minimum value of m such that D^{m} is rearrangeable. Let $\psi(D)=+\infty$ if D is not strongly connected. Hu et al.[3] gave the bounds of rear-
rangeability number in trees, rings, meshes and hypercubes.

Let $\sigma=\left(\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n} \\ \pi_{v_{1}} & \pi_{v_{2}} & \ldots & \pi_{v_{n}}\end{array}\right)$ be a permutation with n entries, $\binom{v_{i}}{\pi_{v_{i}}}$, for $i=1,2, \ldots, n$. A permutation σ^{\prime} is a subpermutation of a permutation σ if σ^{\prime} is obtained by removing some entries from σ. A permutation is called dearrangement if $\pi_{v_{i}} \neq v_{i}$, for $i=1,2, \ldots, n$. A permutation σ^{\prime} is a dearrangement subpermutation of a permutation σ if it is obtained from σ by removing the entries $\pi_{v_{i}}=v_{i}$. There are two rows of symbols in a permutation. Such a symbol we call it as incident vertex. Let set incident $\left(\sigma^{\prime}\right)$ be the set of incident vertices of the subpermutation σ^{\prime}. For example, the permutation $\sigma=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 2 & 4 & 3 & 1\end{array}\right)$ has $\pi_{1}=5, \quad \pi_{2}=6, \quad \pi_{4}=4$, etc. Permutations $\left(\begin{array}{cccc}1 & 2 & 4 & 6 \\ 5 & 6 & 4 & 1\end{array}\right),\left(\begin{array}{ccccc}1 & 2 & 3 & 5 & 6 \\ 5 & 6 & 2 & 3 & 1\end{array}\right)$ are subpermutations of σ. Then, $\sigma^{\prime}=\left(\begin{array}{lllll}1 & 2 & 3 & 5 & 6 \\ 5 & 6 & 2 & 3 & 1\end{array}\right)$ is the dearrangement subpermutation of σ, where incident $\left(\sigma^{\prime}\right)=\{1,2,3,5,6\}$. Clearly, a permutation is realizable if its dearrangement subpermutation is realizable. For simplicity, we assume that the given permutations in this paper are all dearrangement.

In this paper, we shall show that complete n partite digraphs are rearrangeable. For the purpose of practical applications on interconnection
networks, torus network is studied which is an alternative of mesh. The upper and lower bounds of rearrangeability number of torus networks is given.

The remaining part of this paper is organized as follows. In the next section, the complete bipartite digraphs and complete n-partite digraphs are shown to be rearrangeable. In Section 3, the upper and lower bounds of rearrangeability number of torus networks are established. Finally, this paper concludes with some remarks in Section 4.

2 Complete n-partite digraphs are rearrangeable

A complete n-partite digraph $K_{m_{1}, m_{2}, \ldots, m_{n}}$ is a digraph whose vertex set can be partitioned into n partite sets such that the $\operatorname{arcs}\langle u, v\rangle$ and $\langle v, u\rangle$ exist if and only if u and v are the vertices of two different partite sets. Indeed, if $n=2$, then we name it complete bipartite digraph which is denoted by $K_{m, n}$. Since stars are rearrangeable[3], the complete bipartite digraph $K_{m, n}$ is rearrangeable when $m=1$ or $n=1$.

Let $S \subseteq V\left(K_{m, n}\right)$, we define $\Pi(S)=\bigcup_{v \in S}\left\{\pi_{v}\right\}$.
A path P is a sequence $v_{1} e_{1} v_{2} e_{2} v_{3} \ldots v_{k} e_{k} v_{k+1}$, denoted by $v_{1} \rightarrow v_{2} \rightarrow$ the above $m+n$ paths are disjoint and the lemma $v_{3} \rightarrow \ldots \rightarrow v_{k} \rightarrow v_{k+1}$, with elements alternately
from the vertex set V and the arc set A of a digraph D where $v_{i} \neq v_{j}$ for $i \neq j$. Vertex v_{1} is called the source vertex of P, and vertex v_{k+1} is the destination vertex of P. Two paths are called disjoint if there are no common arc in them.

Lemma 1 Complete bipartite digraphs $K_{m, n}$ are rearrangeable, for $m, n \geq 2$.

Proof. Let $V_{1}=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ and $V_{2}=$ $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be the partite sets of $K_{m, n}$. Since $\left|V\left(K_{m, n}\right)\right|=m+n$, we shall give an algorithm to construct the $m+n$ disjoint paths that connect v_{i} to $\pi_{v_{i}}, v_{i} \in V_{1} \bigcup V_{2}$, for each one of the $(m+n)$! permutations.

If there exists $\pi\left(a_{i}\right)=b_{j}$ or $\pi\left(b_{j}\right)=a_{i}$, then the path connects the pair of vertices a_{i} and b_{j} is simply the $\operatorname{arc}<a_{i}, b_{j}>$ if $\pi\left(a_{i}\right)=b_{j}$ or $<b_{j}, a_{i}>$ if $\pi\left(b_{j}\right)=a_{i}$. Notice that both $\operatorname{arcs}<a_{i}, b_{j}>$ and $<b_{j}, a_{i}>$ exist in a complete bipartite digraph. For $\pi\left(a_{i}\right)=a_{j}\left(\right.$ respectively, $\left.\pi\left(b_{i}\right)=b_{j}\right), i \neq m$, the path $a_{i} \rightarrow b_{1} \rightarrow a_{j}$ (respectively, $b_{i} \rightarrow a_{1} \rightarrow$ $\left.b_{j}\right)$ is chosen. Finally, for $\pi\left(a_{m}\right)=a_{i}($ respectively, $\left.\pi\left(b_{m}\right)=b_{i}\right)$, if it exists, the path $a_{m} \rightarrow b_{2} \rightarrow$ a_{i} (respectively, $b_{m} \rightarrow a_{2} \rightarrow b_{i}$) is chosen. Clearly, follows.
Q. E. D. For each two distinct partites V_{i}, V_{j} of a com-

For example, $\quad V_{1}=\{1,2,3,4\}$ and $V_{2}=\{5,6,7,8,9\}$ are the two partite sets of $K_{4,5}$. The 9 disjoint paths for permutaion $\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & 6 & 4 & 2 & 3 & 7 & 1 & 9 & 8\end{array}\right)$ are listed in the following.
$1 \rightarrow 5$
$2 \rightarrow 6$
$3 \rightarrow 5 \rightarrow 4$
$4 \rightarrow 6 \rightarrow 2$
$5 \rightarrow 3$
$6 \rightarrow 1 \rightarrow 7$
$7 \rightarrow 1$
$8 \rightarrow 1 \rightarrow 9$
$9 \rightarrow 2 \rightarrow 8$

Since complete bipartite digraphs $K_{m, n}$ are rearrrangeable, there are $m+n$ disjoint paths that connect v_{i} to $\pi_{v_{i}}, i=1,2 \ldots, m+n$, for each permutation σ. It is clear, for each subpermutation $\sigma^{\prime}=\left(\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{k} \\ \pi_{u_{1}} & \pi_{u_{2}} & \ldots & \pi_{u_{k}}\end{array}\right)$ of σ, there are k disjoint paths that connect u_{i} to $\pi_{u_{i}}, i=1,2, \ldots, k$. Furthermore, σ^{\prime} is realizable.

Corollary 2 Every subpermutation with k entries contains k disjoint paths on a complete bipartite digraph.
plete n-partite digraph, the induced subgraph of $V_{i} \bigcup V_{j}$ is a complete bipartite digraph which is called induced complete bipartite digraph $B_{i, j}$ of $K_{m_{1}, m_{2}, \ldots, m_{n}}$. Let $\Sigma=m_{1}+m_{2}+\ldots+m_{n}$.

Theorem 3 Complete n-partite digraphs $K_{m_{1}, m_{2}, \ldots, m_{n}}$ are rearrangeable.

Proof. Let $V_{i}=\left\{v_{i, k} \mid 1 \leq k \leq m_{i}\right\}$, for $i=1,2, \ldots, n$. The vertex set $V\left(K_{m_{1}, m_{2}, \ldots, m_{n}}\right)=$ $\bigcup_{i=1,2, \ldots, n} V_{i}$ where $V_{j} \bigcap V_{k}=\emptyset$, for $j \neq k$. Let $V_{i}=W_{i, 1} \bigcup W_{i, 2} \bigcup \ldots \bigcup W_{i, n}, i=1,2, \ldots, n$, where $W_{i, k}=\left\{v \in V_{i} \mid \pi_{v} \in V_{k}\right\}$, for $k=1,2, \ldots, n$. If $\Pi\left(V_{i}\right) \bigcap V_{k}=\emptyset$, then $W_{i, k}=\emptyset$. For any permutation $\sigma=\left(\begin{array}{cccc}1 & 2 & \ldots & \Sigma \\ \pi_{1} & \pi_{2} & \ldots & \pi_{\Sigma}\end{array}\right)$, we split σ into subpermutations so that for each subpermutation $\sigma^{\prime}, \operatorname{incident}\left(\sigma^{\prime}\right) \subseteq V\left(B_{i, j}\right)$. By Lemma 1, we construct the disjoint paths of each $B_{i, j}$. By Corollary 2 , the paths for each subpermutation can be found in its corresponding induced complete bipartite digraph. Thus, the complete n-partite digraphs $K_{m_{1}, m_{2}, \ldots, m_{n}}$ are rearrangeable.
Q. E. D.

Take complete 3-partite digraph $K_{3,3,3}$ as an example. Let $V\left(K_{3,3,3}\right)=V_{1} \bigcup V_{2} \bigcup V_{3}$, where $V_{1}=\{1,2,3\}, V_{2}=\{4,5,6\}, V_{3}=\{7,8,9\}$. For
a permutation
$\sigma=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 9 & 4 & 2 & 7 & 6 & 1 & 8 & 3 & 5\end{array}\right)$, we split it into three subpermutations $\alpha=\left(\begin{array}{ccc}2 & 3 & 6 \\ 4 & 2 & 1\end{array}\right), \beta=$ $\left(\begin{array}{lll}1 & 7 & 8 \\ 9 & 8 & 3\end{array}\right)$ and $\gamma=\left(\begin{array}{lll}4 & 5 & 9 \\ 7 & 6 & 5\end{array}\right)$. By Lemma 1 and Corollary 2, we construct 3 disjoint paths in $B_{1,2}$ for the subpermutation α. There are also three disjoint paths been established in $B_{1,3}$ and $B_{2,3}$ for the subpermutation α, β, respectively.

3 Torus networks

Let M be an $n \times n$ mesh with n^{2} vertices and (r, c) be the vertex in row r and column c. A torus T is a mesh with wrap-around arcs in the rows and columns. Figure 1 shows a mesh and a torus. Notice that two opposite directed arcs are assumed between two adjacent vertices. In an $n \times n$ mesh, there are $2 n$ directed arcs between two adjacent rows(columns). The rows from 1 to $\left\lfloor\frac{2}{n}\right\rfloor$ are the upper half of an $n \times n$ mesh and the rest is lower half of the mesh. If n is even, Hu et al.[3] constructed a permutation π such that every vertex in the upper(lower) half of the mesh is mapped to a unique vertex in the lower(upper) half of the mesh. is odd. Thus, $\psi(T) \geq\left\lfloor\frac{n}{4}\right\rfloor$. Then, we want to To be rearrangeable, the $2 n$ directed arcs between show the upper bound of $\psi(T)$. Let $k=(r, c)$ the two parts should be duplicated at least $\frac{n^{2}}{2 n}=\frac{n}{2}$ times. Hence, $\psi(M) \geq \frac{n}{2}$. If n is odd, the half path oriented from $(r, 1)$ pass through the wrap-
around arc $<(r, 1),(r, n)>$ to the destination ver-

(a)
T.

4 Concluding Remarks

(b)

References

Figure 1: (a)A 4×4 mesh; (b)a 4×4 torus.
[1] V.E. Benes, The Mathematical Theory of Connecting Networks and Telephone Traffic, Aca-
demic Press, New York, 1965.
[2] M.R. Garey, D.S. Johnson, Computers and Intractability : A Guide to the Theory of NPCompleteness, W.H. Freeman, San Francisco, CA, 1979.
[3] Q. Hu, Y. Ahang, X. Shen, Rearrangeable graphs, Information Processing Letters, 71 (1999), 23-27.
[4] Q. Hu, Y. Zhang, X. Shen, Rearrangeable graphs, in: 3rd Annual International Conference, COCOON'97, Shanghai, China, August 20-22, Lecture Notes in Computer Science 1276, Springer, Berlin, 1997, 441-449.
[5] K. Hwang, F.A. Briggs, Computer Architecture and Parallel Processing, McGraw-Hill, New York, 1984.
[6] F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes, Morgan Kaufmann, San Mateo, CA, 1992.
[7] X. Shen, Q. Hu, Realizability of an arbitrary permutation on a circuit-switched hypercube, Information Processing Letters 51 (1994), 237-243.
[8] H.J. Siegel, Interconnection Networks for LargeScale Parallel Processing, McGraw-Hill, New York, 1990.
[9] T. Szymanski, On the permutation capability of a circuit-switched hypercube, in: Proceedings of International Conference on Parallel Processing, (1989), I:103-110.

