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ABSTRACT
In the problem of k-mutual exclusion, concurrent ac-
cess to shared resource or the critical section (CS) must
be synchronized such that at any time at most k pro-
cesses can access the CS. In this paper, we propose a
binary forest quorum strategy. This strategy is based
on a logical binary forest structure. The quorum size
constructed from the strategy is 2�lg2

n
2k � in the best

case and is (� n
2k �+ 1) in the worst case, where n is the

number of nodes in the system. Moreover, the strat-
egy can be fault-tolerant up to (n − 2k�lg2

n
2k �) node

failures in the best case and 2k(�lg2
n
2k � − 1) in the

worst case. From our performance analysis, we show
that the binary forest quorum strategy can provide a
higher availability than k-majority, cohorts, and DIV
strategies almost all the time.

(Key Words: K-mutual exclusion, availability, dis-
tributed systems, fault tolerance, quorum consensus.)

1. INTRODUCTION
A distributed system consists of a collection of geo-

graphically dispersed autonomous nodes connected by
a communication network. The nodes have no shared
memory, no global clock, and communicated with one
another by passing messages. Message propagation de-
lay is finite but unpredictable.

The mutual exclusion problem was originally con-
sidered in centralized systems for the synchronization
of exclusive access to the shared resource. In the prob-
lem of k-mutual exclusion, concurrent access to shared
resource or the critical section (CS) must be synchro-
nized such that at any time at most k processes can
access the CS, where k ≥ 1. In distributed systems,
the k-mutual exclusion problem arises in several inter-
esting applications. For example, it could be used to
monitor the number of processes in distributed systems
that are allowed to perform a certain action, such as
issuing broadcast messages. In such a case, the system
may restrict the number of broadcasting processes so
as to control the level of congestion.

Over the past decade, many strategies have been
proposed to achieve k-mutual exclusion in distributed
systems. These strategies can be divided into two
classes: token-based strategies and non-token-based
strategies (or permission-based strategies) [7, 17]. In
token-based strategies [3, 4, 5, 14, 16, 18, 19], there
are k tokens in the system. A node is allowed to en-
ter its CS if it processes the token. In non-token-based



strategies [2, 6, 10, 11, 12, 13, 20], a node should collect
enough permissions (votes) to form a quorum for en-
tering the critical section. K-mutual exclusion is guar-
anteed if we can assure that at most k quorums can be
formed at any instance.

To make distributed k-mutual exclusion strategies
fault-tolerant to node and communication failures,
many strategies based on the replica control strate-
gies, for example, coterie, have been proposed. In
[11, 20], they extended the majority quorum strategy
to k-majority quorum strategy; any permission from
�n+1

k+1 � (= W ) nodes would form a quorum for k-mutual
exclusion, when n is the number of nodes in the sys-
tem. (Note that in the k-majority quorum strategy,
the following conditions must hold: k × W ≤ n and
(k + 1)×W > n.) In [10], they proposed a cohort quo-
rum for k-mutual exclusion based on a cohort struc-
ture, Coh(k, l), which has l pairwise disjoint cohorts
with the first cohort having k members and the oth-
ers having more than (2k − 2) members. In [2], they
partition n nodes into k classes with each class using
any traditional approach to enforce 1-mutual exclusion.
When the traditional approach is the majority quorum
strategy, the constructed quorum will be called DIV of
majority quorums.

To reduce the overhead of achieving k-mutual ex-
clusion while supporting fault tolerance, in this paper,
we propose a strategy called binary forest quorums for
k-mutual exclusion, which imposes a logical structure
on the network. The proposed strategy is based on a
logical binary forest structure. The quorum size con-
structed from this strategy is 2�lg2

n
2k � in the best case

and is (� n
2k �+1) in the worst case, where n is the num-

ber of nodes in the system. Moreover, this strategy can
be fault-tolerant up to (n−2k�lg2

n
2k�) node failures in

the best case and 2k(�lg2
n
2k � − 1) in the worst case.

From our performance analysis, we show that the bi-
nary forest strategy can provide a higher availability
than k-majority, cohorts, and DIV strategies almost
all the time.

The rest of the paper is organized as follows. Section
2 describes the background in this paper. In Section
3, we give a survey of several non-token-based strate-
gies for k-mutual exclusion. In Sections 4, we present
the binary forest quorum. In Section 5, we make a
comparison of the binary forest quorum strategy with
k-majority, cohorts, and DIV strategies. Finally, Sec-
tion 6 gives a conclusion.

2. BACKGROUND
A distributed system is a collection of nodes that

may communicate with each other by exchanging mes-
sages. K-mutual exclusion strategies concern them-
selves with controlling the nodes such that at most k

nodes can simultaneously access their critical sections.
Such strategies can be used to coordinate the sharing
of a resource that can be allocated to no more than k
nodes at a time [2, 10, 11, 20].

Definition 1. A k-coterie C is a family of non-
empty subsets of an underlying set U , which is a set
containing all system nodes 1, 2, ..., n. Each member Q
in C is called a quorum, and the following properties
should hold for the quorums [11, 20].

1. The non-intersection Property. For any h(<
k) pairwise disjoint quorums Q1, ..., Qh in C,
there exists one quorum Qh+1 in C such that
Q1, ..., Qh+1 are pairwise disjoint.

2. The intersection Property. There are no m,
m > k, pairwise disjoint quorums in C (i.e., there
are at most k pairwise disjoint quorums in C).

3. The minimality Property. There are no two
quorums Qi and Qj in C such that Qi is a super
set of Qj where i �= j.

By the non-intersection property, if there exists one
unoccupied entry of the critical section, then some node
that waits for entering the critical section can proceed.
The intersection property assures that no more than
k nodes can form quorums simultaneously, so no more
then k nodes can access the critical section at the same
time. Again, the minimality property for the k-coterie
is for the enhancement of efficiency.

Example 1: {{1, 2}, {3, 4}, {1, 3}, {2, 4}} is a 2-
coterie under U = {1, 2, 3, 4}.

3. A SURVEY
In this section, we give a survey of several strategies

for k-mutual exclusion, including k-majority [11, 20],
cohorts [10], and DIV [2] quorums.
3.1 K-Majority Quorums

Suppose there are n nodes in the system. Q is said
to be k-majority quorum for k-mutual exclusion if Q
contain at least �n+1

k+1 � (= W ) nodes, where k×W ≤ n
and (k + 1) × W > n [11, 20]. For example, there are
1, 2, 3, 4 nodes in the system, the set R of 2-majority
quorum is as follows: R = { {1, 2}, {1, 3}, {1, 4}, {2,
3}, {2, 4}, {3, 4} }. Totally, R contains 6 quorums.

The availability of a coterie is defined as the prob-
ability that a quorum can be successfully formed. For
the rest of the paper, we assume that p is the proba-
bility that a node is up and there are n nodes in the
systems. For the availability of the k-majority strat-
egy, let AV (k, h) be the function evaluating the prob-
ability that h pairwise disjoint quorums can be formed
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simultaneously. Function AV (k, h) has the following
condition:

AV (k, h) =
∑n

i=h×�n+1
k+1 � C(n, i) × pi × (1 − p)n−i.

3.2 Cohorts
In this section, we describe a cohort quorum for k-

mutual exclusion, which is based on a cohort structure.
The definition of a cohort structure is given as follows
[10].

Definition 2. A Cohort Structure. A cohort struc-
ture Coh(k,l) = (C1, C2,..., Cl) is a list of pairwise
disjoint sets; each set Ci is called a cohort. The cohort
structure should observe the following two properties:

1. |C1| = k.

2. ∀i : 1 < i ≤ l : |Ci| > max(2k − 2, k), where
max(a, b) = a, if a ≥ b; otherwise, max(a, b) =
b.

To sum up, a cohort structure Coh(k, l) has l pair-
wise disjoint cohorts with the first cohort having k
members and the other cohorts having more than
(2k − 2) members. For example, ( {1, 2}, {3, 4, 5},
{6, 7, 8, 9, 10} ) is Coh(2, 3) since it has three pair-
wise disjoint cohorts with the first cohort and the other
cohorts having 2 (= k) and more than 2 (= 2k − 2)
members, respectively.

Definition 3. A Cohorts Quorum. A set Q is said
to be a quorum under Coh(k, l) if some cohort Ci in
Coh(k, l) is Q’s primary cohort, and each cohort Cj,
j > i, is Q’s supporting cohort, where

1. a cohort C is Q’s primary cohort if |Q ∩ C| = |C|−
(k−1) (i.e., Q contains all except k-1 members of
C), and

2. a cohort C is Q’s supporting cohort if |Q ∩ C| = 1
(i.e., Q contains exactly one member of C).

For example, the following sets are quorums under
Coh(2, 2) = ( {1, 2}, {3, 4, 5} ): Q1 = {3, 4}, Q2 =
{3, 5}, Q3 = {4, 5}, Q4 = {1, 3}, Q5 = {1, 4}, Q6 =
{1, 5}, Q7 = {2, 3}, Q8 = {2, 4}, and Q9 = {2, 5}.
Quorums Q1, Q2, and Q3 take {3, 4, 5} as their pri-
mary cohort and no supporting cohort is needed, and
quorums Q4, ..., Q9 take {1, 2} as their primary cohort
and {3, 4, 5} as their supporting cohort. It is easy to
check that these nine sets constitute a 2-coterie.

For the availability of the cohorts strategy, since up
to k pairwise disjoint quorums can be simultaneously
formed in a k-coterie, we should discuss up to k cases
for the availability of a k-coterie: the probability of a

quorum being formed successfully, the probability of
two pairwise quorums being formed successfully, ... ,
and the probability of k pairwise disjoint quorums be-
gin formed successfully. The (k, l)-availability, 1 ≤ l ≤
k, is defined to be the probability that l pairwise dis-
joint quorums of a k-coterie can be formed successfully;
it is used as a measure for the fault-tolerant ability of
a solution using k-coterie.

Let AV (h, l) be the function evaluating the proba-
bility that h pairwise disjoint quorums under Coh(k, l)
can be formed simultaneously. Function AV (h, l) has
the following three conditions:

1. AV (0, l) = 1.

2. AV (h, 1) = PR(S1, h, S1). (Note that a quorum
takes only one member from the first cohort to
make it the primary cohort because S1 − k + 1 =
k − k + 1 = 1. We also use Si to denote |Ci| for
1 ≤ i ≤ l, where Ci is the ith item of Coh(k, l)
= (C1, ..., Cl) and we use PR(s, a, b) to denote∑b

i=a C(s, i) × pi × (1 − p)s−i.

3. AV (h, l) = AV (h − 1, l − 1) × PR(Sl, Sl − k +
h, Sl) + AV (h, l − 1) × PR(Sl, h, Sl − k + h − 1).

3.3 DIV of Majority Quorums
In the DIV strategy [2], the nodes in the network

are partitioned into k classes with each class using
any traditional approach to enforce 1-mutual exclusion.
When the traditional approach is the majority, the con-
structed quorum is called DIV of majority quorum. For
example, there are 1, 2, 3, 4, 5, 6 nodes in the system,
and we divided nodes into two classes, (1, 2, 3) and
(4, 5, 6). The set R of DIV of majority quorum for
2-mutual exclusion is as follows: R = { {1, 2}, {1, 3},
{2, 3}, {4, 5}, {4, 6}, {5, 6} }.

For the availability of DIV of majority quorum, let
AV (k, h) be the function evaluating the probability
that h pairwise disjoint quorums can be formed simul-
taneously. Function AV (k, h) has the following two
conditions:

1. AV M =
∑�n

k �
i=� n

2k �+1 C(�n
k �, i) × pi × (1 − p)�

n
k �−i.

2. AV (k, h) =
∑k

i=h C(k, i)×AV M i×(1−AV M)k−i.

4. BINARY FOREST QUORUMS
In this section, we present a binary forest quorum

for k-mutual exclusion, in which n nodes are divided
into the 2k groups. Between groups, we apply the k-
majority strategy, and inside each group, we apply the
binary tree quorum for 1-mutual exclusion [1]. There-
fore, the proposed strategy can be considered as a hy-
brid approach which contains the k-majority and the
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binary tree quorum for 1-mutual exclusion [11, 20].
Note that the availability of k-majority is good, when
less than �k

2� nodes enter CS from our previous simu-
lation study [8]. That is why we divide n nodes into
2k groups.
4.1 Definitions

In this section, we first define the logical binary tree
and give the definition of the binary tree quorum for
1-mutual exclusion [1]. Next, based on the binary tree
quorum for 1-mutual exclusion, we present the binary
forest quorum for k-mutual exclusion.

Definition 4. A Binary Tree. A binary tree is a
finite set of one or more nodes such that

1. there is a specially designated node called the root
in level 0.

2. the remaining nodes are partitioned into S1, S2,
where each of these sets is a binary tree. S1, S2

are called the subtrees of the nodes.

Therefore, there are 2i nodes in level i. Consequently,
for a complete binary tree of level (h+1), there are to-
tally (2h+1 − 1) nodes. Moreover, each node in the bi-
nary tree of level (h+1) is numbered from top to down
and left to right as 0, 1, 2, ....., (2h+1-2) as shown in
Figure 1. For a node i, node (� i+1

2 	 − 1) is its parent.

Definition 5. A Binary Tree Quorum [1]. The bi-
nary tree quorum strategy logically organizes the nodes
in a system as a binary tree structure. A binary tree
quorum (recursively) for 1-mutual exclusion consists of

1. the root and a binary tree quorum of the left sub-
tree, or

2. the root and a binary tree quorum of the right sub-
tree, or

3. a binary tree quorum of the left subtree and a bi-
nary tree quorum of the right subtree.

Note that, here we let each node in the distributed
system be mapped to a node in the logical binary forest,
and the number of nods be denoted as n.

Example 2: For a binary tree of level 3 as shown
in Figure 2, the set R of binary tree quorums for 1-
mutual exclusion is as follows: R = { {0, 1, 3}, {0, 1,
4}, {0, 3, 4}, {0, 2, 5}, {0, 2, 6}, {0, 5, 6}, {1, 3, 2, 5},
{1, 3, 2, 6}, {1, 3, 5, 6}, {1, 4, 2, 5}, {1, 4, 2, 6}, {1,
4, 5, 6}, {3, 4, 2, 5}, {3, 4, 2, 6}, {3, 4, 5, 6} }.

Definition 6. Binary Forest Quorums. There are
n nodes, which are divided into 2k groups, denoted as
groups, S0, S1, S2, ....., and S2k−1. For the nodes in
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Figure 1: A binary tree

Level  1
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Level  0

Level  2

0

1 2
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Figure 2: A binary tree for 1-mutual exclusion with n
= 7

each group Si, 0 ≤ i ≤ (2k − 1), let Ri be the binary
tree quorum for 1-mutual exclusion. When k ≥ 1, a
binary forest quorum Q contains any two quorums from
R0, R1, R2, ....., and R2k−1.

Example 3: For the binary forest as shown in
Figure 3, the set R of binary forest quorums for 2-
mutual exclusion is as follows: R = { {1, 5, 2, 7}, {1,
5, 2, 8}, {1, 5, 7, 8}, {1, 5, 3, 9}, {1, 5, 3, 10}, {1, 5,
9, 10}, {1, 5, 4, 11}, {1, 5, 4, 12}, {1, 5, 11, 12}, {1,
6, 2, 7}, {1, 6, 2, 8}, {1, 6, 7, 8}, {1, 6, 3, 9}, {1, 6, 3,
10}, {1, 6, 9, 10}, {1, 6, 4, 11}, {1, 6, 4, 12}, {1, 6, 11,
12}, {5, 6, 2, 7}, {5, 6, 2, 8}, {5, 6, 7, 8}, {5, 6, 3, 9},
{5, 6, 3, 10}, {5, 6, 9, 10}, {5, 6, 4, 11}, {5, 6, 4, 12},
{5, 6, 11, 12}, {2, 7, 3, 9}, {2, 7, 3, 10}, {2, 7, 9, 10},
{2, 7, 4, 11}, {2, 7, 4, 12}, {2, 7, 11, 12}, {2, 8, 3, 9},
{2, 8, 3, 10}, {2, 8, 9, 10}, {2, 8, 4, 11}, {2, 8, 4, 12},
{2, 8, 11, 12}, {7, 8, 3, 9}, {7, 8, 3, 10}, {7, 8, 9, 10},
{7, 8, 4, 11}, {7, 8, 4, 12}, {7, 8, 11, 12}, {3, 9, 4, 11},
{3, 9, 4, 12}, {3, 9, 11, 12}, {3, 10, 4, 11}, {3, 10, 4,
12}, {3, 10, 11, 12}, {9, 10, 4, 11}, {9, 10, 4, 12}, {9,
10, 11, 12} }. Totally, R contains 54 quorums.

12

1 2 3 4

5 6 7 8 9 10 11

Figure 3: A binary forest for 2-mutual exclusion with
n = 12
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4.2 Correctness
In this section, we prove that the set of the binary

forest quorums for k-mutual exclusion is a k-coterie.
Here, we will refer to such a k-coterie as the binary
forest coterie.

Lemma 1. The set of the K-majority quorums is a
k-coterie [11, 20].

Lemma 2. The set of the binary tree quorum is a 1-
coterie [1].

Lemma 3. Let U1 and U2 be two nonempty sets of
nodes such that U1 ∩ U2 = ∅, and x ∈ U1. Let U =
(U1 −x)∪U2. The coterie join operation ⊗x is defined
as Z̄ = X̄ ⊗x Ȳ = { CTx(X, Y ) | X ∈ X̄, Y ∈ Ȳ },
where X̄ is a k-coterie under U1, Ȳ is a 1-coterie under
U2, and

CTx(X, Y ) =
{

(X − {x}) ∪ Y if x ∈ X
X otherwise

Then, Z̄ is a k-coterie under U [9].

Theorem 1. The set of the binary forest quorums for
k-mutual exclusion is a k-coterie.

Proof. Based on the definition of binary forest quo-
rums, there are n nodes, which are divided into 2k
groups, denoted as groups, S0, S1, ..., and S2k−1.
Therefore, Si ∩ Sj = ∅, 0 ≤ i, j ≤ 2k − 1, and i �= j.
For the nodes in each group Si, 0 ≤ i ≤ (2k − 1), let
Ri be the binary tree quorum under Si. When k ≥ 1,
a binary forest quorum Q contains any two quorums
from R0, R1, ..., R2k−1. Let U1 = {g0, g1, ..., g2k−1}
and U1∩Si = ∅, 0 ≤ i ≤ 2k−1; let X̄ be the set of the
k-majority quorums under U1, the quorum size of X̄ is
2 (=� 2k+1

k+1 �). Moreover, let x = g0 ∈ U1, U2 = S0, and
Ȳ be the set of the binary tree quorums under S0, i.e.,
set R0.

Based on Lemma 3, we have that Z̄ is a k-coterie
under (U1 - {g0}) ∪ S0, since X̄ is a k-coterie based
on Lemma 1, and Ȳ is a 1-coterie based on Lemma
2. Note that, based on the definition of CTx(X, Y ) of
Lemma 3, we have a binary tree quorum under S0,
which is R0; we replace g0 in X̄ with R0 and forms a
new quorum in Z̄ under (U1 − {g0}) ∪ S0. Therefore,
∀ (Qx ∈ X̄ under U1 and g0 ∈ Qx), we have a new
quorum (R0 ∪ (Qx − {g0})) ∈ Z̄ under (U1 − {g0}) ∪
S0, where R0 is the binary tree quorum under S0. That
is, a quorum in Z̄ under (U1−{g0}) ∪ S0, contains any
two subset from R0, g1, ..., and g2k−1, where R0 is a
binary tree quorum under S0. In the same way, we
can replace U2 with every Si, where 1 ≤ i ≤ 2k − 1.
Therefore, a quorum in Z̄ under S0 ∪ S1 ∪ ... ∪ S2k−1

(=((U1 − {g0, g1, ..., g2k−1}) ∪ S0 ∪ S1 ∪ ... ∪ S2k−1)),

contains any two subsets from R0, R1, ..., and R2k−1,
where Ri be a binary tree quorum under Si, 0 ≤ i ≤
2k− 1. Consequently, the set of binary forest quorums
for k-mutual exclusion is a k-coterie. �

4.3 Availability of the Binary Forest Quo-
rums

In this section, we first analyze the availability of
the binary tree quorums for 1-mutual exclusion [1] and
then the binary forest quorums for k-mutual exclusion.
Here, we assume that all the nodes have the same up-
probability p, which is the probability that a single
node is up operational.

For the binary tree quorum strategy, the availability
of a binary tree is the probability that at least one bi-
nary tree quorum can be formed from the binary tree
[1]. Thus, the availability of a binary tree is the prob-
ability that

1. the root is operational and a tree quorum can be
formed from the left subtree, or

2. the root is operational and a tree quorum can be
formed from the right subtree, or

3. a tree quorum can be formed from the left subtree
and a tree quorum can be formed from the right
subtree.

Let AV B(h) be the function evaluating the proba-
bility of a binary tree with (h + 1) level. If a binary
tree consists of only one node, it degenerates to a cen-
tral controller and the availability of the availability of
itself, i.e., AV B(0) = p. Thus by the above conditions
(1), (2), and (3), we can get the condition AV B(h) =
2p×AV B(h− 1)× (1−AV B(h− 1)) + AV B(h− 1)2.

Next, for the availability of the binary forest quorum
strategy, let (k,l)-availability, 1 ≤ l ≤ k, be the prob-
ability that l pairwise disjoint quorums of a k-coterie
can be formed successfully; it is used as a measure for
the fault-tolerant ability of a solution using k-coterie.

Let AV(h, l) be the function evaluating the probabil-
ity that l pairwise disjoint quorums under binary forest
can be formed simultaneously. The function AV (h, l)
has the following two boundary conditions:

1. AV B(0) = p and AV B(j) = 2p × AV B(j − 1) ×
(1 − AV B(j − 1)) + AV B(j − 1)2.

2. AV (h, l) =
∑2k

m=2∗l C(2k, m) × AV B(h)m × (1 −
AV B(h))2k−m, where h = �log2

n
2k �.

5. A COMPARISON
In this section, we make a comparison of the bi-

nary forest quorum, k-majority, cohorts, and DIV quo-
rum strategies in terms of availability and quorum size,
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Figure 4: A comparison of the availability of the binary
forest, k-majority, cohorts, and DIV strategies with n
= 120 ( l = 1 )

where we assume that the system has a fully connected
network topology and no communication failure will
occur. However, a node failure can occur. (Note that,
here, we assume that a failed node simply stops exe-
cution (i.e., a fail-stop system). That is, no Byzantine
failure occurs.)

Figures 4, 5, 6, and 7 show a comparison of the
availability of the binary forest, k-majority, cohorts,
DIV quorums strategies with n = 120, and l = 1, 2,
3, and 4, respectively. For this comparison, there are
8 groups in binary forest quorum strategy and inside
each group, the binary tree quorum is of level 4, and
we let Coh(4, 15) = (C1, C2, ..., C15) where C1 = 4,
Ci = 8, 2 ≤ i ≤ 11, and Cj = 9, 12 ≤ j ≤ 15. The
observed results from Figures 4, 5, 6, and 7 are summa-
rized in Table 1, where the binary forest quorum strat-
egy is denoted as BF. From this table, we show that
the availability of the binary forest quorum strategy is
always better than that of the cohorts and DIV strate-
gies, when l = 1; the availability of the binary forest
quorum strategy is always the highest one among these
four strategies, when l = 2; the availability of the bi-
nary forest quorum strategy is always better than that
of the cohorts and k-majority strategies, when l = 3;
the availability of the binary forest quorum strategy is
always better than that of k-majority strategy, when l
= 4.

Table 2 shows a comparison of these four k-mutual
exclusion strategies imposing logical structures. The
first two criteria are the quorum sizes in the best and
worst cases, respectively. The number of messages re-
quired to construct a quorum is proportional to the size
of the quorums. The quorum size of binary forest varies
from 2�lg2

n
2k � to � n

2k �+1 as the number of node failures
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Figure 5: A comparison of the availability of the binary
forest, k-majority, cohorts, and DIV strategies with n
= 120 ( l = 2 )

Probability that a node is operational

A
va

ila
bi

lit
y

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Binary forest
k-majority
Cohorts
DIV

Figure 6: A comparison of the availability of the binary
forest, k-majority, cohorts, and DIV strategies with n
= 120 ( l = 3 )
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Figure 7: A comparison of the availability of the binary
forest, k-majority, cohorts, and DIV strategies with n
= 120 ( l = 4 )
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Table 1: A comparison of the availability of the binary
forest, k-majority, cohorts, and DIV strategies with n
= 120

l P The Availability
p < 0.35 BF > k-majority > cohorts > DIV

1 p ≥ 0.35 k-majority > BF > cohorts > DIV
p < 0.59 BF > k-majority > DIV > cohorts

2 p ≥ 0.59 BF > k-majority > cohorts > DIV
p < 0.59 BF > DIV > cohorts > k-majority

3 p ≥ 0.59 DIV > BF > cohorts > k-majority
p < 0.51 BF > DIV > cohorts > k-majority

4 0.51 ≤ p < 0.72 DIV > BF > cohorts > k-majority
p ≥ 0.72 DIV > cohorts > BF > k-majority

Table 2: A comparison of four k-mutual exclusion
strategies in terms of quorum size

Binary Forest Cohorts∗
quorum size 2�lg2

n
2k

� 2 or k∗∗
(best case)
quorum size � n

2k
� + 1 l

(worst case)
fully distributed? no no

fault tolerance n − 2k�lg2
n
2k

� n − ks +
k(k−1)

2
(best case)

fault tolerance 2k(�lg2
n
2k

� − 1) s − k + 1
(worst case)

K-majority DIV

quorum size �n+1
k+1

� �n+k
2k

�
(best case)

quorum size �n+1
k+1

� �n+k
2k

�
(worst case)

fully distributed? yes yes

fault tolerance n − k�n+1
k+1

� n − k�n+k
2k

�
(best case)

fault tolerance n − k�n+1
k+1

� n − k�n+k
2k

�
(worst case)

∗ Coh(k, l) = (C1, C2, ...,Cl), |C1| = k, |Ci| = s, i > 1.
∗∗ 2 when k = 1, or k when k > 1.

is increased. Because in the binary forest quorums, n
nodes are divided into 2k groups. Between groups, we
apply the k-majority strategy, and inside each group,
we apply the binary tree quorum for 1-mutual exclu-
sion. No matter in the best case or the worst case, the
quorum size of k-majority strategy with 2k groups is al-
ways 2 groups. In the best case, the quorum size inside
each group is �lg2

n
2k �; therefore, the quorum size of the

binary forest is 2�lg2
n
2k �. In the worst case, the quo-

rum size inside each group is (� n
2k � + 1 ) / 2; therefore,

the quorum size of the binary forest is � n
2k � + 1. Note

that in the binary forest strategy, n nodes are divided
into 2k binary trees. In the best case, the quorum size
in each binary tree is �lg2

n
2k �; therefore, the quorum

size of the binary forest strategy is 2�lg2
n
2k �. In the

worst case, which occurs when the node fails starting
from the root to the leaf, and from the left to the right,
the quorum size in each binary tree is (� n

2k � + 1 ) / 2;
therefore, the quorum size of the binary forest strategy
is � n

2k � + 1. Note that in the binary forest strategy, n
nodes are divided into the k binary trees. In each bi-
nary tree, the number of the terminal nodes is equal to
(the number of nonterminal nodes +1). Therefore, the
number of terminal nodes is equal to (the total num-
ber of the nodes of the binary trees + 1)/2. Moreover,
in the worst case, the quorum size of the binary forest
strategy is 2*(the sum of the number of the terminal
nodes in every binary tree). Consequently, in the worst
case, the quorum size of the binary forest strategy is
(the total number of the nodes + 2k)/2k. The quo-
rum size of cohort [10] varies from 2 (when k = 1) or
k (when k > 1) to l = n−k

s + 1, for a cohort structure
Coh(k, l) =< k, s, ..., s >, l >> s. The quorum size
of k-majority strategy is always �n+1

k+1 � [11], and the
quorum size of DIV strategy is always �n+k

2k � [2].

The third criteria in Table 2 is whether the strategy
is a fully distributed one. All of these four strategies
are fully distributed ones. The last two criteria are
the number of failed nodes which does not halt the
system and such that at most k nodes can simultane-
ously access their critical section in the best case and
worst case. While in the best case, all these strate-
gies can be fault-tolerant up to all node failure except
those nodes which have already constructed k quorums.
In the best case, the cohorts strategy can be fault-
tolerant up to (n − ks + k(k−1)

2 ) node failures when
Coh(k, l) = (C1, C2, ..., Cl), |C1| = k, and |Ci| = s,
i > 1 [10]. Note that, in the best case, |Q1| = s−(k−1),
|Q2| = s−(k−2), ..., |Qk−1| = s−1, and |Qk| = s in the
cohorts strategy. While in the worst case, the binary
forest strategy can be fault-tolerant up to k(�lg2

n
k �−1)

node failures and the cohorts strategy can be fault-
tolerant up to (s − k + 1) node failures. While in the
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Figure 8: A comparison of the quorum size of binary
forest, 4-majority, cohorts, and DIV when no node fail-
ure occurs

worst case, the k-majority strategy can not be fault-
tolerant to any node failure and the DIV strategy can
be fault-tolerant up to (n − k�n+k

2k �) node failures.
Figure 8 shows a comparison of the quorum size of

these four strategies for 4-mutual exclusion when no
node failure occurs. From this figure, we observe that
the quorum size of these four strategies in a decreasing
order is 4-majority > cohorts > DIV > binary forest
quorum, when n > 30. That is, the quorum size of the
binary forest strategy is always the smallest one among
these four strategies, when n > 30. Figure 9 shows a
comparison of the quorum size of these four strategies
for 4-mutual exclusion when node failures occur in the
worst case with NS = 120 (l = 4). From this figure, we
observe that the quorum size of these four strategies in
a decreasing order is 4-majority > DIV > binary for-
est > cohorts, when the number of failed nodes is less
than 40; the quorum size of these four strategies in a
decreasing order is 4-majority > cohorts > DIV = bi-
nary forest, when the number of failed nodes is greater
than 40. That is, in the worst case, the quorum size
of the binary forest quorum strategy is always smaller
than that of 4-majority and DIV strategies.

6. CONCLUSION
In this paper, we have proposed a strategy called

binary forest quorums for k-mutual exclusion, which
imposes a logical binary forest structure on the net-
work. In general, in the binary forest quorum strat-
egy, n nodes are divided into the 2k groups. Between
groups, we have applied the k-majority strategy, and
inside each group, we have applied the binary tree quo-
rums for 1-mutual exclusion. Therefore, the proposed
strategy can be considered as a hybrid approach which
contains the k-majority and the binary tree quorums
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Figure 9: A comparison of the quorum size of binary
forest, 4-majority, cohorts, and DIV when node failures
occur in the worst case NS = n = 120 ( l = 4 )

for 1-mutual exclusion. The quorum size constructed
from the strategy is 2�lg2

n
2k � in the best case and is

(� n
2k � + 1) in the worst case. From our performance

analysis, we have shown that the binary forest quo-
rum strategy can provide a higher availability than k-
majority, cohorts, and DIV strategies almost all the
time. How to extend the binary forest quorum strat-
egy to tolerate even more node failures is the future
research direction.
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