1998 Internationa! Computer Symposium
Workshop on Computer Graphics and Virtual Reality
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

A Java-Based Testbed for Volume Visualization

Kwan-Liu Ma _

Institute for Computer Applications in Science and Engineering
Mail Stop 403, NASA Langley Research Center
Hampton, Virginia 23681-2199, U.S.A.

Email: kma@icase.edu

Abstract

This paper describes a Java-based visualization software
testbed for experimenting with new ideas and rendering
codes, as well as approaches for remote and collaborative
visualization. This system allows visualization across the
Internet from a web browser supporting the Java language.
We also address issues in designing more intuitive interfaces
and better user interaction. The system’s modular design
allows parts of the system to be easily replaced to compare
the performance of differing approaches to a given design
problem in the system. Particularly, we have designed a
graph-based interface which helps users better understand
how certain rendering parameter changes affect the visu-
alization results, keep track of decisions toward some vi-
sualization discovery, and communicate their findings with
others.

1. Introduction

Research in data visualization technology encompasses a
wide variety of topics including data management, abstrac-
tion and representation of the object to be visualized, design
of rendering algorithms, interaction techniques, the process
of visualization, user interface and I/O devices, visualiza-
tion system hardware and software, validation of visual-
ization results, visual perception problems, and application
specific problems. It would be advantageous to visualiza-
tion researchers if they can study either a single topic or
multiple topics and their relationship in the same frame-
work. This paper describes such a framework, a Java-
based testbed designed for volume visualization applica-
tions. Java supports network computing and 2D (and 3D)
graphics which allow us to focus on the development of high
level concepts of our design rather than low level implemen-
tation.

One important feature of this testbed is its modular de-
sign. Any component can be replaced with another compo-
nent which communicates in the same manner as the orig-
inal component to the other parts of the system, but which
implements its functionality differently. For example, the
rendering program could be replaced with another renderer
which handles a different type of data, such as data on a

68

curvilinear or unstructured grid, or a renderer which pro-
duces very high quality images but which is more expen-
sive than the algorithms we currently use. This modularity
is also relevant to the user interface because it allows dif-
ferent approaches to the user interface to be used and tested
at the same time. Because the rendering algorithm can be
changed, our user interface can be used in concert with any
volume rendering algorithm as long as the algorithm is able
to use the rendering parameters our system handles in order
to render an image. This capability is similar to the popular
data flow model [20] adopted by many commercial visual-
ization systems.

The other important feature of this testbed is a graph
based user interface that we have been developing for repre-
senting not only the results but also the process of a volume
visualization session. A preliminary design of the graph
approach is reported in [16]. In essence, as images are ren-
dered, they are connected to other images in a graph based
on their rendering parameters. The user can take advantage
of the information in this graph to understand how certain
rendering parameter changes affect a dataset, making the vi-
sualization process more efficient. Because the graph con-
tains more information than is contained in an unstructured
history of images, the image graph is also helpful for collab-
orative visualization. Finally, we should point out that using
the Java programming language allows us to implement the
aforementioned and other features of the testbed in a more
straightforward manner.

This paper is organized as follows. Section 2. gives an in-
troduction of volume rendering. Section 3. presents the sys-
tem architecture of the testbed, which consists of an applet
written in the Java language which runs in any web browser
which supports Java, a render “server” process which man-
ages communication with active web clients, and a volume
rendering process, currently implemented using two differ-
ent volume renderers, which are used depending on render-
ing requirements. Section 4. discusses design issues for the
key steps in the typical volume visualization process. Sec-
tion 5. describes the graph based interface and its impact on
the overall visualization process. In Section6., we discuss
how our overall design supports collaborative visualization.
The final section offers some concluding remarks and sug-
gests directions for future work.

2. Volume Rendering

Current computing and sensing technologies allow scien-
tists to study physical phenomena in three spatial dimen-
sions at high resolution. Appropriate techniques are needed
for visualizing the resulting volume data with which usu-
ally a grid structure is associated. Volume rendering refers
to techniques directly rendering sampled scalar fields of
three dimensions without constructing intermediate polyg-
onal representations. Generally, it can display more infor-
mation in a single visualization than techniques such as iso-
surface or slicing. It is especially effective for displaying
features that are either very fine or difficult to define analyt-
ically.

Several volume rendering algorithms have been invented
including the ray casting [8], projection [4], splatting [22]
and shear warp [7] methods. Various optimization and
acceleration techniques for volume rendering have also
been developed including encoding object space coher-
ence [9], encoding image space coherence [23], hardware
assisted [17, 1] and parallel [12, 6] methods. These ad-
vances make volume rendering a practical visualization so-
lution.)

Volume rendering is very computationally expensive.
While previous research work on volume visualization
has mainly focused on improving rendering performance,
the study of the entire process of volume visualization is
equally important to make volume rendering a useful data
analysis technique. This is particularly true since volume
data exploration often involves a trial and error process of
parameter specification. The key elements that constitute
an efficient visualization process thus include not only fast
rendering rates but also an intuitive user interface, capabili-
ties to incorporate domain knowledge into the data filtering
step, and a mechanism for tracking (and sharing) the visu-
alization process and results. This paper also reports our
research results in these directions. -

The objective of our work is to optimize the overall vol-
ume visualization process and support remote and collabo-
rative visualization. Several other systems have addressed
the problem of remote volume visualization. For example,
the VizWiz system [14] performs isosurface and slice ren-
dering over the Internet. MPIRE [15] is a parallel rendering
system that offers a web-based interface which allows the
user to select from three different platforms and two dif-
ferent volume rendering methods to accomplish a rendering
task. An on-going research is VolRenCV [21] which is web-
based volume rendering comparison tool. Its web interface
provides volume rendering with multiple algorithms and a
set of metrics for comparing different rendering parameters.

3. System Architecture

The main components of our system are the render server,
the communication server, and clients. Figure 1 presents
the system architecture of the testbed. In this section each

-69-

1998 International Computer Symposium
Workshop on Computer Graphics and Virtual Reality
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.Q.C.

Client Machine

Rendering
Process

Figure 1: System Architecture of the testbed.

of these components is discussed in further detail.

3.1 Render Server

The render server is the process which actually performs the
rendering of the image to be displayed on the client. This
server is started by the proxy server when needed in order to
fulfill a rendering request from a client. Because the system
is modular, different implementations of the render server
can be used interchangeably. The current implementation
uses both the shear warp algorithm [7] and a ray casting al-
gorithm [10] to render data on Cartesian grids. The system
selects which algorithm to use based on the size of the im-
age requested and our performance data. With our current
configuration, the ray casting algorithm performs better on
smaller images and the shear warp algorithm performs bet-
ter on larger images. In addition, the ray casting algorithm
is used to render zoomed images as the shear warp imple-
mentation does not support supersampling.

Both rendering algorithms can benefit from preprocess-
ing. To speed up subsequent rendering calculations, the
shear warp algorithm as used in our system uses two stages
of preprocessing: classification and octree encoding. Oc-
tree encoding is dependent on the opacity transfer function
used. This means that if the render server’s preprocessing is
up to date, a new image of the dataset can be rendered very
quickly if only the color transfer function or the view trans-
formation is changed. On the other hand, the ray casting
renderer uses a view-dependent ray cache to achieve very
fast rendering rates independent of changes of transfer func-
tions.

3.2 Proxy Server

The proxy server handles the communication of the clients
and the render server. It provides mechanisms for access
control, tracking the state of a client’s session, load balanc-
ing, and caching. When a client is started, it connects to the

2. Volume Rendering

Current computing and sensing technologies allow scien-
tists to study physical phenomena in three spatial dimen-
sions at high resolution. Appropriate techniques are needed
for visualizing the resulting volume data with which usu-
ally a grid structure is associated. Volume rendering refers
to techniques directly rendering sampled scalar fields of
three dimensions without constructing intermediate polyg-
onal representations. Generally, it can display more infor-
mation in a single visualization than techniques such as iso-
surface or slicing. It is especially effective for displaying
features that are either very fine or difficult to define analyt-
ically.

Several volume rendering algorithms have been invented
including the ray casting [8], projection [4], splatting [22]
and shear warp [7] methods. ' Various optimization and
acceleration techniques for volume rendering have also
been developed including enceding object space coher-
ence [9], encoding image space coherence [23], hardware
assisted {17, 1] and parallel {12, 6] methods. These ad-
vances make volume rendering a practical visualization so-
lution.)

Volume rendering is very computationally expensive.
While previous research work on volume visualization
has mainly focused on improving rendering performance,
the study of the entire process of volume visualization is
equally important to make volume rendering a useful data
analysis technique. This is particularly true since volume
data exploration often involves a trial and error process of
parameter specification. The key elements that constitute
an efficient visualization process thus include not only fast
rendering rates but also an intuitive user interface, capabili-
ties to incorporate domain knowledge into-the data filtering
step, and a mechanism for tracking (and sharing) the visu-
alization process and resulis. This paper also reports our
research results in these directions. -

The objective of our work is to optimize the overall vol-
ume visualization process and support remote and collabo-
rative visualization. Several other systems have addressed
the problem of remote volume visualization. For example,
the VizWiz system [14] performs isosurface and slice ren-
dering over the Internet. MPIRE [15] is a parallel rendering
systemn that offers a web-based interface which allows the
user to select from three different platforms and two dif-
ferent volume rendering methods to accomptish a rendering
task. An on-going research is VolRenCV [21] which is web-
based volume rendering comparison tool. Iis web interface
provides volume rendering with multiple algorithms and a
set of metrics for comparing ¢ifferent rendering parameters.

3. System Architecture

The main components of our system are the render server,
the communication server, and clients. Figure 1 presents
the system architecture of the testbed. In this section sach

-69-

1998 International Computer Symposium
Workshop on Computer Graphics and Virlual Reality
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.C.C.

| Citent Machine |
| Client Machine |

4 Render Machine

-

Figure 1: System Architecture of the testbed.

of these components is discussed in further detail.

3.1 Render Server

The render server is the process which actually performs the
rendering of the image to be displayed on the client. This
server is started by the proxy server when needed in order to
fulfill a rendering request from a client. Because the system
is modular, different implementations of the render server
can be used interchangeably. The current implementation
uses both the shear warp algorithm [7] and a ray casting al-
gorithm [10] to render data on Cartesian grids. The system
selects which algorithm to use based on the size of the im-
age requested and our performance data. With our current
configuration, the ray casting algorithm performs betier on
smaller images and the shear warp algorithm performs bet-
ter on larger.images. In addition, the ray casting algorithm
is used to.render zoomed images as the shear warp imple-
mentation does not support supersampling.

Both rendering algorithms can benefit from preprocess-
ing. To speed up subsequent rendering calculations, the
shear warp algorithm as used in our system uses fwo stages
of preprocessing: classification and octree encoding. Oc-
tree encoding is dependent on the opacity transfer function
used. This means that if the render server’s preprocessing is
up to date, a new image of the dataset can be rendered very
quickly if only the color transfer function or the view trans-
formation is changed. On the cther hand, the ray casting
renderer uses a view-dependent ray cache to achieve very
fast rendering rates independent of changes of transfer func-
tions.

3.2 Proxy Server

The proxy server handles the communication of the clients
and the render server. It provides mechanisms for access
control, tracking the state of a client’s session, load balanc-
ing, and caching. When a client is started, it connects to the

1998 International Computer Symposium
Workshop on Computer Graphics and Virtual Reality
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

proxy server. The server can choose to allow the client to
connect or not, based on any desired set of rules. For exam-
ple, the proxy server might want to limit access to only ten
users at a time. The server could aiso only accept connec-
tions from within a certain network, or according to some
other metric.

“If a client is allowed to connect, the server begins keep-
ing track of the rendering parameters associated with the
current client session. A separate set of rendering param-
eters is maintained for each client connected, so that many
clients can connect at a time. A single proxy server can also
connect to a variety of render servers. This allows a proxy
server to distribute a rendering load by assigning separate
rendering tasks to rendering processes running on differ-
ent machines. While our current implementation does not
support the division of the task of rendering a single image
among multiple servers, this type of separation is a possi-
bility for future exploration.

The proxy server also implements a caching mechanism
to try to reduce the number of images that need to be ren-
dered. When an image is generated, the rendering param-
eters used to generate that image are stored along with the
image. If another image is requested later using the same
rendering parameters, the initial image is used.

The shear warp algorithm can take advantage of pre-
processing in order to reduce rendering time. The proxy
server determines what type of preprocessing to do based
on changes in the state of the clients. As new images are
produced, the proxy server tells the render server to do the
correct preprocessing. '

3.3 Client

The Java client displays a user interface for the system. The
interface allows the user to upload data, filter the data, set
and adjust rendering parameters, displays the images pro-
duced by the render server, and organizes a concise history
of the visualization process conducted by a user. The rest of
the paper is devoted to the design of user interfaces, and an
mechanism for organizing and presenting the visualization
process conducted.

4. The Yolume Visualization Process

Data exploration is inherently an iterative process which in-
cludes multiple steps: loading data, filtering, mapping, ren-
dering, and evaluating visualization results. Each step is
relevant to the goal of achieving efficient visualization. In
this section, we focus our discussion more on those topics
neglected by previous research.

4.1 Loading Data

Presently, the system allows the render server to upload vol-
ume data from any publicly accessible URL. The user must
specify the dimensions of the data and the data must be

_70..

on a regular grid. These restrictions are due to the ren-
derer which the testbed currently uses, however, the ren-
derer could be replaced with another one which does not
have these requirements in order to improve the flexibility
of the system. Once the user has entered the required in-
formation using the client, the server downloads and pre-
processes the dataset. The data is then ready for the user to
view.

4.2 Filtering

Filtering can involve a variety of operations: interpolating
from scattered data to a regular grid, smoothing, segmenta-
tion, and others. For example, presently the two renderers
installed in the testbed were optimized for byte data. If the
volume dataset contains 16-bit or 32-bit values, a quantiza-
tion step is required. Quantization should be done accord-
ing to the characteristics of the data to bring out the most
important features in the data. Quantization techniques and
other filtering techniques will not be discussed in this pa-
per. An interactive user interface has been implemented for
specifying the quantization function.

4.3 Mapping

A visual representation of volume data is made by mapping
raw or filtered data values to colors and different levels of
opacity. A projection of these color and opacity values of
the volume elements based on their depth orders produces
an image. This mapping step is the so called classification
step in medical imaging.

4.3.1 Color transfer function

In the context of volume visualization, the color transfer
function specifies a mapping from values in the volumetric
dataset to color values used when rendering a representa-
tion of the dataset. Manipulating the color transfer function
lets one change the color of specific ranges of values in the
dataset. This manipulation is useful for making certain fea-
tures of the dataset more prominent or less prominent during
the process of data exploration.

Some systems approach this problem by letting the user
specify three distinct mappings. The user defines a func-
tion which maps the data value to the intensity of red color,
as well as two other functions for the green and blue inten-
sity. The mapping of data value to color is computed by
producing an RGB value from the values of the red, green,
and blue functions at each data value. Existing volume vi-
sualization systems are equipped with more or less the same
interface as ICol’s [5] for making color and opacity transfer
functions.

While most previous systems use the RGB model for
color selection, it has been shown that the HSV (hue, sat-
uration, value) model [19] is more intuitive. However, it
has also been shown that color model has no effect on the

speed and accuracy of color selection [2]; rather, it is vi-
sual feedback which has a more significant effect. Further
experiments have also been done to qualitatively analyze
the influence of visual feedback on the color selection pro-
cess [3].

Our approach to color selection is based on the HSV

model. The color selection process involves linear inter-

polation between user specified points on the color transfer
function. After each interpolation point is added to the color
transfer function, the system automatically interpolates in
RGB space between the points of differing colors to pro-
duce the color transfer function. In order to edit the color
transfer function, the user can remove interpolation points,
or drag them to another location on the transfer function
with the mouse. The system automatically updates the color
transfer function in real time in response to these operations.
We also allow the user to select from a collection of pre-
defined color transfer functions such as rainbow and gray
scale maps. In addition, we have implemented two auto-
matic color map generation programs which use the his-
togram of the dataset. These are useful as standard starting
points to explore unfamiliar datasets. With the testbed, it
becomes fairly easy to test these different approaches.

4.3.2 Opacity transfer functiop

The opacity transfer function is used by the renderer to
determine the importance (and thus visibility) of a certain
voxel of the dataset according to the values of the data ad-
Jjacent to or inside of that voxel. The opacity function maps
values in the dataset to values between 0 (completely trans-
parent) and 1 (completely opaque). We explored several
different user interface approaches to the task of specify-
ing an opacity transfer function. We tried an approach, also
used by a variety of other systems, where the user described
the desired opacity mapping by adding or subtracting the
value of a linear, step, or sigmoid function from the current
value of the opacity function in order to incrementally build
the function. This approach was difficult for new users to
understand, perhaps because it required the user to interact
with the opacity mapping tool in a variety of modes.

We implemented a simpler interface, which allowed the
user to define the opacity function by sketching it with the
mouse. Users did not have trouble understanding how to
use this interface, but there were still a few difficulties. In
order to render a useful image using a volume renderer, the
opacity transfer function usually must map most data val-
ues to low opacities, or a very dark and uninteresting image
will be produced. In specifying an opacity function, map-
ping a small range of values to an opacity of 0.010 instead
or 0.005 can make a large difference in the resultant image.
However, mapping a range of values to 0.75 instead of 0.80
rarely produces a noticeable change in the output image.
Thus a good interface for specifying opacity transfer func-
tions should provide more precision in the more transparent
domains of the function, even if this is at the expense of pre-
cision in the more opaque regions. However, it is important

7]

1998 Intemational Computer Symposium
Workshop on Computer Graphics and Virtual Reality
December 17-19, 1998, N.C.K.U.,, Tainan, Taiwan, R.0.C.

not to give the user an inaccurate or imprecise idea of the
selected opacity mapping. .

To try to reach these goals, we implemented an inter-
face where the opacity function is displayed on both a linear
graph and a logarithmic graph. While the user sketches the
opacity function on either graph, the function is updated on
both graphs. Using this interface, the user can sketch the
function initially using the linear graph, and adjust the areas
of low opacity using the logarithmic graph.

4.4 Selecting Views

Our system allows users to set a view by specifying zoom
and rotation. The problem of selecting a zoom parameter
is not unique to volume visualization. Our system uses the
common approach in which the user selects a rectangle of
interest in a rendered image, and a new image is rendered
which shows the region of interest in as much detail as is
possible while still showing the entire region. While the
zoom is represented to the user with respect to the picture
plane, the zoom parameters the user specifies are used to
change a view transformation to render the zoomed image.

An interesting issue relating to zoom is whether zoom
should be presented to the user in the two dimensional space
of the image plane, or the three dimensional space of the
dataset. An image rendered after a zoom operation could
be an enlargement and enhancement of a section of the pre-
vious image, or an image produced after moving the view-
point from which the dataset was rendered such that from
the new viewpoint only the portion of the dataset seen in
the newly rendered image is visible.

While the task of specifying rotational parameters in
three dimensional space is not unique to volume visualiza-
tion there are some important considerations in this type of
visualization which do not apply in other problem domains.

Typically, in order to visually represent the rotation of an
object in three dimensional space, one renders the object as
it might appear from a certain fixed perspective, given the
said rotation. There are two additional considerations that
must be dealt with in the area of volume visualization.

First, it is not clear what sort of representation of the
dataset should be used. If the a visualization system could
automatically generate a useful image of a dataset without
fail, there would be no need to study user interfaces for vol-
ume visualization in the first place. Second, in order for
a representation of rotation to be useful, a system must be
able to update it at interactive rates. When dealing with
large datasets, it is usually not feasible to generate render-
ings at interactive rates without some sort of subsampling.

4.4.1 Some plausible approaches

Saito [18] presents a technique which involves drawing vox-
els with higher priority values as line segments to achieve
real-time previewing for volume visualization. Ma and In-
terrante [11] extract feature lines from geometry embedded
in the volume data. The feature lines can then be displayed

1998 international Computer Symposium
Workshop on Computer Graphics and Virtual Reality
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

in a highly interactive manner to assist the selection of view-
ing position for high resolution rendering. In this work, we
have explored a few of the following possibilities for repre-
senting and specifying rotation.

One possibility is to represent the data using an identi-
fying geometrical shape, preferably asymmetrical to avoid
confusion between rotations. One could use the bounding
box of the dataset and a set of 3D axes, for example. While
this approach has small computational expense, il conveys
fittle information about the dataset at hand.

Another approach is to render a severely subsampled ver-
sion of the dataset using a traditional volume rendering ap-
proach to produce a small image of the dataset which can be
updated at interactive rates. With this approach, we has the
same question for general volume rendering; that is, which
color, opacity and zoom parameters to use when rendering
the image used to represent rotation. One might use the
current rendering parameters from the last image rendered
of the dataset. This approach would make the mapping be-
tween the image used to specify rotation and the full size
image readily apparent.

With graphics hardware support, isosurface rendering is
also a good way to represent the dataset. The guestion with
this approach is what isovalue 10 select for the surface. Ide-
ally, this value would be determined without user interven-
tion in order to allow the user to focus on the task of render-
ing useful images instead of intermediate ones.

Finally, if the system had 2 method for determining
which ranges of data values were-of interest, the system
could render these interesting values as opaque spots in the
image. While one could produce this type of image rapidiy,
the images produced would not be very useful unless the
range of interesting values was chosen carefully, We are
currently developing ways of automatically generating and
evaluating characteristic views of volume datasets based on
certain data statistics. ‘This approach makes view selection
a possible task for visualizing very large datasets.

5. The Image Graph

The process of adjusting rendering parameters while ren-
dering images of a dataset is a search process. The target of
the search is an image which tells the user something inter-
esting about the dataset, and the search space itself is a mul-
tidimensional space. We propose a graph based interface
which effectively represents the user’s search patiern [16].
The topology of the graph is dependent on the type of mod-
ifications the user makes to the rendering parameters. That
is, we add each newly rendered image to a graph which rep-
resents the relationships of all the images which the user has
rendered so far, and believe the graph aids in the process of
finding 2 satisfactory Image within the design space.. To
simplify our discussion, the space is limited to four dimen-
sions in which each image is represented by a color map, an
opacity map, a zoom, and z rotation. The goal of the im-
age graph is to make searching for a desirable image more

Figure 2: Edge representations for different rendering pa-
rameters.

effective by showing how changes in parameters affect the
output for a given dataset.

The Design Galleries system {13] treats volume render-
ing as the process of exploring a multidimensional space.
In a preprocessing phase, the system renders images based
on parameters in different regions of the search space and
can look for the desired image among the group of ren-
dered images. This is an interesting approach because it
recognizes that volume rendering should be treated as 2 pro-
cess of searching a design space rather than a process of
trial and error. Our approach avoids preprocessing in fa-
vor of adding newly rendered images to an image graph.
The graph keeps track of the relationships between images
to make the search of the design space more efficient and
effective.

5.1 How the Graph Works

With our graph approach, each newly rendered image is
associated with a 4-tuple of rendering parameters (color,
opacity, zoom, rotation). A notion of equality is defined for
each of these rendering parameters. Two nodes on a graph
are considered to be equal if all of their rendering param-
eters are equal. Two nodes are considered to be similar if
all but one of their rendering parameters are equal. After
each image is rendered, it is added to the graph. Then the
node is attached to similar nodes in the graph. The similar
nodes are connected with an edge that represents how they
are related. Because similar images can differ in one of four
aspects, there are four types of edges that can exist between
nodes as shown in Figure 2. An edge represents the change
in rendering parameters between the two nodes it connects.
When & new node is added to the graph, at most one new
edge of each type is drawn to prevent the graph from be-
coring cluttered.

If 2 user changes the values of two or more rendering pa-
rameters and then renders a new image, a node will be added
to the graph which is not similar to any existing node. In the
rare case that a new node does not have more than one ren-
dering parameter in common with 2 preexisting node, the

Figure 3: A small graph of some images of a foot dataset.
The image in the top left corner is the initial image, and
the right most image shows the result of applying rotation,
zooming, and different opacity and color maps.

node is added to the graph without creating any new edges.
However, if there is a node in the graph which has exactly
two rendering parameters in common with an existing node,
the system joins these nodes by creating two nodes which
are similar to each of the nodes to be joined. For example,
if a user rendered one image, and then changed the color
and opacity transfer functions, then rendered a new image,
the system would add two intermediate nodes to the graph.
As shown in Figure 3, one of these nodes would have the
color mapping of the first node on the graph and the opac-
ity mapping of the second node on the graph. The other of
these two intermediate nodes would have the opacity map-
ping of the first node and the color mapping of the second.
These two automatically added nodes establish the relation-
ship between the two previously rendered images. To dis-
play these intermediate nodes on the graph, the system gen-
erates a thumbnail image for each of these nodes. These
images are generated using the ray-tracer algorithm which
performs well for very small images.

This process of automatically generating graph nodes
with thumbnail images of intermediate steps in the render-
ing process is especially useful when a series of changes in
rendering parameters results in an image which is not what
the user expected. In this case, the user can look at the in-
termediate images and determine which of the changes in
rendering parameters are responsible for the undesirable as-
pects of the resulting image.

Note that in Figure 3, the red mark in the corner of the
two intermediate images indicates that they are thumbnails.
The intermediate images are rendered at low resolution to
minimize rendering time. The user can click on a thumbnail
to render a full size image with the rendering parameters of
that graph node. Avoiding the production of full size images
of intermediate nodes saves time, preserving the interactiv-
ity of the user’s session.

Another feature the graph provides is the ability to com-

1998 Intemnational Computer Symposium)
Workshop on Computer Graphics and Virtual Reality
December 17-19, 1998, N.C.K.U:, Tainan, Taiwan, R.0.C.

Figure 4: A portion of a graph representing the exploration
of the foot dataset. The user combines the color and opacity
maps of node 1 in the top right corner with the zoom and
rotation of node 2 in the bottom left corner to produce node
3 the image in the bottom right corner.

bine the attributes of two existing nodes to produce a new
node. During the process of searching for the rendering pa-
rameters which will produce a useful image, a user may find
several images which have some qualities of the desired im-
age, but are not perfect. In this case, the user can drag one
node on top of another node on the graph to produce an
image which shares selected rendering parameters of the
two parent nodes. Figure 4 presents an example. A dia-
log box lets the user specify which rendering parameters of
each parent image will be used for the child image. The new
image is then rendered and added to the graph, showing the
relationship between the rendering parameters of the child
and its parents.

More sophisticated manipulation, such as set operations
can also be achieved with the graph approach. For exam-
ple, a new image may be generated based on a new opacity
transfer function which is the union (or difference) of two
previously defined opacity transfer functions. This powerful
capability enables an even more intuitive and efficient visu-
alization process. Figure 5 presents an example in which
the two top images exhibit similar structures which in fact
represent two different value ranges. In this particular case,
scientists want to see both structures and their interaction as
well as relationship in a single visualization which can be
produced with the union operation.

The use of a graph to represent the exploration of the
dataset provides several improvements over a listing ap-
proach. “listing approach,” we mean a strategy where each
image that is rendered is stored in a list in chronological
order, and images can be reviewed by selecting them from
this list. Essentially, a graph representation provides a better
model of the search pattern, indicates relationships between
images, and reserves the ordering information present in a
history list. However, a graph representation suffers from
the scalability problem as the number of nodes in the graph
increases; that is, the graph may become cluttered. We have
been experimenting with a node collapsing approach, us-
ing a scrolling window, and an automatic node pruning ap-

_73—.

1988 International Computer Symposium
Workshop on Computer Graphics and Virtual Reality
December 17-18, 1898, N.C.K.U.., Tainan, Taiwan, R.O.C.

Figure 5: A desirable visualization result (bottom right) was
produced-using the union of two opacity transfer functions
defined by. the red and blue curves respectively. The top
left image (negative, blue vortices) corresponds to the blue
curve. The top right image (positive, red vortices) corre-
sponds to the red curve.

proach to control the scalability problem.

6. Collaborative Visualization

Qur testbed system also provides features for collaborative
visualization. Users can share, understand, and build upon
gach others results by sharing annotated graphs. With the
graph-based approach, the user can annotate images, both
by drawing on the actual images, and by writing comments
about the images. These comments are stored in the visu-
alization graph along with the nodes to which they corre-
spond. As well, these graphs can be saved to the local file
system, if the web browser gives the Java applet access to it
The annotated graphs can then be exchanged among users
of the system.

The exchange of image graphs among users is more use-
ful than the exchange of just image data. If a group of im-
ages is used, the user has no clear idea of the relationship
between them. If users want to work together to explore a
dataset, it is important to minimize the amount of a user’s
work which is lost when that work is communicated to an-
other user. By expressing the data exploration process in
terms of a graph as opposed to 2 list of images, the system
can communicate more information to other users. When
a user explores 2 new dataset, the first step is to locate a
reasonable set of rendering parameters which produce an
intelligible image. Once this starting point is reached, the

user can begin to refine the image. During this process of
refinement, 2 lot of information about the dataset is discov-
ered which can not be captured by images alone. The user
may learn, for example; that for 2 given dataset, changes in
the color map do little to change the resulting image com-
pared to the change caused by changes in the opacity map.
In a collaborative scenario, it would be useful to communi-
cate this information to other users so they would not have
to rediscover it. The image graph accomplishes this goal.

7. Conclusions and Future Directions

This paper gives an overview of a Jave-based volume visu-
alization system which serves as a testbed for our volume
visualization research in the areas of user interfaces, collab-
orative visualization, rendering, etc. We describe the over-
all system architecture of the testbed and its modular design
which allows us to experiment with different approaches to
visualization problem solving.

The proxy server we have developed controls the com- -
munication between rendering clients and servers in order
to optimize the interactivity of the client processes, even
if they are rupning on relatively low powered machines.
“This has been accomplished by using preprocessing and by
distributing rendering requests between several rendering
Servers.

We also discuss the fundamental problem of parameter
specification, the user interface designs that we have de-
rived; and the graph approach to a structured representation
of the visualization results. The image graph helps guide
the user’s data exploration process and assist collaborative
work. We feel that our work addresses many problems in
volume visualization that are as important as rendering per-
formance but have been neglected by previous research.

So far, we have only plugged in two renderers, both of
which are for data on Cartesian grids. We plan‘to exper-
iment with a renderer for visualizing data on unstructured
grids. Most of existing user interfaces can be shared except
the ones for loading and preprocessing the raw daia.

There are many other visualization/rendering parameters
which we can include in our graph approach such as filter-
ing functions, sampling functions, interpolation functions,
lighting, data modalities, quantization functions and render-
ing algorithms. In addition, we are extending the power of
the graph approach by adding automatic graph pruning and
property propagation capabilities.

Finally, a small user study has been done to evaluate our
present user interface design. We plan to perform a more
comprehensive user study to evaluate the overall visualiza-
tion system design, in particular, the effectiveness of the
graph approach.

	
	68
	69
	70
	71
	72
	73
	74
	75

