1998 International Computer Symposium
Workshop on Computer Graphics and Virtual Reality
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

EFFICIENT DISCRETE-TIME COLLISION DETECTION
AMONG POLYHEDRAL OBJECTS IN ARBITRARY MOTION

Chin-Shyurng Fahn and Jui-Lung Wang
Department of Electrical Engineering

National Taiwan University of Science and Technology
Taipei, Taiwan106, Republic of China

ABSTRACT

This paper presents an efficient discrete-time collision
detection procedure for polyhedral objects that consist of
convex polygons and perform arbitrary translating and/or
rotating motions in a 3-D graphical environment. The
discrete-time collision detection procedure can find the
exact position of a collision event for a time step, which
first localizes the object-to-object collision events with a
“space cell” method. An “azimuth-elevation map” method
is then proposed to rapidly select the polygons within or
across the overlap region between two possibly collided
objects by presorting their vertices in the spherical
coordinates system. Subsequently, a divide-and-conquer
method that takes advantage of bounding box
representation is devised to moderate the number of
polygons needed to be checked by a polygon-to-polygon
intersection test. To deal with the discrete-time collision
detection, a polygon-to-polygon intersection testing method
based on a hierarchical scheme is developed to diminish
unnecessary computation. So far, the experimental results
from our proposed methods are very encouraging.

1. INTRODUCTION

Collision detection is widely employed in the fields of
robot path planning, computer animation, and scientific
simulation. It is also a crucial process in virtual reality to
achieve the interaction between users and virtual worlds.
To quickly response the input from users, efficient collision
detection among polyhedral objects (called objects for
short) must be accomplished in a 3-D graphical
environment. Objects in the 3-D environment are
frequently represented by polygons or parametric surfaces
[1]. In general, a collision detection procedure can be
roughly divided into two phases: an object-to-object
overlap test and a polygon-to-polygon intersection test. The
computational complexities of the two phases are O(r’) and
O(m,m,), where n is the number of objects and m,; and m;
are the numbers of polygons of the two objects possibly
collided. To relieve the computation load, many methods
are proposed in the literature [2-5].

In the object-to-object overlap test, bounding boxes and
bounding spheres are commonly used. For each object in
the 3-D environment, the bounding volume is generated to
entirely surround the object. By this way, the test of each
polygon of an object can be omitted when the bounding
volume of the object- does not collide with the others.
However, the existing methods must check all pairs of

objects in the environment [3, 4]. In fact, only few pairs of
objects need to be detected. Accordingly, we can just trace
the moving objects in the environment to reduce the
computation load. Before the polygon-to-polygon
intersection test, the polygons within or across the overlap
region of two possibly collided objects must be picked out.
The most common way is to test all the polygons of the two
objects against the overlap region. It results in raising the
computation load. Another improved method is to divide
the bounding box of an object into smaller cells, each of
which stores the associated constituting polygons [3].
During picking out the polygons within or across the
overlap region, all the polygons of the cells associated with
the overlap region are passed to the polygon-to-polygon
intersection test. The drawback of this method is that the
size of a cell can not be set perfectly. When the cell is
larger than the overlap region, extra polygons are tested. If
the cell is too small, conversely, a polygon may span
several cells, and it requires multiple tests.

Spatial occupancy enumeration strategies, including octrees
[6, 7], binary space partitioning (BSP) trees [8], and
successive spherical approximation (SSA) representations
[9], are also used to check the bounding volume overlap
and pick out the polygons within or across the overlap
region. Their common feature is that the space occupied by
an object is decomposed into many subspaces in form of a
hierarchical structure. Through a level-to-level test, the
smallest collision region can be found. Nevertheless,
constructing such a hierarchical structure is a time-
consuming process, and the structure must be updated after
the object performs geometrical transformations. Again, as
mentioned above, the size of the smallest unit of the
structure ean not be decided well, and a polygon may span
several subspaces [4]. It will increase the computation load
of the polygon-to-polygon intersection test. Besides this,
the aforementioned methods will enlarge the amounts of
memory to store the hierarchical structures.

To accelerate the object-to-object overlap test, first of all,
we divide the 3-D cyber space into equal cells, each of
which is called a “space cell.” When an object executes
geometrical transformations (translations and/or rotations),
the cells containing parts of the object will be made a sign.
After all objects finish the transformations, only those cells
with the sign will be checked. In consequence, the number
of object pairs that need to be checked is diminished
considerably. Because a point located in the spherical
coordinates system remains its direction information, we
transform the Cartesian coordinates of each vertex of an
object into the spherical ones. When two bounding spheres

76

collide with each other, by calculating the cross angles of
the two spheres, the polygons within or across the overlap
region can be selected with an “azimuth-elevation (A-E)
map” method, without testing all polygons against the
overlap region.

However, the selected polygons of an object may not
interfere with those of the other object, or there exist few
polygons occurring in collision. To efficiently detect this,
we propose a divide-and-conquer procedure of moderating
the number of polygon pairs needed for test, which
compares the bounding boxes composed of the two lists of
the polygons within or across the overlap region of the two
~ objects. This method will not generate the data structure of

spatial occupancy enumeration, and avoids bringing the
“span problem” of polygons. As for the polygon-to-
polygon intersection test, we incorporate a hierarchical
scheme [4] and extend the Cyrus-Beck algorithm [10]. The
whole test procedure includes three steps: an overlap test of
polygons using bounding boxes, a crossing test of an edge
and a polygon, and an inside test of an intersection point
and a convex polygon. After executing these steps, the
crossing position of the two polygons can be obtained, if
they intersect mutually.

2. THE OBJECT-TO-OBJECT OVERLAP
TEST BASED ON SPACE CELLS

This section describes the first stage of our discrete-time
collision detection procedure. Each object is represented as
a bounding sphere, because its data structure is simple (the
parameters of a sphere are only the center coordinates and
the radius) and easy to check overlap (if the distance
between the centers of two spheres is less than the sum of
the radii of the two spheres). When objects are rotated or
translated, all the bounding spheres merely update their
center coordinates.

Because only moving objects have the chances to collide
with the other objects, we can take note of the rotating
and/or translating objects for each time step. In addition,
only the objects near to the moving ones need to be
checked, not ail objects in the virmal world. A data
structure that we call the space cell is used to record the
statuses of objects in the world. To begin with, the world is
partitioned into cubic cells. Then each cell can accept or
cancel the registrations of objects when they move into or
off the region of the cell. Following depicts our method:

1) If an object has been moved, cancel the registration
of every cell in which the object was previously
located.

2) Update the center coordinates of the bounding
sphere of the object, then compute the serial
numbers of the cells that cover the bounding sphere
of the object, and register the object in the
corresponding cells.

3) For all moving objects, check the registrations of the
associated cells; if there are two or more objects in a

77

1998 International Computer Symposium
Workshop on Computer Graphics and Virtual Reality
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

cell, test their bounding spheres to find whether an
overlap event occurs or not. Otherwise, no overlap
event exists.

4) If the overlap event happens, pass the two possibly
collided objects to the second stage for determining
the pair of polygons that intersect.

With this method, every object keeps the data structure
consisting of an array of eight items, and each item records
the serial number of the cell which contains one of the eight
vertices derived from the bounding sphere’s center
coordinates (X o,iers Veenters Zcenter) 20nd radius 7 as
follows:

V= (x YL Z 1) = (xcenter — T, Ycenter — I, Zcenter — r) ,
= (x;, Y2 22) = (XCenter — 71, Ycenter — I, Zcenter + 1) ,
v;= (X3, V3 23) = (XCenter —7T, Ycenter + 1, Zcenter — r) ,
= (JC4, Y 24) = (JCcenter =7, Ycenter + I, Zcenter + r) N
Vs = (X5, Vs, 25) = (XCenrer + 7, Ycenter — I, Zcenter — r) s
v = (x¢, b ZA 26) = (x::enter +r, ycenter —r, Zcenter + 1) ,
Vv, = (X7, Y7 Z7) = (XCemer +7r, Ycenter + 1, Zcenter — r) s

and vgz= (x& Ya 23) ={(Xcenter +7r, Ycenter +r, Zcenter + r) .

Vi V4

Vg \d
z

Vi
J—>Y p V3

X v/

Vs V7

Fig. 1. The eight vertices of the cube surrounding a
bounding sphere.

The eight vertices constitute a minimum cube surrounding
the bounding sphere, as Fig. 1 shows. Using the coordinates
of the vertices, we can easily compute the serial numbers of
the eight cells in which the object falls. The formula of the
serial number of the i-th cell is given below:

Ni=Ln.n,+1ly;-n +I)]
with ;= X = Xmin Iy = Yi = Vmin ,and
2r
Iz, = Z; = Zmin
2r
where X,.,,, V.., and Z,, are the coordinates of the

minimum extent of the world; n,, n,; and », are the numbers
of partitions in each dimension; r is the radius of the
moving bounding sphere.

The size of the space cell is defined by the largest bounding
sphere’s radius of movable objects, and the edge length of
the cell is two times of the object’s radius. At the start of a
realistic application, we can initialize an array of cells,
whose size depends on that of the largest object. By this

1998 International Computer Symposium)
Workshop on Computer Graphics and Virtual Reality
December 17-19, 1998, N.C K.U., Tainan, Taiwan, R.0.C.

way, we can calculate all the serial numbers of those cells
which are covered by any object’s bounding sphere through
its eight vertices with little effort. Figure 2 illustrates the
partition of a space in a 2-D representation, for example,
Object 1 is registered by Cell I and Cell 2, whereas Object
2 is registered by the four cells.

Celll Cell2

” Object2

Cell3 Cell4

Fig. 2. An exemplary partition of a space with two objects.

3. SELECTING THE POLYGONS WITHIN
OR ACROSS AN OVERLAP REGION

In the second stage of our discrete-time collision detection
procedure, the pairs of possibly collided objects obtained

from the first stage are checked where the collisions happen.

The commonly used method often tests all the constituting
m,; and m; polygons of the pair of objects to filtrate those
polygons across or within the overlap region, and further
tests them in couples. Essentially, its computational
complexity is O(m;m;) and can not be reduced. In this
section, we will propose a method to economize the
computing time of testing all the polygons across or within
the overlap region. In order to relieve the computation load,
we must take advantage of the basic data structures of
computer graphics. That is, we must have the ability to
acquire those polygons that share the same vertex. Besides,
we also need an array to save some sorted information.

3.1 Azimuth-Elevation Mapping

As mentioned in the first stage, the bounding sphere is used
as the minimum volume surrounding an object. It also plays
an important role in this stage. At the beginning, the center
coordinates (Xgnier» Yeomer» Zcenter) Of an object are taken
an average of the maximum and minimum coordinates of
all the constituting vertices. Then the Cartesian coordinates
of each vertex (x,y,z) are transformed into the spherical

coordinates (p,8,4) relative to the center coordinates as:

p= \/x' 2, y' 2,72 R (2a)

g=tan' L, (2b)
X
’ 2 ’2
and ¢ =tan” —x—i— (20)
z

where 0" <6 <360°,0°<¢<180", ¥ =x-x_,,

Y=Y ~Yorirrand 2 =2z-2__.

After this transformation, the maximum value of pis
selected to be the radius of the bounding sphere of the
object. Subsequently, all the vertices are sorted according
to both & and ¢ values, and filled in a 2-D array called
“azimuth-elevation (A-E) map.” Figure 3 represents the A-
E map, each element of which keeps the spherical
coordinates of a vertex.

—8

or| HTTN

I S e R b AN

Fig.3. An azimuth-elevation map in form of a 2-D array.

When the collision between two objects may happen, the
following method is applied to pick out their constituting
polygons that have the possibilities to collide with each
other. Assume the two objects are denoted Object I and
Object 2.

1) Transform the center coordinates of Object 2 into
the spherical coordinates referring to that of Object 1,
then the direction of Object 2 related to Object 1 is
known.

2) From the sphere boundary, the cross angles ¥p and
14 Of Object I are calculated as follows:

16-n
h

If ozr, then yyp =y,4 =cos”

and n=6-ry;
if g<r, then y, =180°, yyy =90°,
and 7 =0 (i.e., select all polygons),
where r, and r, are the radii of the bounding

spheres of Object 1 and Object 2, respectively, and
J is the distance between the centers of the
bounding spheres. Figure 4 shows an illustrative
example for the case of the first if-statement.

3) Select those vertices on the A-E map of Object 1,
whose azimuth and elevation angles satisfy:
Ootjece =¥10 SOSOopjeco +¥ip A Popieciy — Y14 S ¢
Sfosjeco +¥14> 28 Fig. 5 illustrates. If p is less
than 7, then the associated vertex is discarded.

_78-

Object1

Fig. 4. Illustration of two overlapped bounding spheres.

1
180°
,//

N

¢objeca J

\\ //

: —0
0 B,sjeca 360

Fig. 5. An exemplary mapped overlap region between Object!
and Object 2 on the A-E map.

4) Put those polygons containing the selected vertices
to a list.

5) Alternatively take Object 2 as the center and repeat
Step 1 to Step 4 to obtain another list.

6) Use these two lists to execute the polygon-to-
polygon intersection test for finding the collision

position.
¢
180"
/’._\\
f'/ \
/ \
¢abfec12 J T~ the big polygon
.
L
! —0
0 gobjectz 360

Fig. 6. The mapped overlap region across a big polygon.

Here a special case needs to be discussed. As shown in Fig.
6, the mapped overlap region is across a big polygon on the
A-E map. If the big polygon crosses the overlap region of
the two bounding spheres, all its vertices may be outside of
the region. The equation of the first if-statement in Step 2
can solve this problem by enlarging the region to include
all possible vertices,-but it also increases the number of
polygons managed in Step 6. If the object does not have big
polygons, the following manipulation is preferred:

79.

1998 International Computer Symposium
Workshop on Computer Graphics and Virtual Reality
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

-1 rlz +62 —"21
“2ns ®
-rl . 6
In Step 3, if the mapped region is across the boundary of

¢, then the azimuth angle must be increased by 180° to
acquire a correct region, as demonstrated in Fig. 7.

Vig =¥y =COS

8¢ A 180° ’
180 — -
¢obj=c12 L_———l
O) eabjecﬂ 3 60) 0

Fig. 7. 'The resulting overlap region across the boundary of ¢ .

3.2 The Solution to Rotated Objects

The method described in the previous subsection can only
deal with the situation when objects move but do not rotate
in the virtual world. If objects rotate, the direction we get
can not generate the correct region on the A-E map to select
the polygons that possibly collide with those of another
object. The way to solve this problem is that each object
must store the unit vector of three dimensions since the
object was created. When an object performs rotations, its
unit vector is also rotated to acquire the local axes of the
coordinates of the object. For a rotated object, the
transformation of its global Cartesian coordinates into the
spherical ones is accomplished as follows. First, the global
Cartesian coordinates are transformed into the local ones of
the associated bounding sphere, and then transferred into
the spherical coordinates, which preserves the correct
position on the A-E map. By this way, the computing time
of resorting every vertex on the A-E map is saved for the
rotated objects.

4. SPEEDING UP THE POLYGON-TO-
POLYGON INTERSECTION TEST

Prior to this, we obtain two lists of polygons, /ist] and /list
2, from two different objects possessing an overlap region.
These two lists can compose m,;.m; polygon pairs, where m,
is the number of polygons of /ist 1 and m; is the number of
polygons of list 2. In order to detect the occurrence of
collision events, we must test each polygon pair for
interference. In such an exhaustive manner, the
computational complexity is O(m;m;). Following is our
proposed method to reduce the computing time.

4.1 Overlap Test of Polygons Using Bounding
Boxes

We use the bounding box as the auxiliary data structure to
simplify the polygon-to-polygon intersection test. In order
to economize the computing cost, we must choose the

1998 International Computer Symposium
Workshop on Computer Graphics and Virtual Reality
December 17-19, 1998, N.C.K.U:, Tainan, Taiwan, R.O.C.

polygon pairs that seem to be interfered, not all polygon
pairs. To achieve this, we use the “minmax test” of a
hidden-surface algorithm [11]. For each polygon, a data
structure keeps both maximum and minimum of the three
coordinates of the vertices of its bounding box. If the
minmax test is true, then the polygons do not interfere with
each other; but if the bounding boxes do overlap, we are
still not confirmed whether the polygons within them have
interference. In such a case, we must carry out a further
test.

4.2 Crossing Test of an Edge and a Polygon

The idea of a hierarchical test described in [4] is used to
check the interference event occurring in a pair of polygons.
Given two polygons Polyl and Poly2. If the vertices of
Polyl (Poly2) are all above or below the plane formed by
Poly2 (Polyl), there is no edge crossing the plane and no
intersections exist. Otherwise, if the vertices of Poly! lie on
the different sides of the plane formed by Poly2 and vice
versa, then an interference event is discovered. To
determine the side on which a vertex lies, we substitute the
coordinates of the vertex into the polygon’s plane equation
to yield the distance from the vertex to the plane, and check
the sign of the result. Notice that the results of the same
sign indicate the vertices on the same side of the plane. If
the distances have different signs, then the vertices of a
polygon lie on different sides of the plane. If there exist
interference events, we will perform the following test to
ensure whether the two polygons really intersect each other.

4.3 Inside Test of an Intersection Point and a
Convex Polygon

Now we have all the distances from the vertices of a
polygon to another polygon. Assume an edge is connected
by two vertices p;, and p; whose distances from the

situated polygon to another are d; and d;, respectively.
If d; and d; are of different signs, as shown in Fig. 8,

then the intersection point p can be computed below:
Pzpi+Idi](pj_pi)/qdil+ldjl)- @

p;

edge

P
d,!/

Py

polygon

Fig. 8. The intersection point between an edge and a polygon.

Succeedingly, the 2-D Cyrus-Beck algorithm [10] is
extended to a 3-D one to test whether the intersection point
is inside a convex polygon. Because all the vertices are put
counterclockwise to determine the visibility of a polygon,

_80-

the outward normal vector of the edge TP, is calculated
by N, =e,;xN, referring to Fig. 9, where ey is the
vector of the edge ;”’:and N is the normal vector of the

polygon. Then we take the dot product of the outward
normal vector of each edge and the vector from a point p,
on the edge to the intersection point p. If each dot product
is negative for all edges of the polygon through the above
calculations, then the point p is inside the polygon; if not, it
is outside. The crossing line of the two interfered polygons
can be found by recording the cross points of the edges of
the two polygons.

outwardnormn.lvect.orN,
of theedge—p;pj normal vector N
b
N
/ST
P; N'

Fig. 9. [Ilustration of deriving the outward normal vector of
an edge.

4.4 A Divide-and-Conquer Procedure

A divide-and-conquer procedure is devised to moderate the
computing time of collision detection among objects. To
begin with, the bounding boxes of the two lists of polygons
are generated. Then the overlap test using bounding boxes
is applied to check the overlap event. If no overlap occurs,
then the procedure is terminated; otherwise, the minmax
test method is employed to pick out those polygons within
or across the overlap region to compose the other two lists
of polygons. In the same manner, two new generated lists
repeatedly perform the above procedure until the overlap
region does not change.

5. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the proposed methods,
many experiments are made on the discrete-time collision
detection. All the testing programs have been implemented
in C++ language by using the Microsoft Visual C/C++ 4.0
compiler under the operating system Microsoft Windows
NT 4.0 of a personal computer with a Pentium Pro-180
CPU and 64M RAM. Because Windows NT is a
multitasking operating system, we use the Win32 API
function, GetThreadTimes, to get the CPU time during the
execution of the programs [12]. The performance of the
algorithms is tested without considering the time of screen
/O, so that all the programs are developed in the console
mode of Windows NT to simplify coding.

5.1 Performance Test of Object-to-Object
Collision Detection

In the following collision detection experiments, the
object-to-object comparison is accomplished by two

simulation programs. The first program exhaustively
detects all the bounding boxes of objects pair by pair, and
the second program uses the space cell method, but not for
each pair of bounding boxes.

First, the programs randomly generate both the center and
radius of the bounding sphere of each object. The movable
objects are animated along the predetermined path for
1,000 time steps. In these experiments, all the generated
objects are set to be movable. Table 1 and Table 2 show the
experimental results from the exhaustive method and the
space cell method, respectively, on the same simulation
condition. From the results of these two tables, we observe
that the number of the pairs of objects required to compare
with the latter method is much less than that with the former
method. Consequently, the execution time needed for
testing bounding boxes with the space cell method is
considerably less than that with the exhaustive method.

TABLE 1
Object-to-Object Collision Detection by Use of
the Exhaustive Method
Object numbers | Compared pairs | Detected pairs Exc(c;l (::;):S)n me
10 45,000 152 4,806,912
20 190,000 1,095 21,330,672
30 435,000 2,067 51,173,584
40 780,000 3,802 98,641,840
50 1,225,000 5,941 162,834,144
60 1,770,000 8,532 250,960,864
70 2,415,000 10,651 360,117,824
80 3,160,000 13,352 501,921,728
90 4,005,000 17,062 657,745,792
100 4,950,000 22,209 868,849,344
TABLE 2
Object-to-Object Collision Detection by Use of
the Space Cell Method
Object numbers | Compared pairs | Detected pairs Excz:lu (;1:;;1 me
10 1,474 152 2,603,744
20 4,230 1,095 6,509,360
30 11,750 2,067 11,816,992
40 22,657 3,802 18,927,216
50 33,213 5,941 26,438,016
60 43,964 8,532 35,651,264
70 59,581 10,651 47,267,968
80 76,800 13,352 59,285,248
90 94,233 17,062 71,703,104
100 123,727 . 22,209 90,229,744

5.2 Performance Test of Selecting Polygons
for Collision Detection

In the following experiments, a divide-and-conquer method
of selecting polygons for collision detection will be tested,
which is compared with a non-divide-and-conquer method.
Figure 10 illustrates two of experimental objects that are
retrieved from the web site: http://www.3dcafe.com. One is

1998 International Computer Symposium
Workshop on Computer Graphics and Virtual Reality
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

an X-wing, consisting of 1,293 vertices and 2,496 polygons,
and another is a roach with 3,285 vertices and 5,491
polygons. During the testing, two same objects rotate about
their centers and move toward each other to do the
polygon-to-polygon collision detection. With the divide-
and-conquer or non-divide-and-conquer method, the
bounding boxes of the tested objects are updated by -
comparing all their vertices for each time step. Table 3
shows the number of the polygons of two roaches, denoted
Object 1 and Object 2, selected with the two methods
around the occurrence of a collision event. It can be easily
seen that the performance of the divide-and-conquer
method is better than that of the non-divide-and-conquer
one. All the selected polygons are finally passed to the
polygon-to-polygon intersection test and the numbers of
recursive calls are recorded. We can find that the pairs of
polygons required to be checked are decreased or become
zero after the recursive function is carried out. Table 4
shows the execution time of all detected pairs for each time
step when the bounding boxes of the two objects have an
overlap region.

®

Fig. 10. (a) A graphical X-wing with 1,293 vertices and 2,496
polygons; (b) a graphical roach with 3,285 vertices
and 5,491 polygons.

5.3 Performance Test of Bounding Box and
Azimuth-FElevation Map Methods

In this subsection, we compare the efficiency of filtering
out the polygons within or across an overlap region of two
bounding boxes with that of two bounding spheres. Besides
the experimental objects mentioned before, Fig. 11 shows
another experimental object- a ball that is composed of
1,986 vertices and 2,049 polygons. In the following
experiments, two same objects perform rotating
transformations about their centers and move close to each
other. The bounding box and A-E map methods are
compared by taking account of the amounts of execution
time.

...81_

1998 International Computer Symposium
Workshop on Computer Graphics and Virtual Reality
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

TABLE 3
Comparison of the Numbers of Polygons Selected with
the Divide-and-Conquer and Non-Divide-and-Conquer Methods

i Number of selected polygons
Time Number of
step | non-divide-and- divide-and-conquer recursive
no. conquer method method calls
object 1 | object 2 | object 1 | object2
65 0 0 0 0 0
66 0 0 0 0 0
67 0 0 0 0 0
68 0 0 0 0 0
:z 42 g 42 g : Fig. 11. A graphical ball with 1,986 vertices and 2,049
polygons.
71 653 53 653 53 1
72 783 370 178 0 2 of using the graphical ball as a tested object, where two
3] L2 | 1,235 36 1 6 graphical balls have the overlap region for the 70th time
74 1 1346 | 1,725 8 2 6 step. From this figure, we can find the efficiency of the A-E
75_1 1,410 | 2,037 0 20 5 map method is better than that of the bounding box method.
76 1,618 | 2,196 0 102 5 When using the X-wing as another tested object, as seen in
77 | 1641 | 2674 16 0 6 Fig. 12(b), the overlap region detected with the A-E map
78 1348 | 2,759 0 140 8 method is earlier than that with the bounding box method;
79 | 1,241 | 2,600 432 517 5 however, the efficiency of the former is less than that of the
30 1,044 | 2,358 541 725 5 latter before the overlap region of the bounding boxes
31 764 1,946 709 843 3 exists. Figure 12(c) exhibits the test result of two translating
82 651 | 1421 468 905 2 and rotating graphical roaches; since the roach is a very
complicated and asymmetry object, the performance of the
TABLE 4 A-E map method is always worse than that of the bounding
Comparison of the Execution Time of Divide-and-Conquer and box method.
Non-Divide-and-Conquer Methods
‘@
=
! Execution time (100 ns) S 3.00E+06
Tm;costep non-divide-and- divide-and- % 2.00E+06 Py _‘—22 thAj map
) conquer method conquer method g LOOE+06)
65 1,602,304 1,502,160 g R +$)e m“?hdj.gg
66 1,402,016 1,402,016 5 0.00E+00 X me
67 1,502,160 1,602,304 5 61 64 67 70 73 76 719
68 1,502,160 1,502,160 time step no.
69 5,007,200 4,907,056
70 5,207,488 5,107,344
71 8,111,664 5,608,064 @
72 39,456,763 5,407,776 ’é\
73 104,550,336 6,108,784 g8 3.00E+06 '
74 185,266,400 6,108,784 S 2.00E+06 T the AEmap
7 229,630,192 6,108,784 5 method
76 280,903,920 6,409,216 & LOOE+06 Lo G} —#— the bounding
77 354,109,184 6,709,648 3 tiiiiiiiiiiie.,, boxmethod
78 282,506,224 6,409,216 % 0.00E+00
79 251,261,296 23,233,408 61 64 67 70 73 76 79
80 197,584,112 36,852,992 time step no.
81 121,074,096 51,073,440
82 72,303,968 37,754,288 (b)

Figures 12(a)~(c) demonstrate the comparison of the Fig. 12. Time required for pickl:ng out the polygons within or
execution time required for choosing the polygons within across th.e overlap region between (a) two balls; (b)
or across the overlap region by use of the two methods for two X-wings; (c) two roaches by use of the A-E map
the three illustrative objects. Figure 12(a) shows the result and bounding box methods.

._82_

	
	76
	77
	78
	79
	80
	81
	82
	83

