1998 International Computer Symposium
Workshop on Computer Graphics and Virtual Reality
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

CLUSTERING BASED HIERARCHICAL LEVEL-OF-DETAIL
WITH BOUNDED ERROR

Kuo-Chou Tseng and Chin-Ho Cheng

Department of Computer Science and Information Engineering
Fu Jen University, Hsinchuang, Taipei 24205, Taiwan, R.0.C.
Email:{alf85, chcheng}@csie.fju.edu.tw

ABSTRACT

With the fast development of virtual reality (VR), many
people notice that it will add the reality to the VR system if
we can use different levels of detail (LOD) of 3D models to
implement the VR system. In the field of 3D computer
graphics, we usually use polygons to compose a 3D model.
The more polygons we could use, the more detail we could
see. The aim of LOD generation is to retain the important
visual characteristics of the original object, and generate a
whole series of simplifications. In this paper, we will
propose a new algorithm to solve this LOD problem. It is
clustering-based and uses pair-wise mesh merging
techniques to generate new meshes. During the merging
process, we still consider some clustering constraints in
order to preserve geometry primitives. This algorithm is
well proved and tested. It is an efficient and fast algorithm,
and has good reduction rate.
Keywords: computer graphics, level of detail,
simplification, polygon, mesh

1. INTRODUCTION

As soon as 1976, Clark suggested to use simpler versions
of the geometry for objects that had lesser visual
importance, such as those who would be far away from the
viewer [1]. These simplifications are called Level-of-Detail
(LOD). The aim of LOD is not to remove the geometry
primitives and reduce the number of polygons in a 3D
model. Additionally, we still need to consider the trade-off
between frame rate and visual effect, since the 3D model
with less polygons would have poor visual effect. [n order
to reach this object, many researchers devoted themselves
to this field, and proposed many solutions to this problem.
Most of these algorithms tried to simplify an input model
and get a model, which had the fewer triangles.
Additionally, these algorithms also preserved geometry
primitives, preventing from over-simplifying. In this paper,
we will propose a new and efficient algorithm to solve this
LOD problem. It makes use of the technique of pair-wise
merging between mesh and mesh to generate new and
larger meshes. (A mesh is a 3D surface patch with closed
boundary edges, and this surface patch may have holes
inside. For a 3D model, it may be composed of many
meshes.) Then we can straighten the boundary edges of
these merged meshes to get meshes with fewer boundary
edges. After boundary straightening process, we re-
triangulate these meshes to get a simplified 3D model. We
repeat these three steps, and use well-designed data

97

structures to compactly store the simplified model during
each iteration.

Our paper is organized as follows. In Section 2, we
survey the related work. In Section 3, we describe our
algorithm overview. In Section 4, we present the clustering
methods. In Section 5, the boundary straightening technique
is explained. In Section 6, the polygonal triangulation is
discussed. In Section 7, experimental results are illustrated.
Finally, conclusions are given in Section 8.

2. RELATED WORK ,

In 1993, Hinker and Hansen [3] used face-merging tricks
and considered the angle beween two faces. If the angle is
inside their predefined angle tolerance, then merge these two
faces. It will create coplanar polygon sets and re-triangulate
these coplanar polygon sets to get a simplified 3D model.
However, it assumes that degenerated polygons are not
created during the face-merging phase. It therefore does not
check for them. While Keivin and Taylor [5] also took a
similar strategy, but he noticed this problem. The greatest
affinity is that they generate meshes by grouping near
coplanar triangles during each iteration, while we generate
our meshes by grouping near coplanar meshes, not triangles,
during each iteration. There are some well-collected WWW
homepages, which offer rich information about LOD [10, 11,
12].

3. ALGORITHM OVERVIEW

Our algorithm is based on the idea of clustering
techniques. At each iteration, we will take those meshes
generated at the previous iteration as input data. The reason
why we do so is that we can make it converge more quickly,
especially as the number of triangles becomes large. We
think that it is more efficient to use this strategy; and besides,
there are many triangles, which can be merged into coplanar
sets in most 3D models. Many LOD algorithms must re-
triangulate all mesh sets at each iteration, and take these
triangles as input data, which will be processed at next

- iteration. We think we do not have to do so. Therefore, we

generate new meshes by merging previously merged meshes.
Then we perform boundary straightening. In this phase, we
will remove edges that are co-linear in order to reduce the
number of triangles after re-triangulation. Finally, we will
perform triangulation for all processed meshes. These three
phases: clustering, boundary straightening and triangulation
are performed at each iteration. Note that, we must organize
these meshes in the form of tree structure during each
iteration. This tree structure is called /eve! tree. Each node in

1998 International Computer Symposium
Workshop on Computer Graphics and Virtual Reality
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

the level tree represents a mesh. (See Fig.1.)

el = -- - - - - — — =

SO ORC
- OO0

Fig. 1 The level tree structure

3.1 The Construction of Level Trees

During the simplification process, we will record each
mesh’s left and right siblings as well as its parent and
children. A mesh is said to be a parent node in a level tree if
merging its children nodes generates it. The reason we store
this information is that we can easily add new functions to
our algorithm. Once we find a neighbor mesh, which
satisfies the merging constraints, then we can add this mesh
to our level tree. The way we use to construct the level tree
is bottom-up(see Fig.2). The lower level is, the more
detailed model is. The higher level is, the less detailed
model is. The advantage of constructing the level tree is we
can pick an arbitrary tree node and traverse along tree link to
find all neighbor meshes. Additionally, we still can perform
local expansion during the traversal.

QO Ssimplified meshes at previous passes
Simplified meshes at this pass

~<—> Tree link

Mesh List generated
at pass2

Mesh List generated
- ~a passt

|
continue untihconvergent

Fig.2 Construction of a level tree

There are three main phases in our algorithm. They are
clustering, boundary straightening and triangulation. These
three phases will be illustrated in Sections 4, 5, and 6,
respectively.

4. CLUSTERING

Before each clustering process, we first randomly pick a
mesh as a seed mesh. Then in all neighbor meshes of the
seed mesh, we try to find candidate meshes, which satisfy all
clustering constraints. If the angle between the seed mesh’s
normal and picked neighbor mesh’s one is inside the error
tolerance of the current level, then we can merge the seed
mesh with this neighbor mesh. As the level grows, the error
tolerance also increases. Therefore, the reduction rate of
simplification will increase. The error tolerance space will
form a cone. Each time when we finish pair-wise merging,

we must retrace the new boundary edges. Assume that two
meshes M, and M. will be merged, and the numbers of

boundary edges are N, and N, respectively. We find that

each of the new boundary edges will be visited once, while
others will be visited twice. We remove edges which are
visited twice, and retrace boundary edges. Therefore, it takes

O(N:+N,) time to retrace boundary edges. That is linear

time. The advantages of this method are that it is simple, fast
as well as it can find all holes in the mesh. After finding all
polygons, which compose this mesh, the polygon with
longest perimeter is the boundary edges, and others are holes.
Compared with the binary search method proposed by
Hinker and Hansen [3], our method is better. Since the
binary search method spends O(NIgN) time to sort all edges
first, then it takes O(NIgN) time to find all polygons.

5. BORDER STRAIGHTENING

After completing clustering phase, we will proceed to do
border straightening. The purpose of border straightening is
that it greatly simplifies the input model by straightening
boundary. Many strategies can be adopted. For example, we
can use the error distance strategy mentioned by Kelvin and
Taylor [5] to measure whether a vertex can be discarded or
preserved. From this viewpoint, two methods can be used,
one of which is called ‘maximum edge merging’, and the
other is an aggressive method. For the maximum edge
merging strategy, once we find a common
segment(polyline), we first connect the head and tail
vertices of this segment. However, this will cause over-
simplifying; therefore, we should do edge-split to avoid this
problem. For the aggressive strategy, if some vertex’s error
distance is greater than the threshold, then we will
subdivide this reduced segment. The cost of this aggressive
strategy is more expensive than maximum edge merging
strategy, but the simplified result is better than maximum
edge merging strategy is. In this paper, we calculate the
angle between two consecutive edges. If the angle is greater
than our predefined angle tolerance, then we preserve the
common vertex of these two consecutive edges. Otherwise,
we discard it. With the increasing of level, the angle
tolerance also increases. As a result, the reduction rate
increases.

6. TRIANGULATION

A triangulation is a partition of an arbitrary polygon into
many triangles. Planar triangulation is an important topic in
computational geometry [8, 9]. Many algorithms have been
proposed to solve this problem [7, 9]. For LOD
applications, we always find that there are many polygons
with holes, and have to triangulate those polygons, But
most of these triangulation algorithms are unable to solve
this problem for those polygons with holes. If we want to
use such kinds of algorithms to solve the triangulation
problem, we must first decompose the polygon with holes
into several pieces of polygons, which have no holes in
them. Then, apply any of these triangulation algorithms for
those output polygons with no holes. For example, the
Kelvin and Taylor’s superface approach follows this way[5].

98

It first takes O(V 2) time to decompose an arbitrary N-gon

into star-polygons- (with no holes). Then, apply any
triangulation algorithm for these star-polygons. It takes time

no more than O(Nz) time. That is inefficient. Another

triangulation method is taken by Hinker and Hansen[3]. It
sequentially visits the boundary, and stores triangles as they
are discovered. This algorithm involves examining whether
a triangle is inside a polyon, and this examining work
spends O(Y) time. The time complexity of this triangulation
algorithm is O(N 1). It is also inefficient. In this paper, the
triangulation algorithm we use is proposed by Hartel and
Mehthorn[2]. It is a sweep-line algorithm and can

efficiently triangulate any polygon with holes. It takes
O(NIgN) time and O(N) space.

7. EXPERIMENTAL RESULTS
We use two test models for experiments. The platform is
Sun UltraSparcll 200MHz with one CPU installed. The
experimental results are illustrated in Sections 7.1 and 7.2.

7.1 Experiment 1

The input model is a cow composed of 5804 triangles
(Fig. 3). First, we initially use the error tolerance with 7 /20
for this original cow model, and show the experimental
result in Table 1.

1998 International Computer Symposium
Workshop on Computer Graphics and Virtuai Reality
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Fig.3: The original cow model with 5804 triangles.

When the level increases, the error tolerance increases,
too. As the program converges at pass 4, the error tolerance
is 4 7 /20 and the reduction rate reaches 30%. The
simplified cow model in each pass is illustrated in Fig.4 ~
Fig.7. These models are drawn by meshes only, and their
corresponding triangulated models are shown in Fig.8 ~
Fig.11.

Pass Number of Meshes Triangles |Reduction Rate Error Tolerance
Initial {5804 5804 - -

1 3493 5646 97% 7/20

2 1831 4313 74% 27120

3 904 2772 48% 3m/20

4 467 1746 30% 4720

Table 1: Total time : 153 seconds (Cow)

gg

1998 Internationai Computer Symposium
Workshop on Computer Graphics and Virtual Reality
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Fig. 4: (pass 1) kThe number of meshes is
3493,and the error tolerance is 7720,

e e Cetns o

Fig.5: (pass 2) The number of meshes is /83,
and the error tolerance is 27/20.

e

Fig.G: (pass 3)The number of meshes is 904;
and the error tolerance is 32/20.

e

Fig.7: (pass 4)The number of meshes is 467,
and the error tolerance is 4720.

-100-

Fig.8: After triangulating the simpliﬁd cow in

Fig.4, we get this model with 5646 triangles.

Fig. : After triangulating the smphﬁe m
Fig.5, we get this model with 4313 triangles.

Fig.10: After triangulating the simplified cow
in Fig.6, we get this model with 2772 triangles.

Fig.11: After triangulating the simplified cow in
Fig.7, we get this model with /746 triangles.

1998 International Computer Symposium
Workshop on Computer Graphics and Virtual Reality
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Pass |Number of Meshes Triangles |[Reduction Rate Error Tolerance
Initial |5804 5804 - -
T [2809 5402 93% 7110
2 1121 3351 58% 2 /10
3 425 1796 30% 37/10

Table 2. Total time: 150 seconds (Cow)

Fig.12: The original Fandisk model with 3392 triangles

Pass Number of Meshes Triangles |Reduction Rate [Error Tolerance
Initial 3392 3392 - -

1 1407 3098 91% 7/10

2 499 1734 51% 27/10

3 195 899 26% 37/10

Table 3. Total time: 91 seconds {Fandisk)

Note that, as the error tolerance increases, the area of
a mesh increases, too. However, the number of meshes
decreases. That is because our simplified method is based
on the mesh-merging strategy, not triangle-merging.
Therefore, as the level increases, not only does the mesh
number decrease, but also the edge number decreases. As
a result, we get a simplified model. -

Second, we also use the error tolerance with 7 /10 for
this original cow model, and show the experimental result
in Table 2.

From Table 2, we can observe that, after three passes,
the reduction rate reaches 30%. Compared with the
experimental result shown in Table 1, the program with
larger initial error tolerance converges within less passes.

7.2 Experiment2

The second test model is called ‘Fandisk’ with 3392
triangles(Fig. 12). We initially use the error tolerance with
7 /10 for this original model, and show the experimental
result in Table 3.

After three passes, the reduction rate reaches 26%. The
simplified Fandisk model in each pass is illustrated in
Fig.13 ~ Fig.15. These models are drawn by meshes only,
and their corresponding triangulated models are shown in
Fig.16 ~ Fig.18.

-101-

1998 International Computer Symposium
Workshop on Computer Graphics and Virtual Reality
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

~_~,_____._____.___...._.______..__________..J
Fig.13:(pass/) The number of meshes is 1407,
and the error tolerance is #/10.

t
H
H

e e e —]
Fig.14:(pass2) The number of meshes is 499,
and the error tolerance is 277/10.

Fig.lS:(pass.?)‘ The number of meshes
195,and the error tolerance is 3n/10.

-102-

Fig.16: After triangulating the simplified
Fandisk in Fig.13, we get this model with
3098 triangles.

Fig.17: After triangulating the simplified
Fandisk in Fig.14, we get this model with
1734 triangles.

Fig.18: After triangulating the simplified
Fandisk in Fig.15, we get this model with
899 triangles.

	
	97
	98
	99
	100
	101
	102
	103

