

A Reusable Software Architecture for

Context-Aware Applications

Feng-Pu Yang, Fang-Chen Hwang, Wei Zhang Hu, Yu-Sheng Lai,
Hewijin Christine Jiau and Pau-Choo Chung

National Cheng Kung University Electrical Engineering,
Industrial Technology Research Institute
e-mail: jopwil@nature.ee.ncku.edu.tw

Abstract

As the popularity of ubiquitous computing and

pervasive computing, the goal of building smart

home applications becomes practical. Con-

text-awareness is a key feature of good smart home

applications, but many context-aware features have

been hard-coded into traditional applications. The

hard-coded features cause the slow development of

smart home application, and also let the smart home

application become inflexible to varying when the

requirement is changed. This paper aims to improve

the productivity of the development of smart home

application by increase the possibility of both reuse

and adaptation. By analyzing the variations occurred

within smart home domain, we make those possible

variations as configurable tuning points. Those varia-

tions can be adapted through configuring tuning

points, and there is no need to modify the program

frequently when the situation is changed.
Keyword：context-aware, smart home, configuration,
software architecture

1. Introduction

The popularity of ubiquitous computing [10],

where computer moves off the desktop and into the

environment, and pervasive computing [4], which

provides anytime and anywhere computing by de-

coupling user from device, have prompted the prolif-

eration of context-aware applications [7]. Such con-

text-aware application, which can adapt to changes in

the environment and human’s activities dynamically,

can be used in various application domains, such as

smart homes. A smart home [5] uses networked sen-

sors, devices, and appliances to build an intelligent

environment in which many features in the home are

automated and where devices and services seamlessly

cooperate to support household tasks. An envisioned

scenario of smart home application would be like that:

Grandmother wakes up in the middle night, and she

goes through hallway to bathroom. The system senses

that the hallway is dark, and turns on the dim light

instead of dazzling light because the time context is

midnight. As the scenario mentioned above, smart

home system can provide proper and customized ser-

vices for each home member automatically by the

using of context-awareness. However, those con-

text-aware features have been hard-coded into tradi-

tional context-aware applications, which make de-

velopment slow and inflexible to varying when the

requirement is changed. This paper aims to speed the

development process by enhancing the reusability

and also provide flexibility against the requirement

changes within smart homes application domain.

2. Catalog of Variations

As mentioned above, context-aware features

have been hard-coded into traditional context-aware

applications. Many researchers dealt with this prob-

lem by introducing configuration into their design.

However, their configurations are still entangled with

their usage, and developers who want to configure

such a system need to dig into the codes. For example,

the work of S. Helal et al. [6] is the typical paper ad-

dressed the hard-coded problems by inventing an

architecture, which can help context-aware applica-

tion developers to build their applications on top of

existed applications. This approach increases the pro-

ductivity of individual developers through a kind of

reuse, but it still ignored a serious problem of adapta-

bility. The power of this architecture is to accumulate

the reusable context-aware applications for further

developers to develop with reuse. The bigger the

number of accumulated applications causes the

higher the possibility of reuse. However, the power

will reduce dramatically when the system needed to

be adapted to other environments. Because the archi-

tecture of [6] did not take the varieties of environ-

ments and home members in advance, the developed

applications entangle the functionalities with a spe-

cific setting of environment and home member. Peo-

ple who needed to adapt this software to a new set-

ting of environment and home member should pay

considerable effort to identify the related portions and

then modify them. In other words, the reusability ob-

tained under such kinds of architecture is limited

within the boundary of a specifically predefined en-

vironment setting. When the boundary is shifted, the

architecture can not promise the reusability any more.

To preserve the benefits of accumulated reusability

across the boundary to some extend, researchers need

to consider more on possible variations carefully.

Current researches [8] [5] [6] [1] mainly focus on the

extensibility issues, but they are unconscious of the

adaptability issues. From the perspective of mainte-

nance staffs, the current researchers and this paper

both focus on preventive maintenance. The difference

is that current researchers focus only on the aspect of

easing effort of perfective maintenance in the future

and this paper focus on the aspect of easing both the

effort of perfective and adaptive maintenance in the

future [13].
 In order to deal with such problems, the main

principle of this paper is to separate configuration

from use. Therefore, we need to identify the varia-

tions within smart home domain, and then extract

them outside to serve as tuning points. By separating

these tuning points outside, the developed system is

able to generalize to other settings with much fewer

efforts then before.

After the analyzing a series of smart-home sce-

narios, we introduce two more variations, environ-

ments and home members, in addition to the sensors

and services. Sensors and services can not be linked

directly without taking environments and home

members into consideration. Those variations will be

discussed through section 2.1 to section 2.4.

2.1. Variations of Sensors

Location is an important context in almost all

context-aware applications, and there are much more

than one kind of sensors can provide context of loca-

tion. Active badge [2] is a good candidate of loca-

tion-related sensing. Each active badge is associated

with a unique identity, which is broadcast as part of

the beacons emitted by the badge worn by a home

member. The badge infrastructure consists of a group

of badge readers that are deployed in various loca-

tions in the smart home environment. However, the

level of resolution may not be appropriate for many

applications, which require even finer granularity.

Such kind of applications may need some other sen-

sors such as supersonic sensors. No matter what sen-

sors are in use, almost every smart home application

needs a location sensor, but the interpretation mecha-

nisms of those location sensors are hard-coded into

code in traditional context-aware applications. That

causes two serious problems. First, such kinds of de-

sign force developers to recreate solutions to prob-

lems that are already solved. Because the sensor in-

terpretations are hard-coded with what the applica-

tions want to do. The effort to refactor such code to

reusable code may be more than the effort to write

from scratch. Second, such kinds of applications need

to be reprogrammed when the location sensors are

changes, such as changing from active badge to su-

personic sensor.

2.2. Variations of Environments

To deal with the variation of environment, de-

velopers need to carry out the adaptive maintenance

[13], which means software maintenance is per-

formed to make a computer program usable in a

changed environment. A smart home environment’s

variations come from the scale of house, the internal

design of house, the deployment of sensors and the

cultures of using each zone of a house. An extreme

example of scale variation is the house of Bill Gate.

For example, Bill Gate may need lots of location

sensors cooperate to get overall information of his

living room under such a large scale. Internal design

is another factor, which may be correlated with the

cultures of using each zone of a house. These two

kinds of variations affect the treatment of sensor data

and the style of services provision. For example, the

locations of sensors are strongly influenced by the

home environment in both positive and negative

ways. Some internal designs may limit the available

spaces for sensor deployment, and some designs will

be suitable for deploying specific kind of sensors. All

the sensor deployments with respect to scales, the

internal design and culture of usage form the envi-

ronment of smart home application. One of this pa-

per’s goals is to prevent those environment variations

being hard-coded into smart home application. The

other goal is to reduce the effort of adaptive mainte-

nance when the home environment is change through

enhancing reusability.

2.3. Variations of Home Members

The variations between home members cause

the interpretation of the same context becomes dif-

ferently. For example, the same temperature may

have different interpretations for adults and elders.

Take the variations of home members into considera-

tion will let the behavior of system become more

adaptive to each home member. In addition to pro-

vide adaptive services to each home member, another

important concern is to keep home member with

minimal disturbance when system provides services.

Traditional applications usually deal with this prob-

lem by introducing user profiles [4] [9] [13]. This

approach has been proven to be practical, and we use

this approach to record the variations of home mem-

bers for adapting to each home member and mini-

mizing disturbance.

2.4. Variations of Services

The types of services provided by service pro-

viders would be influenced by many factors, such as

demands of their target users. Because different hu-

man in different environments will have different

needs, and the corresponding services are sought to

deal with different situations. If developers do not

take the variations of services into account, they will

pay lots of effort when the demand is changed. For

example, they may need to redeploy sensors, to write

the suitable program to interpret the sensors’ data and

to link those interpreted data with newly deployed

actuators. In order to prevent deploying duplicated

sensors and programming duplicated code, we iden-

tify some general commonalities and variations of

information that services needed under the domain of

smart home. Those identified information can be

viewed as the guidance for the context-aware engine

to generate the useful information. The service pro-

viders can find mostly all information they needed

from information generated by guidelines.

3. Separation of Concern

In addition to separate configurations from use,

this paper aims to increase the reusability of con-

text-aware system. This section introduces the ap-

proach of reusability enhancing by separation of

concern between variations.

There are some dependencies between the

variations mentioned in section 2. For example,

auto-control services of air conditioner usually can

not perform without the assistance of thermometer.

That is an example of dependency between sensors

and services (the available sensors will affect what

services the system can provide to some extend).

Dependency between sensor and environment is like

that the interpretation of the location sensors of a

villa may be different with the location sensors of an

apartment. If we just put all of those variations into

one configuration file in a flatten structure, the modi-

fication of one portion of configuration will affect

other portions. This phenomena is like the change

propagate problem in software maintenance, and we

need to reorganize the configuration to make sure the

change will only happen locally. By analyzing the

dependencies between those variations, a hierarchic

structure is built to manage and organize the varia-

tions. Figure 1 describes the separation of concerns;

Control Parameter deals with the variations of sen-

sors, Composite Constrain deals with the variations

of environment and Core Ontology deals with the

variations of services as well as User Profile which

deals with the variations of home member.

3.1. Primitive Context and Control Parameter

The context comes directly from sensors with

proper interpretation specified in the Control Pa-

rameter is called Primitive Context. Control Pa-

rameter records the interpretation between sensor

data and Primitive Contexts. Primitive Context

encompasses the information of sensed type, sensor

ID, sensor location and sensor data. The sensed data

is the interpreted result of sensor’s raw data, and the

interpretation rules are defined in the Control Pa-

rameter. For example, the thermometer senses the

temperature of 80℃ may be interpreted as hot be-

cause the Control Parameter defines temperature

which is higher than 50℃ as hot. Control Parame-

ter reduces the burden of the following processing by

giving basic meaning of raw data. In addition to re-

duce the stream of data provided by the sensor, Con-

trol Parameter also helps the further stages to de-

termine which Primitive Contexts are relevant based

on those basic meaning. The variations of sensor are

taken into consideration in Control Parameter.

3.2. Composite Context, Composite Constrain
and User Profile

The context, which is composed of two or more

Primitive Contexts under constrains specified by

Composite Constrain is called Composite Context.

The ability of grouping relevant stimulus and ignor-

ing irrelevant stimulus is important for human to be

Primitive
Context

Composite
Context

Aware
Context

Core Ontology

Composite
Constrain

Control
Parameter Sensor

Data

User
Profile

Figure 1: Conceptual Model of context-awareness

applications.

aware of environment changes. If we want computers

to cope with our daily life, the first thing we should

do is to make the computer be able to group mean-

ingful stimulus. There is a need to group relevant

Primitive Contexts by some properties such as time,

locations, and home member ID, and it is often the

case that a service requires multiple Primitive Con-

texts which possessed a common value of a specific

property. For example, the Primitive Context of

“Home member #1 enters living room” and the

Primitive Context of “the light of living room is off”

can be combined as a Composite Context of “Home

member #1 enters living room where the light is off”,

and such a combined context may be useful for light

control services. Living room is the common prop-

erty value for these two Primitive Contexts to be

combined.

The Composite Constrain records constrains

of how to group relevant Primitive Contexts and

ignore irrelevant Primitive Contexts. Composite

Constrain is defined on grouping relevant Primitive

Contexts such as time, location and home members

ID. Composite Constrain contains the information

of time, involved home member, and location, which

are related to the grouping. The variations of envi-

ronment are taken into consideration in Composite

Constrain.

To generate Composite Contexts needs the

supporting information of home members. In order to

take the variation of home members into concern, the

user profile is used for providing information of each

home member. This approach will let the behavior of

system become more adaptive to each home member.

In addition to provide adaptive services to each home

member, the other advantage of using user profile is

to keep home member with minimal disturbance

when the system provides services. For example, it is

not comfortable if home members need to answer a

lot of questions, such as the preference of tempera-

ture and brightness, before entering their bedroom.

Current applications of user profile [4] [13] [9]

can be divided into two types. Type I records con-

figuration settings and other data associated with a

user, and type II records demographic information

and statistics about that user's behavior. The purpose

of using type I user profile is to prevent the user be-

ing aware of environment change by providing loca-

tion transparency. However, that is not suitable to the

context-aware application, which needs to be aware

of environment changes. Type II user profile is more

suitable for the purpose of context-aware applications.

The variations of home members are taken into con-

sideration in Composite Constrain with the assis-

tance of user profile. The user profile used by this

paper belongs to Type II.

3.3. Aware Context and Core Ontology

Aware Contexts are the inferred contexts,

which occur when some composite contexts are in the

same conditions specified by Core Ontology. For

example, the Aware Context “Housebreaking when

the occupants are absent” is occurred when the

Composite Contexts “No home members at home”

and “Housebreaking” coexisted concurrently. The

conditions of Aware Contexts occurrence are speci-

fied in Core Ontology.

Human can not experience all things in the

world, but he can learn from experience. By sharing

self-experience with each other, human learn things

more efficiently. Sensor-intensive approach gives

computer the capability to experience the world. That

means it is possible for a computer to learn some-

thing from its surround environment. However, it is

time-consuming to let computer learn by itself from

scratch. In order to make computer become ready for

use as soon as possible, we build a Core Ontology to

accumulate experience of human beings for com-

puters. Human can share their experiences with com-

puters through using Core Ontology, and computers

which are aware of Core Ontology can help human

in many different aspects in a human-liked way.

Core Ontology can be extended through up-

dating or being added locally. The organization which

is responsible for the Core Ontology management

should provide the services of Core Ontology up-

dating, Core Ontology synchronization…etc.

4. System Architecture

As the Figure 2 depicts, the whole system is

composed of four functional modules, which are

Context Acquisition module, Context Aggregation

module, Inference Engine module and Aware Con-

texts and Service Mapping module. Two Databases,

Current Environment DB (database) and Core

Ontology DB, are used to support functional modules.

The responsibility of Context Acquisition module is

to transform raw data to Primitive Contexts. Those

Primitive Contexts generated by Context Acquisi-

tion module are combined by Context Aggregation

module to generate meaningful Composite Contexts.

Inference Engine receives those generated Compos-

ite Context and then deduces more information,

which called Aware Context, out of them. Finally,

Aware Contexts and Service Mapping module

maps interested Aware Context to services by the

demands of service providers. In this section, the

main functional modules are explained sequentially

below.

4.1. Context Acquisition

Sensor sends the measured or detected data to

the Context Acquisition module. Context Acquisi-

tion module interprets the receiving data by refer-

Figure 2: System architecture

encing the corresponding Control Parameter from

the Control Parameter Repository. The interpreted

data are filled in the corresponding template, which

extracted from the Primitive Context Template

Repository, and sent as a Primitive Context to

Context Aggregation module for further processing.

Context Acquisition module provides a sepa-

ration of concerns between how Primitive Context is

acquired and how it is used by Context Aggregation

module. The domain experts can use Control Pa-

rameters to specify the transformations between

sensor data and Primitive Contexts. When the sys-

tem is migrated to a new environment, some Control

Parameters can be reused with, if any, few modifi-

cations when the new environment has similar sen-

sors in use.

4.2. Context Aggregation

Context Acquisition module sends the Primi-

tive Contexts to the Context Aggregation module.

Context Aggregation module groups the arrived

Primitive Contexts by time, location, home member

ID and other grouping properties with the assistance

of underlying grouping mechanisms. Context Ag-

gregation module checks the occurrence of mean-

ingful combinations within current Primitive Con-

text set by referring to Composite Constrain, which

is loaded from Composite Constrain Repository.

The generated meaningful combinations are filled in

the corresponding template, which extracted from the

Composite Context Template Repository, and sent

as a Composite Context to Inference Engine for

further processing.

In order to support the grouping operation on

such properties, there is a need to design correspond-

ing mechanism for each operation. Those corre-

sponding mechanism are encapsulated in the form of

components, which are deployed in Context Aggre-

gation module to support new grouping operations. A.

K. Dey [1] had mentioned that with no support for

aggregation, an application has to use a combination

of subscriptions and queries on different Primitive

Contexts to determine when these conditions are met.

It is unnecessarily complex and is difficult to modify

if changes occur.

4.3. Inference Engine

Inference Engine receives Composite Con-

texts from Context Aggregation module. The Core

Ontology is loaded from Core Ontology DB. When

those incoming Composite Contexts match the fire

condition defined in the Core Ontology, the corre-

sponding Aware Context will be fired. Aware Con-

texts are sent to the Aware Context and Service

Mapping module for further processing.

 Inference Engine is responsible to interpret the

current situations in terms of high-level concepts,

which are understandable by human. The Core On-

tology consists of many Composite Context nodes

and relationships between those Composite Context

nodes as well as firing conditions of Aware Contexts.

The composers of Core Ontology need not to specify

all the relationships between Composite Context

nodes explicitly, the Inference Engine will infer the

correct relationships automatically. The inferred Core

Ontology is then used for runtime operation. Each

incoming Composite Context is classified to corre-

sponding Composite Context node of Core Ontol-

ogy instance, and the relationships between Compos-

ite Context nodes are monitored by the Inference

Engine. When the occurred relationships match any

fire condition, the corresponding Aware Context will

be fired.

4.4. Aware Context and Services Mapping

Inference Engine generates Aware Contexts to

Aware Context and Service Mapping module. The

Aware Context and Service Mapping module maps

each Aware Context to the services which need the

aware context by referring the Mapping Rule stored

in Mapping Rule Repository.

Inference Engine exposes all the possible

Aware Contexts for services’ usage. The service

providers can link their services to corresponding

Aware Contexts by composing their Mapping Rules.

When the service providers want to provide new ser-

vices, what all necessary they should do is to modify

the Mapping Rules.

5. Related Works

Researches [8] [5] [6] [1] are also aware of the

importance to deal with some variations which men-

tioned in section 2. For example, A. Schmidt et al.

have used cue to deal with the variations of sensors

[8]. The concept of cues provides an abstraction of

sensors. Each cue is dependent on single sensor; but

using the data of one sensor, multiple cues can be

calculated. When including new sensors with differ-

ent characteristics, only changes in the corresponding

cues must be adapted, cues are also a way to reduce

the stream of data provided by the sensor. The role of

cue is similar as the Control Parameter in this paper,

but A. Schmidt et al. did not take other variations into

considerations. T. Gu et al. proposed a hierarchical

context ontology [5], which separates the domain

specific ontology from the common high level ontol-

ogy. Instead of dealing with domain, this paper deals

with environment directly. The reason of such a de-

sign decision is that the possible application domain

of a smart place is not usually predictable, but the

application domain must depend on its environment

to some extend. T. Gu et al. did not take sensor varia-

tions into concern, and what they have mentioned is

the platform independent because of using Java. De-

velopers who want to apply the architecture should

take the variations of sensors into consideration. The

Gator Tech Smart House [6] focus on creating a smart

apace which has the ability to evolve as new tech-

nologies emerge or as an application domain mature.

They have wrapped the existed sensors to incorpo-

rating some new sensor technologies, which called

smart sensors. In comparison with this paper, the Ga-

tor Tech Smart House also extracts sensor variations

and wrapped those variations in the form of OSGi

service. Such approach can prompt reusability as

what this paper prompted, but the approach can not

provide flexibility as this paper provided. A. K. Dey

proposed an architecture support [1] to deal the varia-

tions of sensors. A. K. Dey provided many context

toolkits for building context application, which can

fulfill the first goal of this paper to build con-

text-aware application with high productivity. How-

ever, the learning curve of context toolkit is higher

than the learning curve of tuning points mentioned in

this paper. As the context toolkits framework be-

comes larger and larger, the learning effort would

increase dramatically. The advantage of this paper in

comparison with the related works is that this paper

deals with those variations explicitly. By a systemi-

cally analysis of each variation, the design can sur-

vive well against the changes of those variations.

Separating those variations from common features

can also prompt design with reuse.

6. Conclusion and Future Work

The variations of services, environments and

members as well as sensors are analyzed for separat-

ing the configuration from use. Because the varia-

tions are not orthogonal, the conceptual model is de-

signed in a hierarchical style based on the dependen-

cies between those variations. Software architecture

is presented to realize the conceptual model of this

hierarchical design, which has three levels of context

processing. The three levels of context processing are

context acquisition, context aggregation and infer-

ence engine, and their behaviors can be tuned by con-

figuring corresponding tuning points, which are

Control Parameter, Composite Constrain and

Core Ontology. The main purpose of Control Pa-

rameter is to deal with the variation of sensors and to

separate the use of Primitive Context from the detail

of Primitive Context acquisition. Composite Con-

strains is used to aggregate meaningful context com-

binations and to filter out irrelevant context combina-

tions. Core Ontology is a record about human ex-

periences of smart home environment, and it can be

accumulated to be a knowledge-rich database which

can be used across many domains in the future. In

addition to those tuning points mentioned above, the

variations of home members are also taken into ac-

count through the use of user profile. By separating

variations into configurable tuning points, the ap-

proach of this paper increases the flexibility. This

paper also enhances reusability by introducing hier-

archical modulation of tuning points. Next step will

be deploying such a context-aware smart home sys-

tem in physical houses, and carry out some experi-

ments for evaluating the degree of improvement in

flexibility and reusability.

7. Acknowledgments

This paper is a partial result of Project B34BSP1300
conducted by ITRI under sponsorship of the Ministry
of Economic Affairs, R.O.C.

8. Reference

[1] A. K. Dey, “Providing Architectural Support for
Building Context-Aware Applications,＂PhD
thesis, College of Computing, Georgia Institute
of Technology, Dec. 2000.

[2] D. J. Cook and S. K. Das,“Smart Environ-
ments: Technology, Protocols and Applica-
tions,＂ Wiley-Interscience, Oct. 2004.

[3] D. Garlan, D. Siewiorek, A. Smailagic and P.
Steenkiste, “Project Aura: toward Distrac-
tion-free Pervasive Computing,” IEEE Perva-
sive Computing, vol. 1, no. 2, pp. 22-31,
April-June 2002.

[4] G. P. Eleftheriadis and M. E. Theologou, “User
profile identification in future mobile telecom-
munications systems,＂ IEEE Network, vol.
8, no. 5, pp. 33 -39, Sept.-Oct. 1994.

[5] T. Gu, H. K. Pung and D. Q. Zhang, “Toward
an OSGi-based Infrastructure for Con-
text-Aware Applications,＂ IEEE Pervasive
Computing, vol. 3, no. 4, pp. 66-74, Oct.-Dec.
2004.

[6] S. Helal, W. Mann, H. El-Zabadani, J. King, Y.
Kaddoura and E. Jansen, “The Gator Tech Smart
House: a Programmable Pervasive Space,”
IEEE Computer, vol. 38, no. 3, pp. 50-60,
March 2005.

[7] Schilit, Bill N., Norman I. Adams and Roy Want
(1994). “Context-Aware Computing Applica-
tions,” 1st International Workshop on
Mobi-Comp. Systems and Applications, pp.
85-90 Dec. 1994.

[8] A. Schmidt and K. van Laerhoven, “How to
Build Smart Appliances?,” IEEE Personal
Communications, vol. 8, no. 4, pp. 66-71, Aug.
2001.

[9] S. E. Middleton, N. R. Shadbolt, and D. C. De
Roure, “Ontological User Profiling in Recom-
mender Systems,” ACM Trans. on Information
Systems, vol. 22, no. 1, pp. 54-88, Jan. 2004.

[10] M. Weiser, “The Computer for the 21th Cen-
tury”, Scientific American, vol. 265, no. 3, pp.
94-101, Sept. 1991

[11] U. Hansmann, L. Merk, M. Nicklous, T. Stober,
“Pervasive Computing Handbook, ”
Springer-Verlag, 2001

[12] Y. Zhiwen and Z. Xingshe, “TV3P: An Adap-
tive Assistant for Personalized TV,” IEEE Trans.
on Consumer Electronics, vol. 50, no. 1, pp.
393-399, Feb. 2004.

[13] “IEEE Std. 1219-1998: IEEE standard for
software maintenance,” IEEE Std, Oct. 1998.

