
 1 

An Effective Dynamic Task Scheduling Algorithm for Real-time Heterogeneous 
Multiprocessor Systems 

Wen-Pin Liu, Yi-Hsuan Lee, and Cheng Chen* 

Department of Computer Science and Information Engineering 
National Chiao-Tung University 

1001 Ta Hsueh Road, Hsinchu, Taiwan, 300, Republic of China 
E-mail: {wpliu, yslee, cchen}@csie.nctu.edu.tw 

 
Abstract 

Real-time systems require both functionally correct 

executions and the results that are produced in time. 

Fault-tolerance is an important requirement of such 

systems, due to the catastrophic consequences of not 

tolerating faults. In this paper, we propose an effective 

Load-driven Adaptive Scheduling Algorithm (LASA) to 

dynamically schedule real-time tasks with fault-tolerance 

used in heterogeneous multiprocessor systems. In LASA, it 

has an adaptive mechanism to monitor the processor 

utilization and determine the number of backup copies 

been scheduled. Besides, we also design a task deferment 

mechanism to improve the utilization of reclaimed 

computing resources from redundant copies. According to 

our simulations, LASA makes a trade-off between the 

guarantee ratio and the reliability of fault-tolerance, and 

obviously outperforms other related methods. 

Keywords: Heterogeneous multiprocessor, Real-time, 

Task scheduling, Adaptive, Fault-tolerant 

 

1 Introduction 

Real-time systems are defined as those systems in 

which the correctness of the system depends not only on 

the logical result of computation, but also on the time at 

which the results are produced [1]. In such systems, the 

real-time task scheduling can be performed either 

statically or dynamically. Since there does not exist an 

optimal scheduling algorithm for dynamically arrival 

tasks, many heuristic approaches have been evolved [1, 4, 

8, 11-12]. 

Multiprocessor systems have emerged as a powerful 

computing means because of their capability for high 

performance and reliability for the real-time applications 

[8, 13-14]. Due to the nature of real-time tasks, several 

techniques have evolved for fault-tolerant scheduling [2, 4, 

10]. In multiprocessor systems, fault-tolerance can be 

provided by scheduling multiple versions of tasks on 

different processors. Among different schemes for 

fault-tolerant scheduling, we choose the Primary/Backup 

(PB) scheme which is the most popular one. 

In recent years, the adaptation mechanism opens up 

many avenues for further research in the dynamic 

scheduling problem [14]. The concept of adaptation 

mechanism is to allow the scheduler dynamically adjust 

its scheduling strategy, which can flexibly satisfy the 

different requirements under different circumstances. In 

this paper, we propose Loading-driven Adaptive 

Scheduling Algorithm (LASA), which will adjust the 

number of backup copies been scheduled based on current 

processor utilization. Clearly, LASA introduces a 

trade-off between rejecting fewer tasks and risking the 

fault-tolerance. Besides, we add a waiting queue to collect 

unschedulable tasks instead of directly reject them. When 

the computing resources are reclaimed after deallocating 

backup copies, tasks in the waiting queue can be 

rescheduled to improve the overall schedulability. From 

the simulation results, our LASA outperforms other 

related algorithms. 

The remainder of this paper is organized as follows. 

Section 2 describes the system model and related work. 

mailto:@csie.nctu.edu.tw


 2 

Design issues and principles of LASA are introduced in 

section 3. In section 4, some performance evaluations are 

given. Finally, we give some conclusions in section 5. 

 

2 Fundamental Background 

2.1 System, Task, and Fault Models 

The heterogeneous multiprocessor system consists of 

m application processors P1…Pm connected by a network 

and one dedicated scheduler. The communication 

between the scheduler and application processors is 

through dispatch queues. Real-time tasks arrive at the 

scheduler and executed separately on all application 

processors. The Spring system is such an example [3].  

Because [17] have proven that precedence constraints 

can be actually removed, real-time tasks are usually 

assumed non-preemptive, non-parallelizable, aperiodic, 

and independent [1, 4, 8, 11-15]. Every task Ti has 

following attributes: arrival time (ai), deadline (di), and 

computation time on processor Pj (cij) [11-12]. These 

attributes are not known a priori until Ti arrives at the 

system. Each task Ti has primary (Pri) and backup (Bki) 

copies with identical attributes. Since tasks are not 

parallelizable, di – ri should be long enough to schedule 

both primary and backup copies of Ti [4, 8]. 

Assume that each task encounters at most one failure 

either due to processor or software. That is, if Pri fails, Bki 

will always be completed successfully. This also implies 

that there is at most one failure in the system at a time. 

The faults are independent, and can be transient or 

permanent. Simply, we assume the scheduler is fault free. 

2.2 Basic Terminologies [11, 12] 

In the following, we list some definitions which will 

be used in our proposed algorithm. For each task Ti, we 

don’t allow its two copies Pri and Bki been scheduled at 

overlapped time intervals. In addition, Pri and Bki must be 

executed on different application processors to tolerant 

permanent processor failure. 

Definition 2.1 For a task Ti, its Latest Finish time of 

Primary (LFP) is defined as 

LFP(Ti) = di – min{cij}, ∀ Pj 

Definition 2.2 For a task Ti, EFTj(Ti) indicates its Earliest 

Finish Time on Pj. If Ti cannot be completed before di on 

Pj, EFTj(Ti) is set as infinite. 

Definition 2.3 For a task Ti, its Earliest Finish Time (EFT) 

is defined as 

EFT(Ti) = min{EFTj(Ti)}, ∀ Pj 

Definition 2.4 For a task Ti, its Latest Start Time of 

primary (LST) is defined as 

LST(Ti) = di – max{cij} – 2ndmax{cij}, ∀ Pj 

Definition 2.5 H(Ti) is the heuristic function defined as 

H(Ti) = EFT(Ti) + di, if EFT(Ti) is not infinite 

Definition 2.6 For a task Ti, BLSTj(Ti) indicates its Latest 

Start Time of backup on Pj. If Bki cannot be completed 

before di on Pj, BLSTj(Ti) is set as zero. 

Definition 2.7 For a task Ti, its Latest Start Time of 

backup (BLST) is defined as 

BLST(Ti) = max{BLSTj(Ti)}, ∀ Pj except the one 

that executes Pri 

2.3 Related Work 

Because PB scheme schedules two copies of each 

task on different processors, the entire schedulability is 

obviously decreased. Therefore, two techniques 

BB-overloading and backup deallocation are designed to 

reduce the negative influence [4]. Guarantee Ratio (GR), 

which means the percentage of tasks whose deadlines are 

met, is a common objective for real-time task scheduling 

algorithms. In this paper we use the same definition of GR 

as in [5, 11-14]. 

%100
       

      
×=

systemtheinarrivedtasksofnumbertotal
metaredeadlineswhosetasksofnumberGR  

Distance Myopic Algorithm (DMA) is a heuristic 

search algorithm that schedules real-time tasks on 

homogeneous multiprocessor with fault-tolerance [5, 11]. 

It uses an integrated heuristic function to prioritize tasks, 

and a feasibility check window to achieve look-ahead 

nature. Fault Tolerant Myopic Algorithm (FTMA) is 

extended from DMA to be used on heterogeneous 

multiprocessor [11]. It further changes the mechanism of  



 3 

 

 

 

 

 

 

 

 

 

 

 

 

task queue construction to improve the schedulability. 

Density first with minimum Non-overlap scheduling 

Algorithm (DNA) is another effective algorithm [12]. It 

proposes the density function to select the most urgent 

task, and the Minimum Non-Overlap (MNO) strategy to 

minimize the reserved time slots for backup copies. All 

these three scheduling algorithms are quite efficient but 

never consider the adaptation mechanism. 

In the following we introduce two adapted scheduling 

algorithms. [13] is an algorithm that can adjust the 

number of copies of each task been scheduled. Each task 

is given the redundancy level and fault probability, where 

the redundancy level is the maximum number of copies it 

can be scheduled. A task contributes a positive value to 

the Performance Index (PI) if completed successfully. 

Conversely, it incurs a small PI penalty if rejected and a 

large PI penalty if all its copies are failed. By evaluating 

the expected value of PI, the scheduler will decide the 

number of copies that each task must be scheduled. 

[14] is a feedback-based algorithm that can adjust the 

degree of overlapping between the primary and backup 

copies of the same task. Its adapting strategy is based on 

an estimation of the primary fault probability and laxities 

of tasks. However, this algorithm is impractical because 

to decide the degree of overlapping is difficult. Besides, 

backup deallocation technique is unfit for this algorithm, 

because only part of backup copies is reclaimed. 

3 Loading-driven Adaptive Scheduling Algorithm 

(LASA) 

In Section 3.1, we give an overview of our proposed 

Loading-driven Adaptive Scheduling Algorithm (LASA). 

Two main mechanisms of LASA, including the action of 

waiting queue and the loading-driven adaptation strategy, 

are described in Section 3.2 and 3.3 respectively. 

3.1 Overview 

Before introducing proposed algorithm, we introduce 

the system model as shown in Figure 1. This architecture 

is similar as Spring system [3], with an additional waiting 

queue and the feedback from dispatch queues to scheduler. 

Unschedulable tasks will be collected in the waiting 

queue and tried to be rescheduled later, where other 

related methods usually reject them directly. The 

information of system loading will be responded back to 

the scheduler. According to this feedback, the scheduler 

will decide the backup copy of a task should be scheduled 

or not. Both these two mechanisms will be introduced in 

detail later. 

Our proposed LASA mainly contains three phases: to 

select a task from the task queue, to allocate the selected 

task to application processors, and to reject unfitted tasks 

from the waiting queue. In this subsection we describe the 

task selection and allocation without adaptation strategy. 

The action of waiting queue and adaptation strategy will 

be introduced in Section 3.2 and 3.3. 

Figure 1. The loading-driven scheduler. 

P0 

P1 

Pm 

P2 

Task queue 

Waiting queue 

Scheduler 
Arrivals 

Backup 
deallocation 

• 
• 
• 

• 
• 
• 

Dispatch queues 

System loading 



 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the first phase, the heuristic values H(Ti) of all 

tasks in the task queue are calculated based on Definition 

2.5. During the calculation, if we find a task Ti with 

infinite EFT(Ti), which means Ti cannot be successfully 

scheduled currently, this task will be moved into the 

waiting queue. After that, Ti with smallest H(Ti) value is 

selected to be scheduled. 

In the second phase, we try to schedule both primary 

and backup copies of Ti to application processors. Notice 

that from the definition of EFT(Ti), only one task copy of 

Ti is considered. That is, for the selected task Ti, Pri can 

always be successfully scheduled but Bki may not. 

Therefore, we first calculate BLST(Ti) defined above 

before scheduling Ti. If BLST(Ti) equals to zero, Ti is 

moved to the waiting queue because there is no available 

time slot for Bki on any application processor. Otherwise, 

both Pri and Bki can be successfully scheduled. We simply 

use ASAP and ALAP strategies to schedule Pri and Bki 

respectively in LASA. In order to increase the overall 

schedulability, BB-overloading technique is also applied. 

The first two phases of LASA will be executed repeatedly 

until the task queue is empty. 

For example, Figure 2 lists a task set and its attributes. 

Suppose there are four application processors, the 

complete scheduling result of this task set is shown in 

Figure 3. From this result, we can find that tasks T4, T7, T8, 

and T9 are moved into the waiting queue and the GR 

equals to 60%. 

3.2 Task Deferment and Rejection in Waiting Queue 

From related works we have surveyed, a task has only 

one chance to be scheduled. If it cannot be successfully 

scheduled at that time, it will be rejected directly. In fact, 

because Bki will be executed only when the corresponding 

Pri fails, a task still has other chances to be rescheduled. 

This situation is more obvious when the backup 

deallocation technique is applied. Therefore, in LASA, 

we add a waiting queue to collect unschedulable tasks and 

try to reschedule them when every backup copy is 

deallocated. 

Meanwhile, we also need a mechanism to reject 

unfitted tasks from the waiting queue that cannot be 

successfully rescheduled any more. Hence, before 

rescheduling, we calculate LST(Ti) values of tasks in the  

20 40 60 80 100 120 140 160 time 

P1 

P2 

P3 

P4 
62 16 

Pr2 
74 118 87 130 

114 

157 
Bk0 

Bk3 Bk6 

16 65 
Pr1 

107 
Pr6 

11 55 
Pr0 

102 
Pr5 

18 62 
Pr3 

72 124 82 131 
Bk1 

105 153 

Bk2 Bk5 

Figure 3. The complete scheduling result of task set in Figure 2. 

 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 

ri 11 16 16 18 29 45 48 53 54 70 

di 118 124 131 130 137 153 157 173 165 165 

ci1 52 52 49 44 46 48 53 45 43 47 

ci2 44 52 54 48 47 47 52 54 45 46 

ci3 53 49 56 56 58 48 42 57 48 46 

ci4 44 53 46 43 44 43 43 59 46 44 

 Figure 2. A task set and its attributes. 



 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

waiting queue. All LST(Ti) values are compared with the 

time that the backup deallocation just happens. If any 

LST(Ti) is smaller, which means Ti has missed the latest 

time been successfully scheduled already, that task will be 

rejected from the waiting queue. 

Let us consider the previous example. Suppose no 

failure happens, Bk0 will be deallocated at time 55. At that 

time, three tasks T4, T7, and T8 in the waiting queue are 

with LST(Ti) values 32, 57, and 63 respectively. Clearly 

that T4 is rejected. Because both T7 and T8 cannot be 

rescheduled at that time, they are resided in the waiting 

queue. Then, at time 62, Bk2 and Bk3 are deallocated 

simultaneously. At this time, T7 is rejected and T8 is 

successfully rescheduled on P4 and P2. The modified 

scheduling result is shown in Figure 4. We can see that 

GR is improved from 60% to 70%. 

3.3 Loading-driven Adaptation Strategy 

When too many tasks arrive at a small time interval, 

the system is overloaded and some tasks will be rejected 

by the scheduler. Since rejecting tasks degrades the 

overall GR (or schedulability), it is reasonable to 

intentionally stop scheduling backup copies to accept 

more tasks. This approach apparently takes a trade-off 

between the GR and the degree of reliability. Hence, in 

LASA, we propose a loading-driven adaptation strategy, 

which aims to improve the GR without sacrificing too 

much reliability. 

Definition 3.1 For a real-time system with m application 

processors, L denotes the system loading defined as: 

∑ −
=

i ii

ij

ad
cavg

m
L )(1

 , 

for all tasks currently resided in dispatched queues 

and avg(cij) indicates the average execution time of 

Ti on P1…Pm 

As shown in above definition, we use the processor 

utilization in a small time interval to indicate the system 

loading. L is dynamically calculated by the scheduler. In 

the beginning, all dispatch queues are empty and L equals 

to zero. Then, L increases when the scheduler dispatches a 

new task, and decreases when a dispatched task is 

finished either successfully or faultily. 

Our adaptation strategy is appended to the task 

allocation phase in LASA. Two thresholds LA and LR are  

20 40 60 80 100 120 140 160 time 

P1 

P2 

P3 

P4 
62 16 

Pr2 
114 157 

Bk6 

16 65 
Pr1 

107 
Pr6 

11 55 
Pr0 

102 
Pr5 

18 62 
Pr3 

72 124 
Bk1 

105 153 
Bk5 

108 
Pr8 

120 165 
Bk8 

Figure 4. The scheduling result of task set in Figure 2 (with the waiting queue). 

Accept Ti 
Allocate Pri and Bki 

EFT(Ti) ≠ ∞  BLST(Ti) ≠ 0 
LA 

L 

Accept Ti 
Allocate Pri only 

Move Ti into the 
waiting queue 

EFT(Ti) ≠ ∞  BLST(Ti) = 0 
LR 

L 

Accept Ti 
Allocate Pri only 

Figure 5. Adaptation strategy used in LASA. 



 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

given in advance. As the variation of L, we adaptively 

apply three mechanisms as follows to allocate the selected 

task Ti. 

Case 1: If both feasible time slots of Pri and Bki can be 

found, Ti is accepted. Pri is allocated directly, but Bki is 

only allocated if L ≤ LA. 

Case 2: If only the feasible time slot of Pri can be found, 

Ti is accepted with condition L > LR. Otherwise, Ti is 

moved to the waiting queue. 

Case 3: If the feasible time slot of Pri cannot be found, Ti 

is moved to the waiting queue directly. 

Above allocation mechanisms are illustrated in Figure 

5. Notice that the quantitative relation between LA and LR 

is uncertain. Considering the previous example, suppose 

that LA and LR equal to 0.4 and 0.5 respectively. When T5 

arrives at time step 45, T0~T3 have been scheduled with 

both two copies and T4 has been moved into the waiting 

queue. At that time, even through both feasible time slots 

for Pr5 and Bk5 can be found, only Pr5 is allocated 

because L = 0.451 > LA. Similarly, T6 is accepted with 

only Pr6 been allocated. After the scheduler moves T7 and 

T8 into the waiting queue, the partial scheduling result is 

shown in Figure 6 (time step 54). 

At time step 55, the scheduler deallocates Bk0 and 

rejects T4. When Bk2 and Bk3 are both deallocated at time 

step 62, T7 is rejected and only Pr8 is allocated because L 

= 0.448 > LA. Then, at time step 70, T9 is accepted with 

both two copies because L becomes 0.319. Figure 7 

shows the complete scheduling result at time step 70. We 

can see that with the loading-driven adaptation strategy, 

GR is further improved to 80%. Finally, the overall 

algorithm of LASA is listed in Figure 8. 

20 40 60 80 100 120 140 160 time 

P1 

P2 

P3 

P4 
62 16 

Pr2 

16 65 
Pr1 

107 
Pr6 

11 55 
Pr0 

102 
Pr5 

18 62 
Pr3 

72 124 
Bk1 

118 

120 165 
Bk8 

74 87 130 

Bk3 Bk0 

82 131 

Bk2 

Figure 6. The scheduling result of task set in Figure 2 (at time step 54). 

60 80 100 120 140 160 180 200 time 

P1 

P2 

P3 

P4 

70 
Pr9 

62 108 
Pr8 

131 165 
Bk9 

65 107 
Pr6 

55 102 
Pr5 

117 

Figure 7. The scheduling result of task set in Figure 2 (at time step 70). 



 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 Performance Evaluations 

After designing the algorithm of LASA, we construct 

a simulation environment to evaluate it. Our environment 

and experimental results are described in this section. 

4.1 Simulation Environment 

Our environment contains two parts named the task 

generator and the dynamic simulator. The task generator 

generates a real-time task set in the non-decreasing order 

of arrival times. Figure 9 lists all used parameters, which 

can generate task set with any characteristic [12]. For a 

task Ti, its worst case execution times cij are uniformly 

distributed in interval [MIN_C, MAX_C]. The inter-arrival 

times between tasks is exponentially distributed with 

mean (MIN_C + MAX_C) / 2λm [5]. In order to make sure 

that both copies of Ti can be successfully scheduled, its 

deadline di is chosen uniformly between (ai + max cij + 

2ndmax cij, ai + R × max cij). 

The dynamic simulator simulates events including 

task arrivals, task finishes, backup deallocations, and 

failure occurs. We consider three failure types: software 

failure, permanent hardware failure, and transient 

hardware failure. A software failure immediately 

terminates the task that causes the fault. The failed 

processor with permanent hardware failure will never be 

available. Contrarily, if the hardware failure is transient,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

that processor will be available after MAX_Recovery. 

Probabilities for failures and related parameters are listed 

in Figure 10 [12]. 

4.2 Experimental Results 

In this subsection, we evaluate performances of 

FTMA, DNA, n_DNA (DNA with waiting queue), LASA, 

and m_LASA (LASA with MNO strategy). For each set 

of parameters, we generate 20 task sets and each one 

contains 20000 independent tasks. Moreover, because 

FTMA requires additional parameters, we evaluate it with 

various parameter combinations and select the best result. 

We directly use the GR defined above as the objective. 

Figures 11~13 shows the GR of different scheduling 

algorithm with various task arrival rates (λ), task laxity 

(R), and the number of processors (m). In these 

evaluations we simply assume all application processors 

are fault-free. Interestingly, results in these figures are 

quite similar. FTMA has the lowest GR because it 

schedules backup copies by ASAP strategy, which is hard 

to take advantages from backup deallocation. Next, DNA 

performs better than that of FTMA, since it highly  

1. Calculate H(Ti) for all tasks in the task queue 
if (EFT(Ti) is infinite) 

Move Ti into the waiting queue 
2. Select Ti with the smallest H(Ti) 
3. Find feasible time slots for the selected Ti 
4. if (BLST(Ti) is not zero) 

if (L > LA)  Allocate only Pri 
else  Allocate Pri and Bki 

else if (L > LR)  Allocate only Pri 
else  Move Ti into the waiting queue  

5. Repeat steps 1~4 until the task queue is empty 
6. if backup deallocations happened at time step t 

Calculate LST(Ti) for all tasks in waiting queue 
if (LST(Ti) < t)  Reject Ti 

Figure 8. The overall algorithm of LASA. 

Parameter Explanation Values 

MIN_C Min. execution time 10 
MAX_C Max. execution time 80 

λ Task arrival rate {0.4, 0.5, …, 1.2} 
R Laxity {2, 3, …, 10} 

m 
Number of application 
processors 

{3, 4, …, 10} 

 Figure 9. Parameters used in the task generator. 

Parameter Explanation Values 

FP 
Probability of a primary copy 
failure 

[0, 0.1] 

SoftFP Probability of software failure 0.2 
HardFP Probability of hardware failure 0.8 

PermHardFP 
Probability of a permanent 
hardware failure 

10-6 

MAX_Recovery 
Maximum recovery time after 
a transient hardware fault 

50 

 Figure 10. Parameters used in the dynamic simulator. 



 8 

60%

65%

70%

75%

80%

85%

90%

95%

100%

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
Task arrival rate

G
ua

ra
nt

ee
 R

at
io

FTMA
DNA
n_DNA
m_LASA
LASA

 

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

2 3 4 5 6 7 8 9 10
Laxity

G
ua

ra
nt

ee
 R

at
io

FTMA
DNA
n_DNA
m_LASA
LASA

 
 

 

70%

75%

80%

85%

90%

95%

100%

3 4 5 6 7 8 9 10
Number of processors

G
ua

ra
nt

ee
 R

at
io

FTMA
DNA
n_DNA
m_LASA
LASA

 

60%

65%

70%

75%

80%

85%

90%

95%

100%

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Failure Probability

G
ua

ra
nt

ee
 R

at
io

(0.4, 8, 3) (1.2, 8, 3)
(0.7, 3, 3) (0.7, 10, 3)
(0.7, 8, 3)

 
 

 

 

exploits properties of backup overloading and 

deallocation. From performances of DNA and n_DNA, 

we find that adding the waiting queue can cause the 

positive influence. In summary, LASA obviously has the 

highest GR in most circumstances. According to curves of 

LASA and m_LASA, we further conclude that MNO 

strategy is unfit for LASA. 

Figure 14 shows the GR of our LASA with various 

failure probabilities (FP). We find that the GR decreases 

with the FP increasing in all cases, especially when the 

workload is heavy. However, the decrease of GR is 

actually not significant, which means the performance of 

LASA is quite stable. 

Next, in Figure 15, we evaluate the influence of GR 

between LA and LR. When LA varies from 0.5 to 1.0, the 

decrease of GR is about 5% in different LR values. 

Contrarily, for any constant LA, the difference of GR is 

less than 0.5% when LR varies from 0.7 to 1.0. It is 

obvious that the value of LA causes more influence of GR 

than that of LR. 

Figure 11. Effect of the task arrival rate (λ). 
(R = 3, m = 8, FP = 0, LA = 0.95, LR = 1) 

Figure 12. Effect of the laxity (R). 
(λ = 0.7, m = 8, FP = 0, LA = 0.95, LR = 1) 

Figure 13. Effect of the number of processors (m). 
(R = 3, λ = 0.7, FP = 0, LA = 0.95, LR = 1) 

Figure 14. Effect of the failure probability. 
The 3-tuple indicates (λ, m, R) 



 9 

83%

84%

85%

86%

87%

88%

0.5 0.6 0.7 0.8 0.9 1
LA

G
ua

ra
nt

ee
 R

at
io

LR=0.7

LR=0.8

LR=0.9

LR=1.0

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
LA=LR

G
ua

ra
nt

ee
 R

at
io

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

%
 o

f p
rim

ar
y-

on
ly

 ta
sk

s

GR
%of primary-only tasks

 
 

 

Finally, Figure 16 simultaneously shows the GR and 

the percentage of primary-only tasks been scheduled with 

various LA. Since the value of LR has slightly effects of 

GR, we set LR equals to LA for convenience in this 

evaluation. In this figure, we find that when LA varies 

from 1.0 to 0.1, the proportion of scheduled primary-only 

tasks increases from 0 to 100% but the improvement of 

GR is less than 8%. Actually, the proportion of scheduled 

primary-only tasks can imply the fault-tolerant capability 

of the system. Therefore, if we don’t want to sacrifice too 

much reliability, LA should be set larger. 

 

5 Conclusions 

In this paper, we propose an effective Loading-driven 

Adaptive Scheduling Algorithm (LASA) to dynamically 

schedule real-time tasks with fault-tolerance. LASA 

mainly contains two features. First, an additional waiting 

queue is added to collect unschedulabe tasks instead of 

reject them directly. These tasks are tried to be 

rescheduled at proper time. Second, based on the 

information of system loading responded back to the 

scheduler, we intentionally schedule only one copy of a 

task to accept more tasks when the system is overloaded. 

A simulation environment is also constructed to evaluate 

LASA. From experimental results, these two features 

actually can improve the overall schedulability. Besides, 

although the system cannot tolerant failures when it is 

overloaded, the sacrifice of reliability is quite minor. 

 

References 

[1] K. Ramamritham, J. A. Stankovic, and Perng-fei 

Shiah, “Efficient Scheduling Algorithms for 

Real-time Multiprocessor Systems”, IEEE 

Transactions on Parallel and Distributed Systems, 

Vol. 1, No. 2, pp 184-194, April 1990. 

[2] K. G. Shin and P. Ramanathan, “Real-Time 

Computing: A New Discipline of Computer Science 

and Engineering”, Proc. of IEEE, Vol. 82, No. 1, pp 

6-24, Jan. 1994. 

[3] J. A. Stankovic, K. Ramamritham, “The Spring 

Kernel: A New Paradigm for Real-Time Systems”, 

IEEE Transactions on Software Engineering, Vol. 8, 

Issue 3, pp 62-72, May 1991. 

[4] S. Ghosh, R. Melhem, and D. Mosse, 

“Fault-Tolerance Through Scheduling of Aperiodic 

Tasks in Hard Real-Time Multiprocessor Systems”, 

IEEE Transactions on Parallel and Distributed 

Systems, Vol. 8, No. 3, pp 272-284, March 1997. 

[5] G. Manimaran and C. S. R. Murthy, “A 

Fault-Tolerant Dynamic Scheduling Algorithm for 

Figure 15. Effect of the threshold values. 
(R = 3, m = 8, λ = 1.2, FP = 0) 

Figure 16. Effect of the threshold values. 
(R = 3, m = 8, λ = 1.2, FP = 0) 



 10 

Multiprocessor Real-Time Systems and Its 

Analysis”, IEEE Transactions on Parallel and 

Distributed Systems, Vol. 9, No. 11, pp 1137-1152, 

Nov. 1998. 

[6] R. Al-Omari, G. Manimaran, and A. K. Somani, “An 

Efficient Backup-overloading for Fault-tolerant 

Scheduling of Real-time Tasks”, Proc. of IEEE 

Workshop on Fault-tolerant Parallel and 

Distributed Systems, pp 1291-1295, 2000. 

[7] R. Al-Omari, A. K. Somani, and G. Manimaran, “A 

New Fault-tolerant Technique for Improving 

Schedulability in Multiprocessor Real-time 

systems”, Proc. of International Parallel and 

Distributed Processing Symposium, April 2001. 

[8] R. Al-Omari, A. K. Somani, and G. Manimaran, 

“Efficient Overloading Techniques for 

Primary-Backup Scheduling in Real-Time Systems”, 

Journal of Parallel and Distributed Computing, Vol. 

64, No. 1, pp 629-648, Jan. 2004. 

[9] C. Shen , K. Ramamritham , and J. A. Stankovic, 

“Resource Reclaiming in Multi- processor 

Real-Time Systems”, IEEE Transactions on Parallel 

and Distributed Systems, Vol. 4, No. 4, pp 382-397, 

April 1993. 

[10] L. V. Mancini, “Modular Redundancy in a Message 

Passing System”, IEEE Transactions on Software 

Engineering, Vol.12, No. 1, pp 79-86, Jan. 1986. 

[11] Y. H. Lee, M. D. Chang, and C. Chen, “Effective 

Fault-tolerant Scheduling Algorithms for Real-time 

Tasks on Heterogeneous Systems”, Proc. of 

National Computer Symposium, Dec. 2003. 

[12] M. D. Chang, A Fault-tolerant Dynamic 

Scheduling Algorithm for Real-time Systems on 

Heterogeneous Multiprocessor, Master Thesis, 

National Chiao-Tung University, June 2004. 

[13] S. Swaminathan and G. Manimaran, ”A Value-based 

Scheduler Capturing Schedulability Reliability 

Tradeoff in Multi- processor Read-time Systems”, 

Journal of Parallel and Distributed Computing, Vol. 

64, No. 5, pp 629-648, May 2004. 

[14] R. Al-Omari, A. K. Somani, and G. Manimaran, ”An 

Adaptive Scheme for Fault-Tolerant Scheduling of 

Soft Real- Time Tasks in Multiprocessor Systems”, 

Proc. of International Conference on High 

Performance Computing, Dec. 2001. 

[15] T. Tsuchiya, Y. Kakuda, and T. Kikuno, ”A New 

Fault-Tolerant Scheduling Technique for Real-Time 

Multiprocessor Systems”, Proc. of International 

Workshop on Real-Time Computing Systems and 

Applications, pp 197-202, 1995. 

[16] M. L. Dertouzos and A. K. Mok, “Multiprocessor 

On-Line Scheduling of Hard Real-Time Tasks”, 

IEEE Transactions on Software Engineering, Vol. 

15, No. 12, pp1479-1506, Dec. 1989. 

[17] J. W. S. Liu, W. K. Shih, K. J. Lin, R. Bettati, and J. 

Y. Chung, “Imprecise Computations”, Proc. of IEEE, 

Vol. 82, No. 1, pp. 83-94, Jan. 1994. 


