
Design and Implementation of a Monitoring and Scheduling System for
Multiple Linux PC Clusters*

Chao-Tung Yang†, Chun-Sheng Liao‡, and Ping-I Chen

High-Performance Computing Laboratory

Department of Computer Science and Information Engineering
Tunghai University, Taichung, 40704, Taiwan R.O.C.

email: {ctyang, g932834}@thu.edu.tw

* This work is supported in part by National Science Council Taiwan, under grant no. NSC94-2622-E-029-002-CC3.
† The corresponding author
‡ email: csliao@nchc.org.tw

Abstract

Managing and monitoring a cluster is both a

tedious and challenging task, since each computing
node is designed as a stand-alone system rather than
a part of a parallel architecture. Beowulf systems
will need a richer set of software tools to improve
usability and re-configurability. In this paper, a
software system that allows the centralized
administration of a generic Beowulf cluster is
proposed. This system also provides web services
and applications to monitor large-scale clusters with
task scheduling.

Keywords. Cluster computing, Monitoring System,
Scheduling System, Multiple Linux PC Clusters.

1. Introduction

As the performance of commodity computer and

network hardware increases, and their prices
decrease, it becomes more and more practical to
build parallel computational systems from off-the-
shelf components, rather than buy CPU time on very
expensive supercomputers. In fact, the cost
performance ratio of a Beowulf cluster platform is
between three to ten times better than that for
traditional supercomputers [2, 3, 4]. The Beowulf
architecture scales well, and it is easy to construct. In
addition, one only pays for the hardware, since most
of softwares are free. Beowulf is a multi-computer
architecture which can be used for parallel
computations. It is a system, which usually consists
of one server node and one or more client nodes
connected together via Ethernet or some other type
of network, such as SCI, Myrinet and Infiniband. It
is a system built using commodity hardware
components, like any PC capable of running Linux,
standard Ethernet adapters, and switches [1, 2, 3, 4, 6,
7, 8, 9, 10, 11, 12].

Monitoring the status of a Beowulf-style cluster
platform can be a daunting task for any system
administrator, especially if the cluster system
consists of more than a dozen computing nodes.
Since Linux is not absolutely stable, hardware
problems can cause nodes to crash or become
inaccessible, and chasing down problem computing
nodes in a 500-node cluster is painful. Managing and
monitoring a cluster is both a tedious and challenging
task, since each node is designed as a stand alone
system rather than a part of a parallel architecture.
Beowulf systems will need a richer set of software
tools to improve usability and re-configurability [5,
13].

As the PC cluster becomes a popular low cost
high-performance computing platform, it is hard to
manage, mainly due to the lack of powerful
migration and monitoring tools. This research paper
presents our efforts to resolve this problem by
developing a PC cluster monitoring system. Still in
this system, it also provides web services and
applications to monitor large-scale clusters with task
scheduling.

In the second generation Beowulf cluster, the
master node can perform the migration of
uncompleted tasks during runtime and this is the
point where we start. In addition, we will also
present how we can migrate tasks dynamically
during runtime. We introduce an original algorithm
to arbitrate threads between job executive and job
listener, as it used signal programming technique to
notify the main job executive when the job is
submitted and our scheduler could be modified to
keep thread-safe for synchronicity. We also
examined the special properties of thread in Linux
operating system for our implementation.

The remaining of this paper is organized as
follows. In section 2, we make a background review.
In section 3, we discuss the system and software
architecture of our design. In section 4, we

demonstrate some examples of system utilities, and
finally in section 5, conclusions are presented.

2. Background

A Beowulf class cluster consists of PCs, based on

AMD and Intel x86, Compaq Alpha, Power PC
processor architectures. Other components are Pure
Mass-Market COTS. Typically they use a UNIX-like
operating system; such as Linux, BSD, or Solaris.
Message passing is normally used for
communications between nodes; typically using MPI,
PVM, or BSP. The clusters are set up and run as
single user environments, which are optimized for
the applications being executed.

Several tools have been developed to monitor a
large number of machines as stand-alone hosts as
well as hosts in a cluster. These tools can be useful
because they monitor the availability of services on a
host and detect if a host is overloaded, but they do
not generally provide performance monitoring
information at the level of detail needed to tune the
performance of a Beowulf cluster. In contrast to
existing systems, which usually display information
only graphically, our project integrates performance
monitoring with scheduling systems. In the following
sections, we discuss open-source cluster-monitoring
tools.

Ganglia is an Open Source project (available on
SourceForge at http://ganglia.sourceforge.net) with a
BSD license. It grew out from the University of
California, Berkeley, Millennium Cluster Project (see
http://www.millennium.berkeley.edu) in
collaboration with the National Partnership for
Advanced Computational Infrastructure (NPACI)
Rocks Cluster Group. Ganglia provide a complete,
real-time monitoring and execution environment
based on a hierarchical design. It uses a multicast
listen/announce protocol to monitor node status, and
uses a tree of point-to-point connections to
coordinate clusters of clusters and aggregate their
state information. Ganglia uses the eXtensible
Markup Language (XML) to represent data, eXternal
Data Representation (XDR) for compact binary data
transfers, and an open source package called
RRDTool for data storage (in Round Robin
databases) and for graphical visualization.

The SMILE Cluster Management System (SCMS)
is an extensible management tool for Beowulf
clusters. SCMS provides a set of tools that help users
monitor, submit commands, and query system status;
maintain system configuration, among others.
System monitoring is limited to heartbeat-type
measurements.

The Network Weather Service, although not
targeted at Beowulf clusters, is a distributed system
that periodically monitors and dynamically forecasts
the performance various network and computational
resources can deliver over a given time interval. The

service operates a distributed set of performance
sensors (network monitors, CPU monitors, etc.) from
which it gathers system condition information. It
then uses numerical models to generate forecasts of
what the conditions will be for a given time frame.
NWS is used for various meta-computing systems
such as Globus.

3. System Design

The concept of our system is to improve the

availability of monitor system in the distributed
computing environment. Nowadays, the monitor
system is not well developed on user requirements.
Therefore, we started on the user interaction and the
manner of application executing, and developed the
applications by the portability of the Java Virtual
Machine. Our system can be divided into three
applications of the Cluster architecture.

• Observe server: The role of the Observe
server is to run the collect daemon that gets
the information of each cluster’s total
information observed from the master node
and replicate the data to their local file based
database for the usage of the web interface.

• Master node: The master node executes the
master daemon that could collect the
information of their slave nodes to their local
file based database and response the Observe
server.

• Slave node: All other nodes of our cluster
must run the slave daemon. The slave
program must get information in user specific
metrics like CPU speed, available size of
memory, load of this node and other
information user interested in.

On the other side, we have a separate role to
display and control our cluster in another way, there
are two types of this role:

• Web portal: We use two tools that generate
the web service for controlling and presenting
the information of our system. The former
tool used is a drawing tool named Round
Robin Database Tool (RRDtool), which draws
the state chart from the collected information
in the Observe server. The latter is the web
front-end portal created by PHP. When user is
connecting to the portal, he can retrieve the
information by the state chart and control the
system by the web interface.

• PDA application: The mobile devices are not
suitable for displaying detail information and
remote controlling. We need to simply our
information and design the appropriate
interface for this usage. The Java application
framework is suitable for this type of
application and we choose it to develop our
simple application. Implementation of this
work is to connect the Observe server, get all

metrics of our information and directly
present these to a classified format.

Our system has been implemented for nodes
within a private network; it resides on one node,
which controls all the others with remote commands.
This choice allows easy installation and upgrade, and
it needs to have daemons running on computing and
service nodes. On the other hand, this choice can
scale if the number of nodes is huge. The software
has been implemented for managing a cluster of
clusters, on public networks.

The flow of this system is shown in Figure 1,
where the master nodes can collect the system
information form its slave nodes in the multiple
Linux PC clusters. The Observe server will gather all
information from master nodes, and send to Web
server for displaying form remote users and
applications. The system architecture and software
architecture are shown in Figure 2. Also, the Observe
server will be called to provide services and
information form the Web server.

Fig. 1. System overview.

The functions of three daemons in our system are

listed as:
1. Slave Daemon: The Slave daemon can obtain

the related system information of each slave
node from Kernel, and provide the services to
its Master node in the PC cluster.

2. Master Daemon: The Master Daemon is
responsible to collect the system information
from all slave nodes into cluster, and put the
related information into Local Database.
Local Database is used for the purpose that
will not allow the loading too high of master
node for an instant. The function of Local
Database can be view as a buffer.

3. Collect Daemon: This daemon is running on
the Observe Server. It is used for collecting
the system information of each master node of
multiple Linux PC clusters. It can provide
services by using database to applications or
the remote users.

The system architecture of scheduler is shown in
Figure 3. We implement the multiple priority queue

of the scheduler and a user can specify the priority
value for his job when submission. Our scheduler is
based on the multi-thread architecture and
specifically, this type of scheduler can improve the
performance of job scheduling and the usage of the
memory. The Receive Thread is the service of job
submission, when job submitted; it was send to
different queue by user specification. The scheduling
algorithm is based on the weighted Round-Robin
algorithm. The scheduling of each queue is Round-
Robin, and the job chosen is through the user
specific priority value. For the information of job
execution, we could find it out thought the email
notification service or through our web portal. In our
system, each cluster has one scheduler and it could
help them control their own jobs by classification.

(a)

(b)

Fig. 2. System and Software Architecture (a)
System architecture (b) Software architecture.

In Figure 4, we would understand levels of the

scheduler and how it works in the scheduler
application. We define the Main thread as the level 1,
and level 2 is the thread created by the level 1 and so
on. The processing of the levels can divide to three
parts:

1. The Server Thread created by the Main
Thread is the level 2 thread. When it accepted
the jobs after connection. It linked to the

Level 3 thread called Queue Handler and the
Queue Handler stores them.

2. The Main Thread creates the Job Execution
Thread. The Job Execution Thread transmits
the job to the appropriate node or cluster for
execution by their system state. It is the level
2 thread.

3. The Main Thread creates the level 2 thread
called Status Thread for presenting the
information of the specified queue. It is the
level 2 thread and not shown on the Figure
4(a).

Figure 4(b) shows the queue is waiting when no
tasks are in it. When the task accepts the job through
the Queue Handler in the network, the scheduler is
waked up by the signal, and the scheduler starts to
choose a job for execution.

In the information stored by the queue, it could be
processed by three threads, so we use a variable
value called Mutex A for preventing the atomic
execution. The purpose of the Mutex B is to prevent
the other threads from transmitting the same signal to
the Main Thread in the queue traversal and protect
the atomic job execution. Figure 5 shows the
algorithms of the main thread and queue handler.

Fig. 3. The system architecture of scheduler of

our system.

4. Experimental Results

We have developed our monitor system on three

sets of four nodes Beowulf Cluster. The hardware
and software specification is listed on Table 1. All
daemons are implemented with C and our web portal
was developed with PHP.

Figure 6 shows the snapshot of our system, from
where we can obtain system information of each
computing node of all cluster platforms.

Figure 7 shows a task submission webpage, what
essentially eases the user’s task submission process,
in any of our cluster platforms.

In Figure 8, it is shown the task status webpage,
where all tasks submitted to be processed in our
cluster systems are shown here, as well as the
number of computing nodes used for the execution of
each task.

(a)

(b)

Fig. 4. A paradigm of scheduling system. (a)
The processing level of thread used in

scheduler. (b) The processing flow of schedule

(a)

(b)

Fig. 5. Algorithms of the main thread and queue
handler. (a) Algorithm of the main thread (b)

Algorithm of queue handler

Figure 9 shows the same monitoring system we

can obtain from a PC, but in a PDA screen. In this
way, application developer can monitor computing
nodes of cluster platforms, the physical
characteristics of each computing node, the status of
each task in the queue, that is, all operable using a
PDA. Figure 10 shows our monitoring system that
can be operated form JAVA client running on PC.

Table 1. Specifications of three Beowulf
Clusters. (a) Hardware specification (b)
Software configuration

(a)
 amd amd-dual hiroyuki

CPU
Dual AMD
Athlon MP
2600+

Dual AMD
Athlon MP
2000+

AMD
AthlonXP
1600+

Main
Memory

Master 2GB
Slave 1GB

Master
512MB
Slave 512MB

Master
192MB
Slave
192MB

Hard
Disk

Master 80G
Slave 80G

Master 30GB
Slave 30GB

Master
30GB
Slave 30GB

Network Gigabit
Ethernet

Fast
Ethernet

Fast
Ethernet

(b)

 amd amd-dual hiroyuki

Distribution RedHat 8 RedHat 9 Redhat 9

Kernel 2.4.18-
14smp

2.4.20-
8smp 2.4.20-8

gcc gcc-3.2-7 3.2.2-5 3.2.2-5

glibc 2.3.2-4.80.8 2.3.2-
27.9.7

2.3.2-
27.9.7

Fig. 6. Clusters view page

Fig. 7. Add new job interface

Fig. 8. The status of submitted tasks.

Fig. 9. Monitoring screen on PDA

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 10. Monitoring screen from JAVA client (a)
System information (b) Loading (c) CPU

information (d) Page information (e) Memory
information (f) I/O status

5. Conclusions

In this paper, a software system that allows the

centralized administration of a generic Beowulf
cluster is proposed. This system also provides web
service and application to monitor for large scale
clusters with task scheduling. We introduced an
original algorithm to arbitrate threads between job
executive and job listener, as also a novel signal
programming technique is used to notify the main
job executive, when the job is submitted and the
scheduler modify to keep thread-safe for
synchronicity. We also examined the special
properties of threads in Linux operating system in
our implementation.

References

[1] G. Pfister, In Search of Clusters, Prentice Hall PTR,

ISBN: 0138997098; 2nd edition, January 1998.
[2] A. Geist, Cluster Computing: The Wave of the

future, Springer Verlag, Lecture Notes in Computer
Science, May 1994.

[3] The Beowulf Project, http://www.beowulf.org
[4] T. Anderson, D. Culler, and D. Patterson, “A Case

for Network of Workstations,” IEEE Micro,
15(1):54-64, Feb. 95. http://now.cs.berkeley.edu/

[5] SCMS, http://www.opensce.org/
[6] MPI, http://www.mpi-forum.org/
[7] PVM,

http://www.csm.ornl.gov/pvm/pvm_home.html
[8] D. J. Becker, T. Sterling, D. Savarese, E. Dorband,

U.A. Ranawake and C. V. Packer, “BEOWULF: A
Parallel Workstation for Scientific Computation”,
Proc. International Conference on Parallel
Processing (ICPP), pp 11-14, 1995.

[9] M.R. Guarracino, G. Laccetti and U.
Scafuri,”Beowulf Project at CPS-CNR”, Proc. of
PC-NETS99, L’Aquila (I), 1999. See also
http://pixel.dma.unina.it/beowulf.html

[10] B. Saphir, P. Bozeman, R. Evard and P. Beckman,
“Production Linux Clusters”, Supercomputing ’99
Tutorial, Portland (OR), 1999.

[11] T. Sterling and D. Savarese, “A Coming of Age for
Beowulf-Class Computing”, Proc. of Euro-Par ’99,
Lecture Notes in Computer Science, no. 1685, pp
78-88, Springer, 1999.

[12] P. Uthayopas and A. Rungsawang, “SCMS: An
Extensible Cluster Management Tool for Beowulf
Clusters”, Supercomputing 99, Portland (OR), 1999.

[13] University of California San Diego. The Network
Weather Service Homepage.
http://nws.npaci.edu/NWS.

