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Abstract 

Denoising technology is an important 

operation in image processing. Denoising 

technologies approximately divides into two 

types: one is denoising operation in the spatial 

domain and the other is that in the frequency 

domain. Denoising operation in frequency 

domain is better than that the spatial domain in 

recently researches. The wavelet transform 

provides a multiresolution representation using 

a set of analyzing functions that are dilations 

and translations of a few functions (wavelets). 

The wavelet transform comes in several forms. 

The critically-sampled form of the wavelet 

transform provides the most compact 

representation, however, it has several 

limitations to denoise. Therefore, we describe 

dual-tree complex wavelet transform to solve 

these limitations. The image edge information 

maybe loses by denoising, so preserving edge is 

critical. We adopt the TV filter and Canny filter 

to preserve and enhance the edge information in 

low frequency subband. The simulation results 

demonstrate that that complex dual-tree method 

removes more noise signal than separable and 

real methods (all of the methods include both 

TV filter and Canny filter to preserve the edges). 

Dual-tree method outperforms separable 

method. 
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I. Introduction 

Denoising technology is an important operation 

in image processing. Actuality, this technology is 

applied in many kinds of images, such as medical 

diagnosis image, remote sensor image and Synthetic 

Aperture Radar (SAR) image. These images have 

some annoying noises that reduce the image visual 

quality. Therefore, the researches about denoising 

develop in the recently [1][2][3]. Denoising 

technologies approximately divides into two types: 

one is denoising operation in the spatial domain and 

the other is that in the frequency domain, for instance, 

Fourier transform, discrete wavelet transform, and 

complex dual tree wavelet transform. The latter uses 

the linear or nonlinear filter to reduce the noise in the 

frequency domain [4][5]. For many natural signals, 

the wavelet transform is a more effective tool than the 

Fourier transform. The wavelet transform provides a 

multiresolution representation using a set of analyzing 

functions that are dilations and translations of a few 
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functions (wavelets). The wavelet transform comes in 

several forms. The critically-sampled form of the 

wavelet transform provides the most compact 

representation, however, it has several limitations. For 

example, it lacks the shift-invariance property, and in 

multiple dimensions it does a poor job of 

distinguishing orientations, which is important in 

image processing. For these reasons, it turns out that 

for some applications improvements can be obtained 

by using an expansive wavelet transform in place of a 

critically-sampled one. In this paper, we describe and 

provide an implementation of the dual-tree complex 

discrete wavelet transform.  

 

This paper is organized as follows. In Section II, 

we describe Brief the research about denoising 

technology and wavelet transform. The design of our 

method is described in Section III. Section IV 

compares the performance of our proposed algorithm 

with that of other current wavelet-based denoising 

methods applied on the ‘Lena’ test image. Finally, 

Section V draws conclusions and describes future 

work directions. 

 
II. Background 

In this section, we describe the recently 

denoising technology researches and wavelet 

transforms. 

A. Denoising 

    Image denoising is an important 

image processing task, both as a process 

itself, and as a component in other 

processes. Very many ways to denoise an 

image or a set of data exists. The main 

property of a good image denoising model 

is that it will remove noise while 

preserving edges. Traditionally, linear 

models have been used. One common 

approach is to use a Gaussian filter, or 

equivalently solving the heat-equation 

with the noisy image as input-data. For 

some purposes this kind of denoising is 

adequate. One big advantage of linear 

noise removal models is the speed. But a 

drawback of the linear models is that they 

are not able to preserve edges in a good 

method: edges, which are recognized as 

discontinuities in the image, are smeared 

out. On the other hand, nonlinear models 

can handle edges in a much better way 

than linear models. One popular model for 

nonlinear image denoising is the Total 

Variation (TV) filter, introduced by Rudin, 

Osher and Fatemi in [6]. This filter is very 

good at preserving edges, but smootly 

varying regions in the input image are 

transformed into piecewise constant 

regions in the output image. Since smooth 

regions are transformed into piecewise 

constant regions when using the TV-filter, 

research is done to make a model which 

lets smoothly varying regions be 

transformed into smoothly varying 

regions, and still preserves edges. Since 

total variation minimizing models have 

become one of the most popular and 

successful methodology for image 

restoration. 

 

B. 2D Discrete Wavelet transform 

In the 2D case, the 1D analysis filter 

bank is first applied to the columns of the 

image and then applied to the rows. If the 

image has R rows and C columns, then 

after applying the 1D analysis filter bank 

to each column we have two subband 

coefficients, each having R/2 rows and C 

columns; after applying the 1D analysis 



 3 

filter bank to each row of both of the two 

subband coefficients, we have four 

subband coefficients, each having R/2 

rows and C/2 columns. This is illustrated 

in the diagram below. The analysis filter 

banks of wavelet transform for image 

processing are show in Fig. 1. The 2D 

synthesis filter bank combines the four 

subband coefficients to obtain the original 

image of size RxC.   

As in the 1D case, the 2D discrete 

wavelet transform of a signal x is 

implemented by iterating the 2D analysis 

filter bank on the lowpass subband. In this 

case, at each scale there are three 

subbands instead of one.  

The perfect reconstruction of the 2D 

DWT is verified in the following example. 

We create a random input signal x of size 

128 by 64, apply the DWT and its inverse, 

and show it reconstructs x from the 

wavelet coefficients. There are three 

wavelets associated with the 2D wavelet 

transform. Fig. 2 illustrates three wavelets 

as gray scale images.  

    The first two wavelets are oriented in 

the vertical and horizontal directions; 

however, the third wavelet does not have 

a dominant orientation. The third wavelet 

mixes two diagonal orientations, which 

gives rise to the checkerboard artifact. 

(The 2D DWT is poor at isolating the two 

diagonal orientations.) We describe 

dual-tree complex wavelet transform to 

avoid this artifact. The One of the 

advantages of the dual-tree complex 

wavelet transform is that it can be used to 

implement 2D wavelet transforms that are 

more selective with respect to orientation 

than the separable 2D DWT. 

the details are in next section. 

 

III. Proposed Method 
A. Dual-Tree Complex Wavelet Transform 

In recently research, for some 

applications of the discrete wavelet 

transform, improvements can be obtained 

by using an expansive wavelet transform 

in place of a critically-sampled one. There 

are several kinds of expansive DWTs; here 

we describe the dual-tree complex discrete 

wavelet transform.  

    The dual-tree complex DWT of a 

signal x is implemented using two 

critically-sampled DWTs in parallel on the 

same data, as shown in the Fig. 3. 

The transform is 2-times expansive 

because for an N-point signal it gives 2N 

DWT coefficients. If the filters in the 

upper and lower DWTs are the same, then 

no advantage is gained. However, if the 

filters are designed is a specific way, then 

the subband signals of the upper DWT can 

be interpreted as the real part of a complex 

wavelet transform, and subband signals of 

the lower DWT can be interpreted as the 

imaginary part. Equivalently, for specially 

designed sets of filters, the wavelet 

associated with the upper DWT can be an 

approximate Hilbert transform of the 

wavelet associated with the lower DWT. 

When designed in this way, the dual-tree 

complex DWT is nearly shift-invariant, in 

contrast with the critically-sampled DWT. 

Moreover, the dual-tree complex DWT can 

be used to implement 2D wavelet 

transforms where each wavelet is oriented, 

which is especially useful for image 
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processing. The dual-tree complex DWT 

outperforms the critically-sampled DWT 

for applications like image denoising and 

enhancement. 

One of the advantages of the dual-tree 

complex wavelet transform is that it can be 

used to implement 2D wavelet transforms 

that are more selective with respect to 

orientation than is the separable 2D DWT. 

    There are two versions of the 2D 

dual-tree wavelet transform: the real 2D 

dual-tree DWT is 2-times expansive, while 

the complex 2D dual-tree DWT is 4-times 

expansive. Both types have wavelets 

oriented in six distinct directions. We 

describe the real version first. 

The real 2D dual-tree DWT of an 

image x is implemented using two 

critically-sampled separable 2D DWTs in 

parallel. Then for each pair of subbands we 

take the sum and difference. The six 

wavelets associated with the real 2D 

dual-tree DWT are illustrated in Fig. 4 as 

gray scale images.  

Each of the six wavelets is oriented in 

a distinct direction. Unlike the 

critically-sampled separable DWT, all of 

the wavelets are free of checker board 

artifact. Each subband of the 2D dual-tree 

transform corresponds to a specific 

orientation. 

    The complex 2D dual-tree DWT also 

gives rise to wavelets in six distinct 

directions, however, in this case there are 

two wavelets in each direction as will be 

illustrated below. In each direction, one of 

the two wavelets can be interpreted as the 

real part of a complex-valued 2D wavelet, 

while the other wavelet can be interpreted 

as the imaginary part of a complex-valued 

2D wavelet. Because the complex version 

has twice as many wavelets as the real 

version of the transform, the complex 

version is 4-times expansive. The complex 

2D dual-tree is implemented as four 

critically-sampled separable 2D DWTs 

operating in parallel. However, different 

filter sets are used along the rows and 

columns. As in the real case, the sum and 

difference of subband images is performed 

to obtain the oriented wavelets. The twelve 

wavelets associated with the real 2D 

dual-tree DWT are illustrated in the Fig. 5 

as gray scale images. 

Note that the wavelets are oriented in 

the same six directions as those of the real 

2-D dual-tree DWT. However, here we 

have two in each direction. If the six 

wavelets displayed on the first row are 

interpreted as the real part of a set of six 

complex wavelets, then the magnitudes of 

the six complex numbers are shown on the 

third row. As shown in the figure, the 

magnitudes of the complex wavelets do 

not have an oscillatory behavior - instead 

they are bell-shaped envelopes.  

 

B. Denoiseing Method  

    We can choose variance transform, 

such as separable DWT, real Dual-Tree 

DWT, and complex Dual-Tree DWT to 

decompose the image, and then use the 

method to remove the noise from an 

image. In this section, these methods will 

be introduced and comparison will also be 

made.  

    One technique for denoising is 

wavelet thresholding in the high 
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frequency subbands. Some of the 

resulting wavelet coefficients correspond 

to details in the data set (high frequency 

subbands). If the details are small, they 

might be omitted without substantially 

affecting the main features of the data set. 

The idea of thresholding is to set all high 

frequency subband coefficients that are 

less than a particular threshold to zero. 

These coefficients are used in an inverse 

wavelet transformation to reconstruct the 

data set.  

    Total Variation (TV) filter is very 

good at preserving edges. This filter 

commonly using in spatial domain. We 

use this filter in low frequency subband to 

preserve the edges and enhance the edges. 

The canny filter [7] is simple and fast to 

detect the edges and then use this 

information to enhance the edges.  

    Fig. 6 shows the step of the proposed 

method. First, proposed method uses 

dual-tree wavelet transform in input 

image and then handles the low frequency 

subband (LL) and high frequency 

subbands (HL, LH and HH) 

independently. The TV filter and canny 

filter are adopted to denoise and enhance 

the edges in the low frequency subband 

(LL). And the wavelet thresholding denies 

in high frequency subbands. All of the 

denoising functions operate in the 

frequency domain and then inverse 

dual-tree wavelet transform to output 

image.   

      
IV. Simulation results 

The performance is evaluated by PSNR (peak 

signal to noise ratio). PSNR is mathematically 

evaluated as  
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PSNR has been accepted as a widely used measure of 

quality in the field of image compression.  

The test original image is Lena (Fig. 7(a)) that is 

gray level image with a size of 512 x 512 pixels with 

8 bpp. In Fig.7(b), The noise adding in original image 

is Gaussian white noise that mean sets zero and 

variance sets 0.01. 

Wavelet thresholding is applied to wavelet 

coefficients through all scales and subbands. Function 

sets coefficients with values less than the threshold to 

0, then substracts T from the non-zero coefficients. 

We use a threshold value of 40, which is the optimal 

threshold point for this case. Both TV filter and 

Canny filter are combined in the low frequency 

subband. After thresholding and filtering, we take 

inverse wavelet transform.  

The PSNR value of the reconstructive image that 

decomposed by separable wavelet transform is 27.28 

dB and the one that decomposed by dual-tree wavelet 

transform is 27.45 dB. The PSNR value difference is 

not obvious, and we show the reconstructive image in 

Fig. 8. It is apparent that the visual quality of 

reconstructive image by complex dual-tree DWT (Fig. 

8(b)) is better than that by separable DWT (Fig. 8(a)). 

    But PSNR and the visual quality are not 

absolutely relative. The PSNR value of the higher 

visual quality image may be smaller than that of the 

lower one. The PSNR value of Fig. 9(a) is 27.09 dB 

and that of Fig. 9(b) is 27.40 dB. But the visual 

quality of Fig. 9(b) is not better than that of Fig. 9(a). 

Therefore, we enlarge the figures and focus on a small 

area of these figures to see the difference. And we 
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demonstrate that the visual quality of complex 

dual-tree decomposed reconstructive image (Fig. 9(a)) 

is better than that of real dual-tree decomposed 

reconstructive image (Fig. 9(b)). 

 
V. Conclusions and Future works 
The simulation results demonstrate that complex 

dual-tree method removes more noise signal than 

separable and real methods do. Dual-tree method 

outperforms separable method. It illustrates the 

denoising capability for three different methods: 

complex 2-D dual-tree method is the best, followed 

by real 2-D dual-tree method and separable method. 

In this method, the threshold (T) is heuristic, so our 

future work is to predict the threshold by statistics. 

And the other future work is to reduce the time 

complexity in complex dual-tree wavelet transform 

computing. 
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Fig. 1: One stage in multi-resolution wavelet decomposition of an image 

 

 
Fig. 2: Three wavelets as gray scale images 

 
 

 

Fig. 3: Decomposition of dual-tree wavelet transform 
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Fig. 4: Directional wavelets for 2D DWT 

 

 
Fig. 5: Directional complex wavelets for 2D DWT 

 
 
 

 
Fig. 6: Flowchart of proposed method 
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Fig. 7(a): Original image Fig. 7(b): Noise image 

 
 

  
Fig. 8(a): Reconstructive image by separable 

DWT 
Fig. 8(b): Reconstructive image by complex 

dual-tree DWT 
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Fig. 9(a): Reconstructive image by 
complex dual-tree DWT 

Fig. 9(b): Reconstructive image by real 
dual-tree DWT 

 


