
2005 National Computer Symposium

1

Security Analysis of Two SAS-Like Password
Authentication Schemes

Wei-Chi Ku, Min-Hung Chiang, and Chun-Hao Hwang

Department of Computer Science and Information Engineering
Fu Jen Catholic University

510 Chung Cheng Rd., Hsinchuang, Taipei County, Taiwan 242, R.O.C.
E-mail: wcku@csie.fju.edu.tw

Abstract
In 2000, Sandirigama, Shimizu, and Noda

proposed a simple password authentication
scheme, SAS. However, SAS was later
found to be flawed. Recently, Chen, Lee,
Horng proposed two SAS-like schemes,
which were claimed to be more secure than
similar schemes. Herein, we show that both
their schemes are still vulnerable to denial-
of-service attacks.

Keywords: cryptographic hash function, de-
nial-of-service attack, password authentica-
tion, smart card

1. Introduction

So far, authentication using passwords is
still a popular approach often used to authen-
ticate users logining any kind of server. Ex-
isting password authentication schemes can
be categorized into two types, one is based
on public-key cryptographic techniques and
the other is based on cryptographic hash
functions. The latter type has the advantages
of lighter computational overhead, simpler
designs, and easier implementations, and is
the focus of this paper.

In 2000, Sandirigama, Shimizu, and Noda
[6] proposed a simple hash-based password
authentication scheme, SAS (Simple And
Secure password authentication), which was
claimed to be superior to previous similar
password authentication schemes in utiliza-
tion, processing time, and transmission over-
head. However, SAS was later found to be
vulnerable to a replay attack, a denial-of-
service attack, and a stolen-verifier attack [4],
[1]. To improve the security of SAS, Lin,
Sun, and Hwang [4] proposed the OSPA
(Optimal Strong-Password Authentication)
scheme. Unfortunately, OSPA was found to
be vulnerable to a stolen-verifier attack [1]
and an impersonation attack [7]. In 2003, Lin,
Shen, and Hwang [5] proposed an improved
version of OSPA using smart cards. How-
ever, their scheme was found to be vulner-
able to a denial-of-service attack and a replay
attack [3].

Recently, Chen, Lee, Horng [2] proposed
two SAS-like schemes, which are denoted by
scheme-1 and scheme-2 herein, based on
smart cards. Scheme-1 was designed to en-
hance the security of Lin-Shen-Hwang’s
scheme, and scheme-2 was designed to addi-

2005 National Computer Symposium

2

tionally achieve mutual authentication, i.e.,
the user and the server can authenticate each
other. Unfortunately, we find that both Chen-
Lee-Horng’s scheme-1 and scheme-2 are still
vulnerable to two kinds of denial-of-service
attacks. In this paper, we will first review
Chen-Lee-Horng’sscheme-1 and scheme-2,
and then show their weaknesses.

2. Review of Chen-Lee-Horng’s
Schemes

The notations used in Chen-Lee-Horng’s
schemes, scheme-1 and scheme-2, can be
summarized in Table 1.

Chen-Lee-Horng’s schemes involve two
phases, the registration phase and the authen-
tication phase. The registration phase is in-
voked when Ui requests to register with S
while the authentication phase is invoked
whenever Ui requests to login S.

A. Scheme-1

Scheme-1 was proposed to improve the
security of Lin-Shen-Hwang’s scheme, and
can be described as follows.

Registration Phase of Scheme-1

Step R1. Ui freely chooses his password
PWi and a nonce N, and then
computes h2(PWi⊕N). Next, he

submits {IDi, h2(PWi⊕N), N} to

S through a secure channel for
registration.

Step R2. S stores h2(PWi ⊕ N) in his

verification table, computes
h(x||IDi), and delivers a smart
card containing {N, h(x||IDi)} to
Ui through a secure channel.

Authentication Phase of Scheme-1

Step A1. Ui inserts his smart card into the

smart card reader of a terminal,

and then enters IDi and PWi.

Next, his smart card generates a

nonce r and performs the

following computations:

c1 = h(PWi⊕N)⊕ h(h2(PWi⊕N)⊕r)

c2 = h2(PWi⊕ N)⊕h(PWi⊕N)

c3 = h3(PWi⊕ N)

where N is a new nonce
generated by Ui’s smart card.
Then, Ui’s smart card computes

r⊕h(x||IDi)

Notation Description

Ui user

IDi identity of Ui

S server

PWi password of Ui

x secret key of S

N, N , r nonce

h() a cryptographic hash function

⊕ bitwise XOR operation

|| concatenation operation

Table 1. Notations used in Chen-Lee-Horng’s schemes.

2005 National Computer Symposium

3

h(r)
and sends {IDi, r⊕h(x||IDi), h(r),

c1, c2, c3} to S.

Step A2. If IDi is valid, S computes
h(x||IDi) to retrieve r from r⊕

h(x||IDi) and then verifies the
validity of r by using h(r).

Step A3. S computes h(h2(PWi⊕N)⊕ r)

and then uses it to extract h(PWi

⊕N) from the received c1. Next,

S applies h() to the extracted
h(PWi⊕N). If the hashed result

equals the stored h2(PWi⊕N), S

accepts Ui’s login request.
Otherwise, S rejects Ui’s login
request. Then, S sends the login
acceptance/rejection message to
Ui.

Step A4. S uses the extracted h(PWi⊕N)

to extract h2(PWi⊕ N) from the

received c2. Next, S applies h()

to the extracted h2(PWi⊕ N). If

the hashed result equals the
received c3, S replaces h2(PWi⊕

N) with h2(PWi⊕ N). On the

other hand, if Ui’s smart card
receives the login acceptance
message, it replaces the stored N

with N .

B. Scheme-2

Scheme-1 only provides unilateral authen-
tication in that the server can authenticate the
user while the user can not authenticate the
server. To meet higher security requirements,
scheme-2 was proposed to additionally pro-

vide mutual authentication and can be de-
scribed as in the following.

Registration Phase of Scheme-2

The registration phase of scheme-2 is the
same as that of scheme-1 and is omitted here.

Authentication Phase of Scheme-2

Step A1. Ui inserts his smart card into the
smart card reader of a terminal,
and then enters IDi and PWi.
Next, his smart card generates a

nonce rand sends {IDi, r} to S.

Step A2. If IDi is valid, S generates a
nonce r, computes r⊕h(x||IDi)

and h(r||r), and then sends { r⊕

h(x||IDi), h(r||r)} to Ui.

Step A3. Ui’s smart card uses the stored
h(x||IDi) to retrieve r from the
received r⊕ h(x||IDi) and then

computes h(r||r). If the

computed h(r||r) equals the
received one, Ui authenticates S.

Step A4. Ui’s smart card performs the

following computations:

c1 = h(PWi⊕N)⊕ h(h2(PWi⊕N)⊕r)

c2 = h2(PWi⊕ N)⊕h(PWi⊕N)

c3 = h3(PWi⊕ N)

where N is a new nonce
generated by Ui’s smartcard.
Next, Ui’s smart card sends {c1,
c2, c3} to S.

Step A5. S computes h(h2(PWi⊕N)⊕ r)

and then uses it to extract h(PWi

2005 National Computer Symposium

4

⊕N) from the received c1. Next,

S applies h() to the extracted
value. If the hashed result equals
the stored h2(PWi⊕N), S accepts

Ui’s login request. Then, S sends
the login acceptance/rejection
message to Ui.

Step A6. S uses the extracted h(PWi⊕N)

to extract h2(PWi⊕ N) from the

received c2. Next, S applies h()

to the extracted h2(PWi⊕ N). If

the hashed result equals the
received c3, S replaces h2(PWi⊕

N) with h2(PWi⊕ N). On the

other hand, if Ui’s smart card
receives the login acceptance
message, it replaces the stored N

with N .

3. Weaknesses of Chen-Lee-Horng’s
Schemes

We will demonstrate that both scheme-1
and scheme-2 are vulnerable to two kinds of
denial-of-service attacks.

Denial-of-Service Attacks on Scheme-1

During Ui’s login, the adversary can wire-
tap the login message sent from Ui in Step
A1 and then record c3 and c2. Simultaneously,
the adversary can replace the transmitting c1

with an arbitrary value, say X. Because h(X⊕

h(h2(PWi⊕N)⊕r)) does not equal the stored

h2(PWi⊕N), S will reject Ui’s login request.

After receiving the rejection message from S,
Ui will be requested to enter PWi into his
smart card again, and then Ui’s smart card

will generate two new nonces r* and N * and

perform the following computations:

c1
* = h(PWi⊕N)⊕h(h2(PWi⊕N)⊕r*)

c2
* = h2(PWi⊕ N *)⊕h(PWi⊕N)

c3
* = h3(PWi⊕ N *)

r*⊕h(x||IDi)

h(r*)

Ui’s smart card sends out {IDi, r*⊕h(x||IDi),

h(r*), c1
*, c2

*, c3
*}, which is intended to reach

S. In this moment, the adversary can replace
the transmitting c2

* and c3
* with the previ-

ously recorded c2 and c3. Then, S will com-
pute h(x||IDi) to retrieve r* from the received

r*⊕h(x||IDi) and verify the validity of r* by

using h(r*). Next, S computes h(h2(PWi⊕N)

⊕r*) and uses the result to extract h(PWi⊕N)

from the received c1
*, and then applies h() to

the extracted result. Since the hashed ex-
tracted result equals the stored h2(PWi⊕N), S

will accept Ui’s login request. In addition, S
will use the extracted h(PWi⊕N) to extract

h2(PWi⊕ N) from c2 and apply h() to the

extracted result. As the hashed extracted re-

sult equals c3, S will replace h2(PWi⊕N)

with h2(PWi⊕ N). Upon receiving the login

acceptance message, Ui’s smart card will re-

place the stored N with N *. Although Ui has

successfully logined S in this session, his

succeeding login request using N * will be

denied.

Furthermore, scheme-1 is vulnerable to
another kind of denial-of-service attack as
follows. During Ui’s login, S will send the

2005 National Computer Symposium

5

login acceptance message to Ui in Step A3.
Simultaneously, the adversary can replace
the transmitting login acceptance message
with the login rejection message. Accord-
ingly, Ui’s smart card will not replace the

stored N with N . However, S has replaced

the stored h2(PWi⊕N) with h2(PWi⊕ N).

Since the data stored in Ui’s smart card and S
are not consistent, Ui’s succeeding login re-
quest using N will be denied. Alternatively,
the adversary can fool Ui’s smart card into
changing N with N while the stored h2(PWi

⊕N) in S is left unchanged. In this case, Ui’s

succeeding login request using N will also

be denied.

Denial-of-Service Attacks on Scheme-2

During Ui’s login, the adversary can wire-
tap the login message sent from Ui in Step
A4 and then record c2 and c3. Simultaneously,
the adversary can replace the transmitting c1

with an arbitrary value, say X. Because h(X⊕

h(h2(PWi⊕N)⊕r)) does not equal the stored

h2(PWi⊕N), S will reject Ui’s login request.

After receiving the login rejection message
from S, Ui will be requested to enter PWi into
his smart card again. Then, Ui’s smart card

will generate a new nonce rand send {IDi,

r} to S. Next, S generates a nonce r*, com-

putes r*⊕ h(x||IDi) and h(r*||r), and then

sends {r*⊕h(x||IDi), h(r*||r)} to Ui. Then,

Ui’s smart card will use the stored h(x||IDi) to
retrieve r* from the received r*⊕h(x||IDi) and

compute h(r*||r). As the computed h(r*||r)
equals the received one, Ui authenticates S.
Then, Ui’s smart card will generate a new

nonce N * and perform the following com-

putations:

c1
* = h(PWi⊕N)⊕h(h2(PWi⊕N)⊕r*)

c2
* = h2(PWi⊕ N *)⊕h(PWi⊕N)

c3
* = h3(PWi⊕ N *)

Next, Ui’s smart card sends out {c1
*, c2

*, c3
*},

which is intended to reach S. Simultaneously,
the adversary can replace the transmitting c2

*

and c3
* with the previously recorded c2 and

c3. Next, S will compute h(h2(PWi⊕N)⊕r*)

and use the result to extract h(PWi⊕N) from

the received c1
* and then apply h() to the ex-

tracted result. Since the hashed extracted re-
sult equals the stored h2(PWi⊕N), S will ac-

cept Ui’s login request. In addition, S will
use the extracted h(PWi ⊕ N) to extract

h2(PWi⊕ N) from c2 and apply h() to the

extracted result. As the hashed extracted re-
sult equals c3, S will replace h2(PWi⊕N)

with h2(PWi⊕ N). However, upon receiving

the login acceptance message, Ui’s smart

card will replace the stored N with N *. Al-

though Ui has successfully logined S in this
session, his succeeding login request using

N * will be denied.

Similarly, scheme-2 is also vulnerable to
another kind of denial-of-service attack as
follows. During Ui’s login, S will send the
login acceptance message to Ui in Step A5.
Simultaneously, the adversary can replace
the transmitting login acceptance message
with the login rejection message. Although S
has replaced the stored h2(PWi ⊕N) with

h2(PWi⊕ N), Ui’s smart card will not re-

place the stored N with N . Since the data

2005 National Computer Symposium

6

stored in Ui’s smart card and S are inconsis-
tent, Ui’s succeeding login request using N
will be denied. Alternatively, the adversary
can fool Ui’s smart card into changing N
with N while the stored h2(PWi⊕N) in S is

left unchanged. Thus, Ui’s succeeding login
request using N will be denied.

4. Conclusion

Herein, we have shown that both Chen-
Lee-Horng’s password authentication
schemes, scheme-1 and scheme-2, are vul-
nerable to two kinds of denial-of-service at-
tacks. Such weaknesses are due to the incon-
sistence of the data stored in the user’s smart
card and the server.

Acknowledgment

This work was partly supported by the
National Science Council, R.O.C., under
Grant NSC-93-2213-E-030-017.

References

[1] C.M. Chen and W.C. Ku, “Stolen-
verifier attack on two new strong-
password authentication protocols,”
IEICE Trans. Commun., vol.E85-B,
no.11, pp.2519–2521, Nov. 2002.

[2] T.H. Chen, W.B. Lee, and G. Horng,
“Secure SAS-like password authentica-
tion schemes,” Comput. Standards &
Interfaces, vol.27, no.1, pp.25–31, Nov.
2004.

[3] W.C. Ku, H.C. Tsai, and S.M. Chen,
“Two simple attacks on Lin-Shen-

Hwang’s strong-password authentica-
tion protocol,” ACM Operating Systems
Review, vol.37, no.4, pp.26–31, Oct.
2003.

[4] C.L. Lin, H.M. Sun, and T. Hwang,
“Attacks and solutions on strong-
password authentication,” IEICE Trans.
Commun., vol.E84-B, no.9, pp.2622–
2627, Sept. 2001.

[5] C.W. Lin, J.J. Shen, and M.S. Hwang,
“Security enhancement for optimal
strong-password authentication proto-
col,” ACM Operating Systems Review,
vol.37, no.2, pp.7–12, April 2003.

[6] M. Sandirigama, A. Shimizu, and M.T.
Noda, “Simple and secure password au-
thentication protocol (SAS),” IEICE
Trans. Commun., vol.E83-B, no.6,
pp.1363–1365, June 2000.

[7] T. Tsuji and A. Shimizu, “An imper-
sonation attack on one-time password
authentication protocol OSPA,” IEICE
Trans. Commun., vol.E86-B, no.7,
pp.2182–2185, July 2003.

