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摘要 

近年來，隨著串流媒體的發展，使得可調適

H.264 影像編碼被設計用於即時影像通信系統。此

法是建構於精細可調適編碼(FGS)影像編碼方法。

這方法提供框架去適應頻道頻寬的變化，最近也在

MPEG-4 的串流影像協定中成為標準。FGS 也對編

碼器提供選擇性提升明顯可增加影像品質的區

域。在本論文中，我們提出並實現了一個簡單和有

效的即時的層基礎的可調適影像通訊系統。在此系

統中我們使用漸進式精細可調適編碼(PFGS)規劃

來編碼進階層和 H.264 的基本層。這個規劃是直接

在H.264實做FGS以及不對FGS的使用任何H.264
專門的特性。此外，我們使用適應階層式為基礎且

以最小鬆散值先執行(LB-LLF)的排程演算法層，來

改善在網路上視/音訊的輸出品質以達到同步效

果。實驗結果顯示使用我們的方法後，影像串流的

品質明顯地改善。 
關鍵字 : 串流視訊、串流媒體、視訊處理、即時

排程 
 

Abstract 
With the recent development in stream media, 

scalable H.264 video encoding is designed to be used 
in real-time video communications systems. The 
method is based on the Fine Granular Scalability 
(FGS) video coding method. It provides a framework 
to adapt to variations in the channel bandwidth and 
was recently standardized in the Streaming Video 
Profile of MPEG-4. FGS also provides to the encoder 
the ability to selectively enhance the regions that are 
visually increasing the subjective video quality. In 
this paper we proposed and implemented a simple 
and effective real-time layer-based scalable video 
communication system. In this system we use 
Progressive Fine Granularity Scalable (PFGS) 
scheme to encode the enhancement layer and H.264 

to encode the base layer. This scheme is a direct 
implementation of FGS onto H.264 and does not 
employ any H.264-specific features for FGS. We also 
use the adaptive Layer-Based Least-Laxity-First 
(LB-LLF) scheduling algorithm to improve the 
output quality of video on network and to achieve 
synchronized playback effect. The experimental 
results show that subjective quality of the video 
stream is significantly improved using our methods. 
Keyword: streaming video, streaming media, video 
processing, real-time scheduling 
 

1. Introduction 

Multimedia applications typically require 
computations for large amount of data. In late 2001, 
ISO/IEC MPEG and ITU-T VCEG decided on a joint 
venture towards enhancing standard video coding 
performance – specifically in the areas where 
bandwidth and/or storage capacity are limited. This 
Joint team of both standard organizations is called 
Joint Video Team (JVT). The standard formed is 
called H.264/MPEG-4 part 10 and is presently 
referred to as JVT/H.26L/Advanced Video Coding 
(AVC) [3]. An emerging video coding standard 
named H.264 or MPEG-4 Part 10 aims to code video 
sequences at approximately half the bit rate compared 
to MPEG-2 at the same quality. It also aims at having 
significant improvements in coding efficiency, error 
robustness and network friendliness [4]. 

H.264 is different from the previous video 
standards. It introduced several new techniques and 
had about up to 50% improved performance over the 
MPEG-4. And it makes H.264 an attractive choice for 
the streaming video over internet and wireless 
networks. However, not much research has been done 
for introducing scalability to the H.264 standard. 
Although H.264 has features that enable efficient 
switching of different streams at different rates, but it 
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don’t have the ability to adapt to changing bandwidth 
conditions in a fine-granular fashion. 

There has been some work done combining 
FGS with H.264. Progressive FGS (PFGS) has been 
proposed to encode the enhancement layer and H.264 
to encode the base layer [1]. This scheme is a direct 
implementation of FGS onto H.264 and does not 
employ any H.264-specific features for FGS. 
Recently, we proposed low-complexity H.264-based 
FGS structure which increased the error-resilience of 
the overall system (encoder and decoder) and 
decreased its complexity by using the features that 
are already present in the base layer H.264 encoding. 

In this system we use Progressive Fine 
Granularity Scalable (PFGS) scheme to encode the 
enhancement layer and H.264 to encode the base 
layer. This scheme is a direct implementation of FGS 
onto H.264 and does not employ any H.264-specific 
features for FGS. We also use the adaptive 
Layer-Based Least-Laxity-First (LB-LLF) scheduling 
algorithm to improve the output quality of video on 
network and to achieve synchronized playback effect.  
The proposed algorithm considered real-time 
constraint, unequal priorities of scalable media 
stream in different layers, and a good trade-off 
between coding efficiency and drifting error. Section 
2 gives a brief overview of scalable video coding 
technique adopted in H.264, and introduced H.264 
based FGS bit-plane coding scheme. Section 3 
presents the architecture of the layer-based scalable 
streaming media system for H.264 and our proposed 
method for transmission through networks. Section 4 
presents the real-time Least-Laxity-First (LLF) 
scheduling algorithm for H.264 layer-based scheduler. 
Section 5 shows the experimental results that 
subjective quality of the video stream is significantly 
improved using our methods. Conclusions and 
discussions are presented in Section 6. 

 

2. Scalable Video Coding for H.264 

The Fine Granularity Scalable (FGS) [2] video 
coding technique is adopted in MPEG-4 standard. In 
the proposed scheme, the base layer is predicted from 
the reconstructed base layer of a reference frame. 
And all enhancement layers are predicted from an 
enhancement layer of the reference frame. The Fine 
Granularity Scalable scheme can easily adapt to 
channel bandwidth fluctuations, because the bit plane 
coding technique provides the fine granularity 
scalability in the enhancement layer. The 
enhancement bit stream can be truncated according to 
available channel bandwidth due to the bit plane 
coding produces an embedded bit-stream with fine 
granular scalability. However, the coding efficiency 
of the FGS is not so good as the traditional scalable 
coding since its motion prediction is always based on 

the lowest quality base layer. The PSNR of the FGS 
may drop 3dB or more at the same bit rate while 
compared with the non-scalable video coding 
schemes. 

The H.264 compression algorithm assumes that 
a video sequence is composed of similar images, 
which are related to each other. Typically, there are 
small spatial temporal changes between the current 
image and the next one, since most of the image 
segments are almost identical, and just few might 
change location or be replaced with new ones. Each 
incoming image is processed either as I-frame or only 
as the spatial-temporal difference from the previous 
image (P-frame) or bi-directional image (B-frame). A 
conventional video transmission system of H.264 
video encoding is based on a sequential encoding of 
frames. In most existing video coding standards 
including H.264, within each frame video encoding is 
typically based on sequential encoding of 
macro-blocks (MBs). Although slices could he 
formed, the strategy of one frame in one packet is 
usually beneficial to exploit the full intra-frame 
correlations within one frame. Each generated frame 
is channel encoded and transmitted over the wireless 
channel. The applied channel coding maps the 
wireless channel into a perfect packet erasure channel, 
i.e., frames are either lost or perfectly decoded. In 
addition to the forward link it possible that a low 
bit-rate reliable back-channel from the decoder to the 
encoder is available which allows reporting a frame 
delayed version the observed channel behavior at the 
decoder to the encoder. The decoder processes the 
received sequence of packets. Whereas correctly 
received packets are decoded as usual far the lost 
packet an error concealment algorithm has to be 
invoked. In inter mode, i.e., when motion 
compensated prediction (MCP) is utilized, the loss of 
information in one frame has a considerable impact 
on the quality of the following frames, if the 
concealed image content is referenced for MCP. 

The FGS structure consists of an MPEG-4 
non-scalable base layer encoded at Rbase and an 
enhancement layer encoded using bit-plane coding at 
a maximum bit-rate Rmax. During transmission, the 
enhancement layer can be truncated at the rate 
Ravaliable to fully utilize the available bandwidth. 
Because the enhancement portion is encoded using 
bit-plane coding, the quality of the video at the 
decoder side increases with more bit-planes received. 
Figure 1 illustrates the bit-plane coding FGS is 
standardized in MPEG-4 Streaming Video Profile and 
it uses MF'EG-4 coding blocks. We have introduced 
H.264 based FGS and modified the FGS structure 
that uses H.264's superior features that decreases the 
complexity and increases the error resilience of the 
overall system. 
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Figure 1: FGS Structure, BP1, BP2...BP5 are the bit-planes for the enhancement layer 
 
 

3. System Architecture 

To increase the traffic quality for streaming 
media in the internet, a server transmits multimedia 
stream packets to a receiver that buffers these packets 
for playback. A typical streaming system consists of 
clients and servers on a network. Figure 2 shows the 
architecture of the layer-based scalable streaming 
media system for H.264. The client requests are sent 
to the server via network connections, which also 
serves for transmission of media data. The buffers in 
each client are used to provide some tolerance on 
variations in network delay as well as data 
consumption rates. The scheduler in the server 
controls the packet size and sequence, manages the 
server transmitted buffer and packets via the network 
to the clients’ buffers. The scalable video sequence 
consists of many frames, which are compressed into 
several layers. The layers are packed as packet and 
fed into the server’s transmission buffer. These are 
the packets waiting to be scheduled for transmission. 
The server’s scheduler selects one candidate packet at 
a time from those buffers and sends it to the network 
channel. [9][10]

The problem of the non-scalable system comes 
for the "all-or-nothing" transmission strategy. Either 

the entire frame can be decoded or everything is lost. 
The probability of the loss obviously depends on the 
applied channel coding rate. However, with this 
strategy we have overprotected the source for most 
channel realizations and therefore limit the average 
bit-rate for the video transmission. It has been shown 
for still image transmission that the application of 
scalable or progressively coded source in 
combination with unequal error protection can 
enhance the system significantly. In proposed system, 
we have presented a channel and complexity scalable 
transmission system which outperforms previous 
approaches especially for wireless fading channels.  

The client includes a base receiver buffer and 
several enhance receiver buffers to compensate 
transmission delay jitter.  The dispatcher stores 
incoming packets in reception order into the base 
receiver buffer and enhance receiver buffers. Packets 
are de-capsulated in sequence number order within 
receiver buffers.  If a de-capsulated packet is a 
single frame unit packet, the unit contained in the 
packet is passed directly to the decoder from buffers. 
If a de-capsulated packet is not a frame unit, the units 
contained in the packet are passed to the decoder in 
the order they are encapsulated in the packet. If a 
de-capsulated packet is a fragment, all the fragments 
of the fragmented frame unit are concatenated and 
passed to the buffers that they belong to. 

 
Figure 2: The architecture of PFGS video streaming system 
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4. Real-Time Scheduling Algorithm for 
H.264 Layer-Based Scheduler 

4.1 Basic Technologies 

Least-Laxity-First algorithm (LLF) is optimal 
dynamic scheduling algorithms [11][12]. A main 
advantage of these dynamic scheduling algorithms 
can achieve a theoretically possible 100% processor 
utilization without deadline misses. 

The LLF algorithm is a dynamic scheduling 
method, i.e., it makes the decision for which task to 
execute next at scheduling time. For every task ready 
to run at the given moment the difference L between 
the time of deadline D and the end of processing time 
P is computed. This difference is called as laxity or 
slack which can be seen as an inverted priority value. 
The task with the smallest L-value is the one to be 
executed next. Whenever a task other than the 
currently running one has the smallest laxity, a 
context switch will occur. LLF algorithm is an 
optimal scheduling method. That means, if a given 
set of tasks is schedulable, then it can be scheduled 
by Least-Laxity-First. Another great advantage of the 
LLF algorithm is that no further assignment for fixed 
priorities to the tasks at development time except 
scheduling test. Furthermore, a task going to miss its 
deadline is recognized at the same moment when its 
laxity turns to zero with the task currently not being 
executed. At that time the deadline is not yet reached 
and emergency measures can be taken to cover the 
miss of a deadline. With LLF it is possible for the 
scheduler to detect an impending deadline miss 
during the execution of tasks. [13][14]

4.2 Layer-Based LLF Scheduling 
Algorithm 

Each task (packet) T is characterized by the 
following parameters: 
Tx(y) : the task (packet) of the yth layer in frame x. 

The tasks are put into the transmission buffers 
according to the decoding order. 

Ex(y) : the earliest time at which the task Tx(y) 
becomes ready for scheduling in transmission 
buffer. 

Px(y) : the processing time of a task Tx(y). 
Lx(y) : the laxity value of the task Tx(y). Lx(y) = D(x) 

- Px(y). 
LTx(y) : the laxity value of the task Tx(y) at a given 

time. 
D(x) : the latest time at which all packets of frame x 

should be sent to the client, otherwise it is too 
late for playback. 

 
It is instinctive to select and schedule packets by 

Least-Laxity-First scheduling algorithm for delivery 
of scalable streaming media over a network. We 
proposed the adaptive Layer-Based Least–Laxity 
-First (LB-LLF) scheduling algorithm, which 
combines importance and priority of the layer. As 
packets at different layers have different effects on 
the playback quality, we set the higher priority to the 
lower (more important) layer packets and set the 
lower priority to the higher (less important) layer 
packets. Thus, important layer packets should be 
transmitted earlier, with more chances to be 
transmitted to client buffer for higher playing back 
quality. Packets in the same layer are served 
according to LLF scheduler. The detailed description 
of the algorithm is given as follows. 

Layer-based LLF real-time scheduling algorithm : 

Step 1: Compare the current time tcur with the 
deadline D(x) of the packets in the server 
transmit buffer. If tcur > D(x), remove the 
packet from the server transmit buffer. 

Step 2: Let T = set of ready packets with the lowest 
layer in the server transmission buffers. 
Calculate the least-laxity value Lx(y) for 
each frame set T from frame number X = 1 
to N (where N is the maximum buffer size in 
server.) 

Step 3: Select the smallest least-laxity value LTx(y) 
packets from T and send it to the client via 
the network. 

Step 4: Set the release time as the current time, tcur = 
tcur + Px(y). 
Go to Step 1. 

 
The LB-LLF scheduling algorithm has two key 

points. First, it selects the packets from the lowest 
layer in ready state, the important packet to be sent 
by the server will transmit much earlier than its 
playback time, and this important packet will have 
more chances to be transmitted to the client buffer for 
displaying. Second, it calculates the least-laxity value 
for each frame set from frame number X = 1 to N and 
services the packet of the smallest laxity set. In 
real-time constraint, unequal priorities of scalable 
media stream in different layers and achieving a good 
trade-off between coding efficiency and drifting error 
are considered in the proposed algorithm. This 
guarantees the better usage of available channel 
bandwidth and the smoother playback in client. 

 

5. Experimental Results 

We use the Microsoft H.26L-PFGS and the JVT 
JM 2.0 encoder/decoder to generate the simulation 
data. It is an efficient scalable coding scheme with 
fine granularity scalability, where the base layer is 
encoded with H.264, and the enhancement layer is 
encoded with PFGS coding. For comparison 
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performance of the scheduling algorithms in the 
given channel bandwidth, we set the base layer as the 
highest priority that can get all the base layer data 
without any packet losses. In the experiment, the 
sequence Foreman in QCIF format is used. It is 
encoded with 25 frames per second and 200 frames 
are encoded and transmitted by the proposed 
scheduler. Because the maximum level of bit-plane is 
4 in the Foreman sequence, there are 4 layers in the 
Enhancement layer. Different enhancement layer 
bit-plane has different frame size. The sizes of the 
enhancement layers in the first 50 frames are shown 
in Figure 3. The enhancement layer 1 (Enh1) is the 
smallest in size, but it is the most significant layer. 
The enhancement layer 4 (Enh4) is the largest in size, 
but it is the least significant layer. The average rate of 
video data with all enhancement layers is 872.5 Kbps. 
The transmission buffer size is set to 25. The 
playback frame rate is 25 frames per second. The 
scheduling time is 0.1ms. The channel bandwidth is 
various from 100 to 1800 Kbps. 

Figure 4 shows comparisons of PSNR among 
H.263, MPEG-4, H.264, and H.264 Layer-Based 
system with various bit rates from 100 to 1800 Kbps. 
With the H.264 Layer-Based system, the 
experimental results of the average PSNR is 34.71 dB. 
It improves about 0.95 dB over a H.264 system, 4 dB 
over a MPEG-4 system, and 6.44 dB over a H.263 
system. The gains mainly result from the better 
average encoding performance which can be 
observed in Figure 4 from the high probability of 
relatively good decoded PSNR, e.g. in more than 
70% the decoded PSNR is above 2 dB for H.264 over 
MPEG-4. And the PSNR of H.264 with Layer-Based 
is still better than the PSNR of H.264. As mentioned 
above this improvement guarantees the effective 
usage of available channel bandwidth and the better 
quality of playback in client.  
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Figure 3: The bit size of the enhancement layers 
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Figure 4: The PSNR with various Bit Rate 
 

6. Conclusions 

In this paper we proposed and implemented a 
simple and effective real-time layer-based scalable 
video communication system. Our proposed system 
uses Progressive Fine Granularity Scalable (PFGS) 
scheme to encode the enhancement layer and H.264 
to encode the base layer. The adaptive Layer-Based 
Least-Laxity-First (LB-LLF) scheduling algorithm is 
also presented to improve the output quality of video 
over network and to achieve better playback quality.  
The proposed algorithm considered real-time 
constraint, unequal priorities of scalable media 
stream in different layers, and a good trade-off 
between coding efficiency and drifting error. The 
experimental results show that subjective quality of 
the video stream is significantly improved using our 
methods. 
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