
針對 H.264 的即時階層式為基礎可調適層級影像通訊系統的設計

與實作

Design and Implementation of a Real-Time Layer-based Scalable
Video Communication System for H.264

曾嘉影

Chia-Ying Tseng
大同大學資訊工程

系
cytseng@ttu.edu.tw

李良德
Liang-Teh Lee

大同大學資訊工程

系
ltlee@ttu.edu.tw

劉岡遠
Kang-Yuan Liu

大同大學資訊工程

研究所
d9306005@ms2.ttu.

edu.tw

杜安蓉
An-Jung Tu

大同大學資訊工程

研究所
g9306003@ms2.ttu.

edu.tw

摘要

近年來，隨著串流媒體的發展，使得可調適

H.264 影像編碼被設計用於即時影像通信系統。此

法是建構於精細可調適編碼(FGS)影像編碼方法。

這方法提供框架去適應頻道頻寬的變化，最近也在

MPEG-4 的串流影像協定中成為標準。FGS 也對編

碼器提供選擇性提升明顯可增加影像品質的區

域。在本論文中，我們提出並實現了一個簡單和有

效的即時的層基礎的可調適影像通訊系統。在此系

統中我們使用漸進式精細可調適編碼(PFGS)規劃

來編碼進階層和 H.264 的基本層。這個規劃是直接

在H.264實做FGS以及不對FGS的使用任何H.264
專門的特性。此外，我們使用適應階層式為基礎且

以最小鬆散值先執行(LB-LLF)的排程演算法層，來

改善在網路上視/音訊的輸出品質以達到同步效

果。實驗結果顯示使用我們的方法後，影像串流的

品質明顯地改善。
關鍵字 : 串流視訊、串流媒體、視訊處理、即時

排程

Abstract
With the recent development in stream media,

scalable H.264 video encoding is designed to be used
in real-time video communications systems. The
method is based on the Fine Granular Scalability
(FGS) video coding method. It provides a framework
to adapt to variations in the channel bandwidth and
was recently standardized in the Streaming Video
Profile of MPEG-4. FGS also provides to the encoder
the ability to selectively enhance the regions that are
visually increasing the subjective video quality. In
this paper we proposed and implemented a simple
and effective real-time layer-based scalable video
communication system. In this system we use
Progressive Fine Granularity Scalable (PFGS)
scheme to encode the enhancement layer and H.264

to encode the base layer. This scheme is a direct
implementation of FGS onto H.264 and does not
employ any H.264-specific features for FGS. We also
use the adaptive Layer-Based Least-Laxity-First
(LB-LLF) scheduling algorithm to improve the
output quality of video on network and to achieve
synchronized playback effect. The experimental
results show that subjective quality of the video
stream is significantly improved using our methods.
Keyword: streaming video, streaming media, video
processing, real-time scheduling

1. Introduction

Multimedia applications typically require
computations for large amount of data. In late 2001,
ISO/IEC MPEG and ITU-T VCEG decided on a joint
venture towards enhancing standard video coding
performance – specifically in the areas where
bandwidth and/or storage capacity are limited. This
Joint team of both standard organizations is called
Joint Video Team (JVT). The standard formed is
called H.264/MPEG-4 part 10 and is presently
referred to as JVT/H.26L/Advanced Video Coding
(AVC) [3]. An emerging video coding standard
named H.264 or MPEG-4 Part 10 aims to code video
sequences at approximately half the bit rate compared
to MPEG-2 at the same quality. It also aims at having
significant improvements in coding efficiency, error
robustness and network friendliness [4].

H.264 is different from the previous video
standards. It introduced several new techniques and
had about up to 50% improved performance over the
MPEG-4. And it makes H.264 an attractive choice for
the streaming video over internet and wireless
networks. However, not much research has been done
for introducing scalability to the H.264 standard.
Although H.264 has features that enable efficient
switching of different streams at different rates, but it

 1

don’t have the ability to adapt to changing bandwidth
conditions in a fine-granular fashion.

There has been some work done combining
FGS with H.264. Progressive FGS (PFGS) has been
proposed to encode the enhancement layer and H.264
to encode the base layer [1]. This scheme is a direct
implementation of FGS onto H.264 and does not
employ any H.264-specific features for FGS.
Recently, we proposed low-complexity H.264-based
FGS structure which increased the error-resilience of
the overall system (encoder and decoder) and
decreased its complexity by using the features that
are already present in the base layer H.264 encoding.

In this system we use Progressive Fine
Granularity Scalable (PFGS) scheme to encode the
enhancement layer and H.264 to encode the base
layer. This scheme is a direct implementation of FGS
onto H.264 and does not employ any H.264-specific
features for FGS. We also use the adaptive
Layer-Based Least-Laxity-First (LB-LLF) scheduling
algorithm to improve the output quality of video on
network and to achieve synchronized playback effect.
The proposed algorithm considered real-time
constraint, unequal priorities of scalable media
stream in different layers, and a good trade-off
between coding efficiency and drifting error. Section
2 gives a brief overview of scalable video coding
technique adopted in H.264, and introduced H.264
based FGS bit-plane coding scheme. Section 3
presents the architecture of the layer-based scalable
streaming media system for H.264 and our proposed
method for transmission through networks. Section 4
presents the real-time Least-Laxity-First (LLF)
scheduling algorithm for H.264 layer-based scheduler.
Section 5 shows the experimental results that
subjective quality of the video stream is significantly
improved using our methods. Conclusions and
discussions are presented in Section 6.

2. Scalable Video Coding for H.264

The Fine Granularity Scalable (FGS) [2] video
coding technique is adopted in MPEG-4 standard. In
the proposed scheme, the base layer is predicted from
the reconstructed base layer of a reference frame.
And all enhancement layers are predicted from an
enhancement layer of the reference frame. The Fine
Granularity Scalable scheme can easily adapt to
channel bandwidth fluctuations, because the bit plane
coding technique provides the fine granularity
scalability in the enhancement layer. The
enhancement bit stream can be truncated according to
available channel bandwidth due to the bit plane
coding produces an embedded bit-stream with fine
granular scalability. However, the coding efficiency
of the FGS is not so good as the traditional scalable
coding since its motion prediction is always based on

the lowest quality base layer. The PSNR of the FGS
may drop 3dB or more at the same bit rate while
compared with the non-scalable video coding
schemes.

The H.264 compression algorithm assumes that
a video sequence is composed of similar images,
which are related to each other. Typically, there are
small spatial temporal changes between the current
image and the next one, since most of the image
segments are almost identical, and just few might
change location or be replaced with new ones. Each
incoming image is processed either as I-frame or only
as the spatial-temporal difference from the previous
image (P-frame) or bi-directional image (B-frame). A
conventional video transmission system of H.264
video encoding is based on a sequential encoding of
frames. In most existing video coding standards
including H.264, within each frame video encoding is
typically based on sequential encoding of
macro-blocks (MBs). Although slices could he
formed, the strategy of one frame in one packet is
usually beneficial to exploit the full intra-frame
correlations within one frame. Each generated frame
is channel encoded and transmitted over the wireless
channel. The applied channel coding maps the
wireless channel into a perfect packet erasure channel,
i.e., frames are either lost or perfectly decoded. In
addition to the forward link it possible that a low
bit-rate reliable back-channel from the decoder to the
encoder is available which allows reporting a frame
delayed version the observed channel behavior at the
decoder to the encoder. The decoder processes the
received sequence of packets. Whereas correctly
received packets are decoded as usual far the lost
packet an error concealment algorithm has to be
invoked. In inter mode, i.e., when motion
compensated prediction (MCP) is utilized, the loss of
information in one frame has a considerable impact
on the quality of the following frames, if the
concealed image content is referenced for MCP.

The FGS structure consists of an MPEG-4
non-scalable base layer encoded at Rbase and an
enhancement layer encoded using bit-plane coding at
a maximum bit-rate Rmax. During transmission, the
enhancement layer can be truncated at the rate
Ravaliable to fully utilize the available bandwidth.
Because the enhancement portion is encoded using
bit-plane coding, the quality of the video at the
decoder side increases with more bit-planes received.
Figure 1 illustrates the bit-plane coding FGS is
standardized in MPEG-4 Streaming Video Profile and
it uses MF'EG-4 coding blocks. We have introduced
H.264 based FGS and modified the FGS structure
that uses H.264's superior features that decreases the
complexity and increases the error resilience of the
overall system.

 2

I BPB

Rmax

Rbase

BP1

BP5

BP4

BP3

BP2

E
nh

an
ce

m
en

t
L

ay
er

B
as

e
L

ay
er

RBP1

RBP4

RBP3

RBP2

Figure 1: FGS Structure, BP1, BP2...BP5 are the bit-planes for the enhancement layer

3. System Architecture

To increase the traffic quality for streaming
media in the internet, a server transmits multimedia
stream packets to a receiver that buffers these packets
for playback. A typical streaming system consists of
clients and servers on a network. Figure 2 shows the
architecture of the layer-based scalable streaming
media system for H.264. The client requests are sent
to the server via network connections, which also
serves for transmission of media data. The buffers in
each client are used to provide some tolerance on
variations in network delay as well as data
consumption rates. The scheduler in the server
controls the packet size and sequence, manages the
server transmitted buffer and packets via the network
to the clients’ buffers. The scalable video sequence
consists of many frames, which are compressed into
several layers. The layers are packed as packet and
fed into the server’s transmission buffer. These are
the packets waiting to be scheduled for transmission.
The server’s scheduler selects one candidate packet at
a time from those buffers and sends it to the network
channel. [9][10]

The problem of the non-scalable system comes
for the "all-or-nothing" transmission strategy. Either

the entire frame can be decoded or everything is lost.
The probability of the loss obviously depends on the
applied channel coding rate. However, with this
strategy we have overprotected the source for most
channel realizations and therefore limit the average
bit-rate for the video transmission. It has been shown
for still image transmission that the application of
scalable or progressively coded source in
combination with unequal error protection can
enhance the system significantly. In proposed system,
we have presented a channel and complexity scalable
transmission system which outperforms previous
approaches especially for wireless fading channels.

The client includes a base receiver buffer and
several enhance receiver buffers to compensate
transmission delay jitter. The dispatcher stores
incoming packets in reception order into the base
receiver buffer and enhance receiver buffers. Packets
are de-capsulated in sequence number order within
receiver buffers. If a de-capsulated packet is a
single frame unit packet, the unit contained in the
packet is passed directly to the decoder from buffers.
If a de-capsulated packet is not a frame unit, the units
contained in the packet are passed to the decoder in
the order they are encapsulated in the packet. If a
de-capsulated packet is a fragment, all the fragments
of the fragmented frame unit are concatenated and
passed to the buffers that they belong to.

Figure 2: The architecture of PFGS video streaming system

 3

4. Real-Time Scheduling Algorithm for
H.264 Layer-Based Scheduler

4.1 Basic Technologies

Least-Laxity-First algorithm (LLF) is optimal
dynamic scheduling algorithms [11][12]. A main
advantage of these dynamic scheduling algorithms
can achieve a theoretically possible 100% processor
utilization without deadline misses.

The LLF algorithm is a dynamic scheduling
method, i.e., it makes the decision for which task to
execute next at scheduling time. For every task ready
to run at the given moment the difference L between
the time of deadline D and the end of processing time
P is computed. This difference is called as laxity or
slack which can be seen as an inverted priority value.
The task with the smallest L-value is the one to be
executed next. Whenever a task other than the
currently running one has the smallest laxity, a
context switch will occur. LLF algorithm is an
optimal scheduling method. That means, if a given
set of tasks is schedulable, then it can be scheduled
by Least-Laxity-First. Another great advantage of the
LLF algorithm is that no further assignment for fixed
priorities to the tasks at development time except
scheduling test. Furthermore, a task going to miss its
deadline is recognized at the same moment when its
laxity turns to zero with the task currently not being
executed. At that time the deadline is not yet reached
and emergency measures can be taken to cover the
miss of a deadline. With LLF it is possible for the
scheduler to detect an impending deadline miss
during the execution of tasks. [13][14]

4.2 Layer-Based LLF Scheduling
Algorithm

Each task (packet) T is characterized by the
following parameters:
Tx(y) : the task (packet) of the yth layer in frame x.

The tasks are put into the transmission buffers
according to the decoding order.

Ex(y) : the earliest time at which the task Tx(y)
becomes ready for scheduling in transmission
buffer.

Px(y) : the processing time of a task Tx(y).
Lx(y) : the laxity value of the task Tx(y). Lx(y) = D(x)

- Px(y).
LTx(y) : the laxity value of the task Tx(y) at a given

time.
D(x) : the latest time at which all packets of frame x

should be sent to the client, otherwise it is too
late for playback.

It is instinctive to select and schedule packets by

Least-Laxity-First scheduling algorithm for delivery
of scalable streaming media over a network. We
proposed the adaptive Layer-Based Least–Laxity
-First (LB-LLF) scheduling algorithm, which
combines importance and priority of the layer. As
packets at different layers have different effects on
the playback quality, we set the higher priority to the
lower (more important) layer packets and set the
lower priority to the higher (less important) layer
packets. Thus, important layer packets should be
transmitted earlier, with more chances to be
transmitted to client buffer for higher playing back
quality. Packets in the same layer are served
according to LLF scheduler. The detailed description
of the algorithm is given as follows.

Layer-based LLF real-time scheduling algorithm :

Step 1: Compare the current time tcur with the
deadline D(x) of the packets in the server
transmit buffer. If tcur > D(x), remove the
packet from the server transmit buffer.

Step 2: Let T = set of ready packets with the lowest
layer in the server transmission buffers.
Calculate the least-laxity value Lx(y) for
each frame set T from frame number X = 1
to N (where N is the maximum buffer size in
server.)

Step 3: Select the smallest least-laxity value LTx(y)
packets from T and send it to the client via
the network.

Step 4: Set the release time as the current time, tcur =
tcur + Px(y).
Go to Step 1.

The LB-LLF scheduling algorithm has two key

points. First, it selects the packets from the lowest
layer in ready state, the important packet to be sent
by the server will transmit much earlier than its
playback time, and this important packet will have
more chances to be transmitted to the client buffer for
displaying. Second, it calculates the least-laxity value
for each frame set from frame number X = 1 to N and
services the packet of the smallest laxity set. In
real-time constraint, unequal priorities of scalable
media stream in different layers and achieving a good
trade-off between coding efficiency and drifting error
are considered in the proposed algorithm. This
guarantees the better usage of available channel
bandwidth and the smoother playback in client.

5. Experimental Results

We use the Microsoft H.26L-PFGS and the JVT
JM 2.0 encoder/decoder to generate the simulation
data. It is an efficient scalable coding scheme with
fine granularity scalability, where the base layer is
encoded with H.264, and the enhancement layer is
encoded with PFGS coding. For comparison

 4

performance of the scheduling algorithms in the
given channel bandwidth, we set the base layer as the
highest priority that can get all the base layer data
without any packet losses. In the experiment, the
sequence Foreman in QCIF format is used. It is
encoded with 25 frames per second and 200 frames
are encoded and transmitted by the proposed
scheduler. Because the maximum level of bit-plane is
4 in the Foreman sequence, there are 4 layers in the
Enhancement layer. Different enhancement layer
bit-plane has different frame size. The sizes of the
enhancement layers in the first 50 frames are shown
in Figure 3. The enhancement layer 1 (Enh1) is the
smallest in size, but it is the most significant layer.
The enhancement layer 4 (Enh4) is the largest in size,
but it is the least significant layer. The average rate of
video data with all enhancement layers is 872.5 Kbps.
The transmission buffer size is set to 25. The
playback frame rate is 25 frames per second. The
scheduling time is 0.1ms. The channel bandwidth is
various from 100 to 1800 Kbps.

Figure 4 shows comparisons of PSNR among
H.263, MPEG-4, H.264, and H.264 Layer-Based
system with various bit rates from 100 to 1800 Kbps.
With the H.264 Layer-Based system, the
experimental results of the average PSNR is 34.71 dB.
It improves about 0.95 dB over a H.264 system, 4 dB
over a MPEG-4 system, and 6.44 dB over a H.263
system. The gains mainly result from the better
average encoding performance which can be
observed in Figure 4 from the high probability of
relatively good decoded PSNR, e.g. in more than
70% the decoded PSNR is above 2 dB for H.264 over
MPEG-4. And the PSNR of H.264 with Layer-Based
is still better than the PSNR of H.264. As mentioned
above this improvement guarantees the effective
usage of available channel bandwidth and the better
quality of playback in client.

0

5000

10000

15000

20000

25000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Frame Index

Bits

Enh4

Enh3

Enh2

Enh1

Figure 3: The bit size of the enhancement layers

26
28
30
32
34
36
38
40
42
44
46

100 200 400 600 800 1000 1200 1400 1600 1800

Bit Rate (kbps)

PS
N

R
(d

B)

H.264-LB
H.264
MPEG-4
H.263

Figure 4: The PSNR with various Bit Rate

6. Conclusions

In this paper we proposed and implemented a
simple and effective real-time layer-based scalable
video communication system. Our proposed system
uses Progressive Fine Granularity Scalable (PFGS)
scheme to encode the enhancement layer and H.264
to encode the base layer. The adaptive Layer-Based
Least-Laxity-First (LB-LLF) scheduling algorithm is
also presented to improve the output quality of video
over network and to achieve better playback quality.
The proposed algorithm considered real-time
constraint, unequal priorities of scalable media
stream in different layers, and a good trade-off
between coding efficiency and drifting error. The
experimental results show that subjective quality of
the video stream is significantly improved using our
methods.

Acknowledgement

The material reported in this paper is based upon
work supported in part by the National Science
Council (NSC), Taiwan, under grant NSC 93-2215-
E-002 -010／001.

References

[1] Y. He, F, Wu, S. Li, Y. Zhong, and S. Yang,
“H.26L-based Fine Granularity Scalable Video
Coding,” in Proceedings of IEEE International
Symposium on Circuits and Systems (ISCAS),
Scottsdale, Arizona, USA, 26-29 May 2002,
vol. 4, pp. 548-551.

[2] Wang, Q., Wu, F., Li, S., Zhong, Y., and Zhang,
Y., (2001) ‘Fine-granularity spatially scalable
video coding’, Proceedings of IEEE
International Conference on Acoustics, Speech,
and Signal Processing, 2001, (ICASSP '01),
vol.3, pp.1801–1804.

[3] Draft ITU-T Recommendation and Final Draft
International Standard of Joint Video
Specification (ITU-T Rec. H.264/ISO/IEC 14

 5

496-10 AVC), Mar. 2003.
[4] A. Tamhankar and K. R. Rao, ”An overview of

H.264/MPEG-4 Part 10,” The 4th EURASIP
Conference focused on Video/Image Processing
and Multimedia Communications, Vol. 1,
pp.1-51 July 2003.

[5] Gharsalli, F.; Baghdadi, A.; Bonaciu, M.;
Majauskas, G.; Cesario, W.; Jerraya, A.A., “An
efficient architecture for the implementation of
message passing programming model on
massive multiprocessor,” Proceedings of the
15th IEEE International Workshop on Rapid
System Prototyping, 2004. 28-30 June 2004,
pp. 80 – 87.

[6] Chia-Ying Tseng, Liang-Teh Lee, Yu-Lan Shih,
and Kang-Yuan Liu, "Adaptive Layer-Based
Scheduling for Real-Time Transmission on
Scalable Multimedia Stream," Proceedings of
the Tenth International Conference on
Distributed Multimedia Systems (DMS'2004),
Sep. 2004, pp. 389-392.

[7] Chia-Ying Tseng, "The adaptive layer-based
scheduling system for embedded real-time
transmission on scalable multimedia stream,"
International Journal of Embedded Systems
(IJES), Vol. 2, No. 1, 2006.

[8] K. Ugur and P. Nasiopoulos, “Design Issues
and a Proposal for H.264-based FGS,”
contribution MPEG03/M9505, ISO/IEC
JTC/SC29/WG11, Pattaya, Thailand, March
2003.

[9] Gao, K., Gao, W., He, S., Gao, P., and Zhang,
Y., (2003) ‘Real-Time Scheduling on scalable
media stream delivery’, Proceedings of the
2003 International Symposium on Circuits and
Systems, 2003(ISCAS '03), vol.2, pp. II-824 -
II-827.

[10] Gao, K., Zhang, Y., Gao, W., and He, S., (2003)
‘Real-Time Scheduling Supporting VCR
Functionality For Scalable Video Streaming’,
14th IEEE Proceedings on Personal, Indoor and
Mobile Radio Communications, 2003(PIMRC
2003), vol.3, pp.2711–2715.

[11] Golatowski, F., Hildebrandt, J., Blumenthal, J.,
and Timmermann, D., (2002) ｀Framework
for Validation, Test and Analysis of Real-time
Scheduling Algorithms and Scheduler
Implementations’, Proceedings of the 13th
IEEE International Workshop on Rapid System
Prototyping, 2002, pp.146-152.

[12] Golatowski, F., Hildebrandt, J., and
Timmermann, D., (1998) ‘Rapid Prototyping
with Reconfigurable Hardware for Embedded
Hard Real-Time Systems’, 19th IEEE
Real-Time Systems Symposium, WIP-Proc.,
Madrid, Spain ,1998.

[13] Hildebrandt, J., Golatowski, F., and
Timmermann, D., (1999) ‘Scheduling

Coproessor for Enhanced Least-Laxity-First
Scheduling in Hard Real-Time Systems’,
Proceedings of the 11th Euromicro Conference
on Real-Time Systems, June 1999, pp.208-215.

[14] Oh, S.H. and Yang, S.M., (1998) ‘A Modified
Least-Laxity-First Scheduling Algorithm for
Real-Time Tasks’, Proceedings of the 5th
International Conference on Real-Time
Computing Systems and Applications,
Hiroshima, Japan, 1998, pp. 31-36.

 6

	摘要
	Abstract
	Acknowledgement
	The material reported in this paper is based upon work supported in part by the National Science Council (NSC), Taiwan, under grant NSC 93-2215- E-002 -010／001.
	References

