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Abstract— In the past, the discussion of VoD services
mainly focused on the on-demand paradigm, in which
users are assumed and restricted to request a video for
instantly viewing. This paradigm causes the inefficient
utilization of the system resources and high rejection
probability. In this paper, we address the problem
of providing VoD services over peer-to-peer networks
under Scheduled Video Delivery (SVD) paradigm,
in which users are allowed to issue requests for
instantly viewing or for later viewing. We propose an
administrative organization to manage the relationship
among peers, atop which a proposed novel delivery
protocol is applied to take full advantage of the
resources contributed by peers and the server. Due to
the dynamics inherent in P2P networks, the fast failure
recovery is critical to an approach of providing VoD
services over P2P networks. Our proposed approach
can make the users suffering failure recover quickly.
Index Terms— VoD, SVD, P2P

I. I NTRODUCTION

In the past, VoD had attracted considerable attention
from the academic community. However, most of
researches on providing VoD services were focused on
the on-demand paradigm, which assumes that users do
not issue their requests until they want to view a video
immediately. Consequently, users are not permitted to
issue a planned-ahead request for later viewing and
the server tends to be swamped by a large number
of requests in peak times and idle in off-peak times.
Besides, people are used to planning ahead to do
something, surely including when to watch the desired
videos. Owing to the inherent inappropriate assump-
tion of the preceding paradigm, Wu et al [10] proposed
a new video delivery paradigm, named Scheduled
Video Delivery (SVD). In SVD, users are allowed
to issue a request either for instantly viewing or for
later viewing. Thus SVD can be considered as a
generalization of the traditional VoD paradigm.

In addition to SVD, Wu et al [10] also proposed
two approaches to address the problem of providing
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VoD services under SVD, namely Modified Earliest
Deadline First (MEDF) and Least Popularity First
(LPF). In MEDF, the requests for the same video
are grouped and served as a unit. All the groups are
served in ascending order of deadline. The smaller the
deadline of a group is, the earlier a group is served.
The output of MEDF is a schedule, which specifies
which video segments will be delivered for which
groups on which channels at what time. MEDF can
be regarded as a primitive approach on SVD since
it, as its name suggests, concentrates only on how to
meet the deadlines of requests and makes no attempt
to incorporate more requests into a group to make
multicast more efficient. Thus LPF was proposed as
an improvement on MEDF. LPF first applies MEDF to
obtain an initial schedule. Afterwards, according to the
initial schedule, LPF postpones the groups requesting
more popular videos as late as possible and advances
the groups requesting less popular videos. After this
appropriate adjustment, a final schedule is produced,
in which the groups requesting popular videos are
postponed and expected to incorporate subsequent re-
quests because of the high popularity of their required
videos.

Although LPF outperforms MEDF by postponing
the groups requesting popular videos to boost the
efficiency of multicast, it remains sharing some draw-
backs with MEDF. First, unlike Patching [6], both
MEDF and LPF specify that a late request cannot join
a group that has started their download. As a result,
the server may have to retransmit a whole duplicate
video specially for a late request, which causes the
inefficient utilization of channels. Secondly, neither
MEDF nor LPF takes advantage of clients’ capability
of downloading simultaneously from multiple chan-
nels, which has been widely deployed in broadcast
and multicast such as Skyscraper [7], Client-Centric
Approach [8], and Patching [6]. Accordingly, even
though the server has more than one free channel, it
still dedicates only one channel to serve a group and
has other available channels sitting idle. Finally, both



MEDF and LPF pose an unreasonable prerequisite
for their efficient work. The prerequisite requires that
all the videos supplied by the server have to be of
equal length. If it is not fulfilled, requests from users
may be rejected mistakenly even though the server has
sufficient available channels to serve them.

In [2], we proposed an approach to efficiently
deal with the problem of providing VoD services
under SVD, namely Multi-Channel Multicast Delivery
(MCMD). MCMD, like Patching [6], adopts dynamic
multicast, which enables a late request to join the early
requests to get its needed video segments. Besides,
MCMD also takes advantage of clients’ capability of
multi-channel downloading. The experimental results
show that MCMD achieves better performance than
MEDF and LPF.

Recently, peer-to-peer (P2P) networks [12][11] have
emerged as a promising solution to providing VoD ser-
vices [15][3][4][9]. In a P2P network, users not only
consume the resources from the server and network
but also contribute their own resources such as storage
capacity and out-bound bandwidth to the system.
Therefore, the scalability of the system can be greatly
improved. However, a P2P solution also brings some
challenges to tackle, one of which is high dynamics
[13][14]. In a P2P network, users can join and leave at
any time without any restriction. Consequently users
may be suspended from downloading or viewing their
required videos because of an abrupt departure of their
parents. The high dynamics of P2P networks reveal the
importance of efficient failure recovery.

In this paper, we intend to augment MCMD in the
context of peer-to-peer networks, and thus propose
a novel P2P scheme, P2Deliver, as an extension to
MCMD. The combination of MCMD and P2Deliver
is named P2MCMD. The notion behind P2MCMD is
that clients are served by the server as the last resort
if and only if they can not acquire their required video
segments from other clients. Specifically, on the arrival
of a newcomer, P2Deliver searches for and assigns
an appropriate parent to the newcomer. The parent
then provides the newcomer with the needed video
segments as many as possible. Once a client can not
get any more from its parent or if no appropriate parent
is found, it then resorts to the server via MCMD to
make up the video it requests. P2Deliver not only can
efficiently take advantage of the resources contributed
by peers but also make the peers quickly recover from
failure.

The rest of the paper is organized as follows. In
section 2, we give a preliminary introduce to SVD
and outline MCMD to make the paper self-contained.
The proposed method is described in section 3. In
section 4, we present our simulation study. Finally,
our concluding remarks are given in section 5.

II. PRELIMINARY

In this section, we present some basic notions about
SVD and outline our previous work, MCMD, as the
groundwork to facilitate the subsequent discussion.

A. SVD

In SVD, each client is assumed to have sufficient
storage space to cache the whole video it requests,
which is necessary in that a client may complete the
download of its required video before viewing. This
assumption is not absurd since a typical hard disk
nowadays can afford to accommodate a few videos,
each of several hundreds MBytes. Furthermore, the
adequate storage space enables some VCR functions
such as fast rewind and pause. In addition, SVD
assumes that a request,Ri, from a client comprises
three arguments:

1) o(Ri) indicates the video objectRi requires.
2) a(Ri) represents the time whenRi arrives.
3) s(Ri) specifies the time whenRi starts to view.

The time interval,s(Ri) - a(Ri), is referred to as plan-
ahead time. A request with a zero plan-ahead time, like
a request in the traditional on-demand paradigm, is for
instantly viewing while one with non-zero plan-ahead
time is for later viewing.

Suppose that the server providesm video objects for
clients to choose from. Then each video object,Oi,
is assigned a number in [1, m] to indicate its relative
popularity, denoted asp(Oi). The smaller the number
is, the more popular the video is. Most requests tend
to require a video with a smallp(Oi). The video with
p(Oi) = 1 has the highest probability to be picked
by a new request. Besides, every video is fragmented
into a number of segments, each of equal size. For
example, videoi may be fragmented intok segments,
denoted asvi,1, vi,2, ..., vi,k. Sequential transmission
of video segments is not necessary but it is required
that each segment must be delivered by the time the
client starts to consume it.

In this paper, we follow the convention on VoD.
Most of the out-bound bandwidth of the server and
clients is organized into a set of logical channels, each
capable of transmitting a video at the playback rate.
The remaining bandwidth is used for control mes-
sages. To distinguish the channels of clients from those
of the server, we coin a word,links, for channels of
clients, and the total number of available links of a
client is denoted asNlink.

B. MCMD

In MCMD, we introduce the concept ofdetain,
with which the server can precisely evaluate the degree
of urgency of a request. The detain of a request,Ri,
is defined as:
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Fig. 1. An example for detain value
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Fig. 2. The decision procedure of MCMD

detain(Ri) = s(Ri)− tnow + Ri.NextSegment− 1
(1)

In (1), tnow is the current time, and
Ri.NextSegment indicates the first segment,
from the beginning of o(Ri), that Ri has not
downloaded. Figure 1 shows an example, whereRi

specifies that the user will start to view the required
video at time slot 12, and the current time is time
slot 10. The array of squares indicates that the video
required by Ri is fragmented into 11 segments
and Ri has acquired the shaded segments,vo(Ri),1,
vo(Ri),2, vo(Ri),3, vo(Ri),6, vo(Ri),7, vo(Ri),8, vo(Ri),9.
Therefore, the first segment, from the beginning of
o(Ri), that Ri hasn’t downloaded isvo(Ri),4. Using
(1), we can calculate thatdetain(Ri) = 12 - 10 +
4 - 1 = 5 at time slot 10. The smallerdetain(Ri)
is, the more urgentRi is. If the download progress
remains unchanged,detain(Ri) will decrease to zero
at time slot 15 and it means thatRi is starting to
consumeRi.NextSgment but Ri.NextSgment has
not be delivered. Thus the server has to serveRi with
Ri.NextSgment immediately.

MCMD primarily consists of four modules: (1)
Least Popularity Shortest Detain First(LPSDF) (2)
Finishing Zero Detain(FZD) (3) Most Requests First
(MRF) (4) UpdateDetain. At the beginning of every
time slot, the server determines which module to
invoke according to the detains of the requests cur-
rently in the systems. The whole decision procedure
is depicted in Figure 2.

If there does not exist any request with zero detain,

then LPSDF module is invoked. LPSDF classifies all
the requests into a number of groups according to
their required videos and sorts the groups in ascending
order of popularity of their required videos. After-
wards, beginning from the group requesting the least
popular video, LPSDF identifies the request with the
smallest detain in each group and dedicates a channel
to deliver the segment indicated byNextSegment
of the request. The preceding procedure repeats until
there is no free channel. Finally, UpdateDetain module
will be invoked to update the detains of all the
requests according to (1). The detains of the requests
which are not scheduled to get any segments at this
time slot will be decremented by one, and those of
other requests will be unchanged or incremented by a
number, depending on the newNextSegment.

If there is any request with zero detain, then the
server first calculate the total number of segments
the requests with zero detain are deficient in, denoted
as RBtotal. If RBtotal is less than or equal to the
number of channels on the server, then FZD module
will be invoked. FZD dedicates as many channels as
needed to delivering all the segments those requests
with zero detain are deficient in, by which all the
requests with zero detain will be satisfied in this time
slot. If RBtotal is greater than the number of channels
on the server, then MRF module will be invoked.
MRF first identifies all the segments indicated by
NextSegment of those requests with zero detain.
For each identified segment, MRF calculates the total
number of requests which lack this segment. Finally,
each segment is dedicated a channel to be delivered in
descending order of the number of requests. In other
words, a segment needed by more requests is granted a
higher priority to be delivered. The purpose of MRF is
to give the requests with zero detain just the instantly
needed segments in order to make those requests able
to survive this time slot. After determining which
channels will deliver which video segments, both FZD
and MRF will invoke LPSDF to utilize the remaining
channels, if any. Otherwise, UpdateDetain module will
be invoked to update the detains of all the requests.

III. P2DELIVER

In this section, we describe our proposed P2P
scheme, P2Deliver, as an extension to MCMD. We
start with distinguishing between the roles MCMD
and P2Deliver play. As mentioned before, P2MCMD,
composed of P2Deliver and MCMD, is an approach
to providing video-on-demand services over a peer-
to-peer network. For a peer in a peer-to-peer network,
there are two kinds of sources of its required video, the
server and the early peers. When a new arrived peer
requests a video to view, the requested video may have
been transmitted by the server to a certain extent for
the early peers requesting the same one. With dynamic
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multicast, the new arrived peer can join the early peers
and download the residual part, calledbase, from the
server. As to the missing initial part, calledpatch, the
new arrived peer may get it from the early peers if
the early peers have sufficient out-bound bandwidth.
The two components of P2MCMD, namely MCMD
and P2Deliver, are responsible for the foregoing two
tasks respectively. At the beginning of every time slot,
MCMD determines which video segments should be
delivered on which channels according to the states
of the requests from peers currently in the system.
On the other hand, P2Deliver is charged to search for
appropriate patch providers for a new arrived peer.

Briefly, it is the duty of MCMD to make peers get
the bases of their required videos while it’s the duty
of P2Deliver to ensure peers timely patches. From
another point of view, MCMD is responsible for the
planning of the server’s resources while P2Deliver is
for the planning of peers’ contributed resources.

For cooperation of MCMD and P2Deliver, the
server has to maintain two separate queues,TotalQ
and MCMDQ. TotalQ accommodates all the nodes
currently in the system, while MCMDQ accommo-
dates only the nodes which have completed their
download of patches or have no parent to supply them
with their needed patches. When a new node arrives,
the server keeps a copy of it in TotalQ. Once either
of the following conditions occurs, the server will
duplicate a copy of the node in MCMDQ.

1) The node completes its download of patch.
2) The node is abandoned by its parent and no

other parent candidate has enough out-bound
bandwidth to serve as its new parent.

MCMD takes into account only the nodes in MCMDQ
when scheduling, while it considers the nodes in
TotalQ when delivering.

Hereafter, the term ”request” is used interchange-
ably with ”peer” and ”node” since a request comes
from and thus represents a peer or node. The terms
”parent” and ”children” are used with the same mean-
ings as applied for conventional trees.

A. Administrative Organization

For efficient work of P2Deliver, an administrative
organization is used to represent the logical relation-
ships among nodes and manage nodes currently in the
system. The administrative organization is described
as follows.

In P2Deliver, the peers requesting the identical
video and arriving during the same time slot forms
a batch and are processed together at the beginning
of the next time slot. In each batch, a peer is selected
as thebatch leader, and the others are calledbatch
nodes. A batch leader is charged to maintain a list
of records about the batch nodes, called anode list.
As shown in Figure 3, the record about a batch node,
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Fig. 3. The structure of a record about a batch node

nodei, consists of three fields, including ”identifica-
tion”, ”the number of available links”, and ”the mini-
mum waiting time”, denoted asIDnodei

, Nnodei

link , and
Tnodei

min respectively.IDnodei represents the address of
nodei and can be used to uniquely identifynodei;
Nnodei

link indicates how many links ofnodei remain
available and therefore, indicates how many more
children nodei can adopt.Tnodei

min indicates at least
how much more time it will take for an occupied
link of nodei to be released, and therefore, how much
more time a future child ofnodei has to wait until
adopted bynodei and beginning its download. The
three equation below give formal definitions of the
three fields respectively.

IDnodei = the address of nodei (2)

Nnodei

link =
available bandwidth of nodei

the playback rate of o(nodei)
(3)

Tnodei

min =

{
0,

Min
nodej∈children(nodei)

(nodej .SkewPoint

−nodej .NextSegment),
forNnodei

link > 0
forNnodei

link = 0
(4)

In (4), nodej .SkewPoint designates the first
segment of the base fornodej . For example,
nodej .SkewPoint would be four if the first three seg-
ments ofo(nodej) have been delivered by the server
whennodej arrives. Therefore,nodej .SkewPoint−
nodej .NextSegment indicates for how much more
time nodej will occupy the link of its parent
to complete the download of its patch. The min-
imum difference betweennodej .SkewPoint and
nodej .NextSegment determines the time for a first-
released link ofnodei to be released, provided that
nodej is nodei’s child.

Similar to batch leaders, the server takes the re-
sponsibility of keeping a list of records about batches,
called the batch list. As shown in Figure 4, the
record about a batch,batchj , comprises three fields,
including ”identification”, ”the number of available
links”, and ”the minimum waiting time”, denoted as
IDbatchj , N

batchj

link , andT
batchj

min respectively.IDbatchj

identifies the batch leader ofbatchj ; N
batchj

link indicates
the total number of available links inbatchj ; T

batchj

min

4
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Fig. 4. The structure of a record about a batch

indicates at least how much more time it will take for
an occupied link ofbatchj to be released. It is evident
that there exists a relation between a batch record and
its corresponding node records, which can be deduced
from the definitions above and expressed as follows.

IDbatchj
= { IDnodei

| nodei ∈ batchj

and nodei is the leader } (5)

N
batchj

link =
∑

nodei∈batchj

(
Nnodei

link

)
(6)

T
batchj

min = Min
nodei∈batchj

(
Tnodei

min

)
(7)

The rules below are applied when constructing an
administrative organization.

1) Nodes requesting the identical video and arriv-
ing in the same time slot forms a batch, which
implies that all the nodes in a batch achieve the
same download progress.

2) Batches requesting the identical video constitute
a video session.

3) In a video session, batches are numbered from
one. A smaller batch number signifies an earlier
arrival time and thus a higher layer in a video
session of an administrative organization.

Figure 5(a) captures a snapshot of a video session
of an administrative organization sometime, where the
number inside each node indicates which batch the
node belongs to. Under the rule (3) above, a batch
arriving earlier is assigned a smaller batch number
and located at a higher layer in the hierarchy. A forth-
coming batch will constitute the forth batch and layer
of the video session of the administrative organization.
Figure 5(b) presents the same video session in another
perspective.

B. Control Protocol

To keep the node list stored in each batch leader and
the batch list stored in the server up-to-date, a control
protocol is necessary. Whenever a change in the state
of a node occurs, the control protocol is triggered. The
control protocol can be considered in the following
two cases.

Case 1: Adoption of a new child: Due to the
adoption of a new child, the number of available
links of the parent will be decreased by one, and the

minimum waiting time of the parent may be changed.
In such a case, the parent needs to re-evaluateNparent

link

and T parent
min according to (3) and (4), provided that

the new child set is the union of the old child set and
the new child. Afterwards the parent informs its batch
leader of updatedNparent

link andT parent
min , according to

which the batch leader will update the corresponding
record in the node list and then, if necessary, instructs
the server to do a similar update via an update message
including the updatedN batch

link and T batch
min evaluated

through (6) and (7).
Case 2: Transfer or failure of an existing node: The

transfer or failure of an existing node will release an
occupied link and thus cause the number of available
links of its parent increased by one. In addition, the
minimum waiting time of the parent may be changed.
As in case 1, the parent needs to re-evaluateNparent

link

and T parent
min , provided that the new child set of the

parent is the difference between the old child set and
the transferred or departing child. The parent then
notifies its batch leader to update the corresponding
record in the node list by issuing an update message
including updatedNparent

link andT parent
min . If necessary,

the batch leader in turn instructs the server to do
a similar update on the corresponding record in the
batch list by providing updatedN batch

link andT batch
min .

C. Join Algorithm

The purpose of the join algorithm is to designate an
appropriate node as the patch provider, or the parent,
for an orphaned node, like a new arrived node. For an
orphaned node,norph, any node,nj , possessing the
following three properties can serve as the parent.

1) nj requests the same video asnorph, that is,
o(nj) = o(norph).

2) nj is ahead ofnorph in the download progress
of the patch, that is,nj .NextSegment >
norph.NextSegment.

3) nj has sufficient out-bound bandwidth to accept
norph as its child, that is,Nnj

link > 0.
All the nodes possessing the preceding three
properties are called the candidates for the parent
of norph and denoted asParentcandidate(norph) =
{ nj | o(nj) = o(norph) and nj .NextSegment >
norph.NextSegment and N

nj

link > 0 }. From
Parentcandidate(norph), we choose such a
node as the parent ofnorph that the difference
between the chosen node andnorph in the
download progress of the patch is minimal,
and denote it asParentelectee(norph). In other
words, Parentelectee(norph) = { nj | nj ∈
Parentcandidate(norph) and (nj .NextSegment
- norph.NextSegment) is minimal }. From
the construction rules associated with an
administrative organization, it can be deduced
that Parentcandidate(norph) must exists in the
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(b) Another perspective on the same administrative orga-
nization

Fig. 5. An example for the administrative organization

batches higher than the batchnorph lies in. To
locate Parentelectee(norph), we begin our search
from the batch next higher than the batchnorph

lies in and proceed untilParentelectee(norph)
is not empty or the first batch is reached. The
search procedure is calledSearchForParent and
described in Figure 6. As Figure 6 shows, the search
procedure is divided into two phases. In the first
phase from step 1 to step 7, the server searches the
batch list for Parentelectee(norph), beginning from
the batch next higher than the batchnorph lies in,
and then the request fromnorph will be forwarded
to the batch leader ofParentelectee(norph) if
Parentelectee(norph) is not empty. In the second
phase from step 8 to step 11, on receipt of the
request fromnorph, the batch leader searches its node
list for a node, at least one link of which remains
available, and then forwards the request ofnorph to
the found node. Finally,norph can begin end-to-end
communication with and download its patch from
Parentelectee(norph).

Figure 7 gives an example of how the
SearchForParent procedure works. Figure 7(a)
shows that two batches constitute a certain video
session, and the third batch just arrives. After applying
theSearchForParent procedure, each node in batch
3 has aParentelectee as its patch provider, and the
delivery layout of the video session is showed in
Figure 7(b). Following from theSearchForParent
procedure, it can be observed that the nodes in batch
2 are first considered and then the nodes in batch 1
in turn when designating a node as the parent of a
node in batch 3.

If Parentcandidate(norph) (and thus
Parentelectee(norph)) is empty, it means that
either the batch of orphaned nodes are the first
batch in the video session, or all the links of the
nodes in higher batches are occupied. In such a case,
the server will check whethernorph can wait until
a link from a node in a higher batch is released.
In other words, the server checks whether a link
from a node in a higher batch will be released

norph: an orphaned node
k: the number of the batchnorph lies in

SearchForParent( norph, k )

On the server side
1. i ← k - 1
2. While ( i ≥ 1 andN batchi

link = 0 )
3. i ← i - 1
4. If i = 0
5. SearchForParent terminates with failure

to find a parent
6. Else
7. forwards the request fromnorph to the

batch leader,IDbatchi

On the batch leader side
8. j ← 1
9. While ( N

nodej

link = 0 )
10. j ← j + 1
11. forwards the request fromnorph to the batch

node,IDnodej

Fig. 6. TheSearchForParentprocedure

before norph.detain decreases to zero. If there
exists such a node, calledParentfuture(norph),
the server will find it according to the procedure,
SearchForFutureParent, described in Figure 8.
As Figure 8 shows, the server first compares the
detain of norph with ”the minimum waiting time”
of each batch in the batch list, beginning from the
batch next higher than the batchnorph belongs to,
until a batch whose ”the minimum waiting time”
is smaller thannorph.detain is found. Then the
server forwards the request to the found batch leader
and addsnorph into the waiting queue,WaitQ. On
receipt of the request, the batch leader will make
a similar comparison to findParentfuture(norph)

6
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(b) After applying the
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Fig. 7. An example for theSearchForParentprocedure

in its node list and then forward the request to
Parentfuture(norph). As to norph, it will stay in
WaitQ till the corresponding link is released, and be
enrolled as a member of the new batch just formed
then.

The comprehensive join algorithm is shown in
Figure 9. Any new arrived node is first put into the
input queue,InputQ, and processed at the beginning
of the next time slot. At the beginning of every
time slot, if InputQ is not empty, the server tries to
find a parent immediately for each node inInputQ
according to theSearchForParent procedure. If
such a parent exists, then the new arrived node can
begin its download of the patch. Otherwise, the server
will determine whether a link from any node in a
higher batch will be released before the detain of the
new arrived node decreased to zero. If there exists
such a node, the server will find it according to
theSearchForFutureParent procedure. Otherwise,
the server will duplicate the new arrived node from
TotalQ to MCMDQ, which makes the new arrived
node resort to the server to get its patch. Throughout
the join procedure, it can be observed that a new node
only needs to contact two nodes to tell whether there
exists an appropriate parent and find out where it is,
if any. Accordingly, a new node incurs low overheads
in joining. The failure recovery procedure is similar
to the join procedure in the sense that the purpose of
a failure recovery procedure is to find a new parent
for an abandoned node.

IV. EXPERIMENTAL SIMULATION

In this section, we evaluate the performance of
P2MCMD under SVD paradigm through simula-
tion experiments. The experiment environment is de-
scribed as follows. Requests arriving to the system
follow the Poisson distribution with a mean ofλ
(requests/minute). Interarrival times of requests are
exponentially distributed with a mean of1λ . The
video required by a requests is determined by the
Zipf distribution [5]. We set the skew factorα of
the Zipf distribution to be 0.7, which is typical for

norph: an orphaned node
k: the number of the batchnorph lies in
beginning: the number of the batch from which
SearchForFutureParentbegins. Ifbeginningis
not specified,SearchForFutureParentwill begin
from the batch k-1.

SearchForFutureParent( norph, k, beginning )

On the server side
1. If beginning 6= NULL
2. i ← beginning
3. Else
4. i ← k - 1
5. While ( i ≥ 1 andT batchi

min > norph.detain )
6. i ← i - 1
7. If i = 0
8. SearchForFutureParent terminates with

failure to find a future parent
9. forwards the request fromnorph to the batch

leader,IDbatchi

10. addnorph into the waiting queue, WaitQ

On the batch leader side
11. j ← 1
12. While ( T

nodej

min > norph.detain )
13. j ← j + 1
14. forwards the request fromnorph to the batch

node,IDnodej

Fig. 8. TheSearchForFutureParentprocedure

VoD applications [1]. We assume that the server has
100 channels to support up to 100 media streaming
simultaneously and providesN videos, each of equal
lengthL, for users to choose from. We use the normal
distribution, N(µ, σ), to model the plan-ahead times of
requests, and set a lower bound ofµ−3∗σ (minutes)
and an upper bound ofµ + 3 ∗ σ (minutes) for the
generated plan-ahead times. Any generated plan-ahead
time falling outside the bounds would be rounded off
to (µ − 3 ∗ σ) or (µ + 3 ∗ σ). Accordingly, users are
restricted to issue requests at least (µ− 3 ∗ σ) and at
most (µ + 3 ∗ σ) minutes early before viewing.

We carry out two experiments to examine the per-
formance of P2MCMD by comparing it with MEDF,
LPF and MCMD. In the first experiment, we evaluate
the performance of P2MCMD in terms of the rejection
rate. The parameters used for the first experiment is
summarized in Table 1, and the corresponding results
are shown in Figure 10. From Figure 10, it can be
observed that MCMD evidently outperforms MEDF
and LPF. For example, the rejection rates of MCMD,
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n: the total number of batches currently in the
video session

at the beginning of every time slot
1. If InputQ != empty
2. create a new batch,batchn+1

3. batchn+1.leader ← InputQ[1]
4. For each node,nk, in InputQ
5. applySearchForParent( nk, n + 1 )

to find a parent
8. If SearchForParent terminates with

failure
9. applySearchForFutureParent( nk,

n + 1 ) to find a future Parent
10. If SearchForFutureParent

terminates with failure
11. duplicatenk from TotalQ to

MCMDQ

Fig. 9. The join algorithm

MEDF and LPF are 32.29%, 80.63% and 83.18%
respectively at the arrival rate of 100 (requests/min).
MCMD performs 59.95% and 61.18% better than
MEDF and LPF respectively. This great improvement
in the rejection rate is due to the adoption of the dy-
namic multicast by MCMD. In MCMD, whenever the
server is about to deliver a video segment, it identifies
all the requests lacking the segment to be delivered,
and groups them as a temporary multicast group.
Conversely, MEDF and LPF specify that only the
group triggering the delivery of a segment can receive
the delivered segment. Therefore, in MCMD every
channel can reach the maximum utilization. With the
aid of P2Deliver, the performance of MCMD can
be further enhanced. For example, the rejection rates
of MCMD and P2MCMD are 32.29% and 26.39%
respectively at the arrival rate of 100. P2MCMD
gives a relative improvement of 18.27% over MCMD.
Moreover, the improvement over MEDF and LPF can
be boosted to 67.27% and 68.27% respectively. Such
an improvement made by P2MCMD results from the
contributions of peers. In P2MCMD, Early peers can

TABLE I

PARAMETERS USED FOR THE FIRST EXPERIMENT.

PARAMETERS VALUE
Number of videos,N 500

Video length,L 120 (minutes)
Server bandwidth (channels) 100

Arrival rate,λ, (requests/minute) 0-100
Plan-ahead time, N(µ,σ) µ = 180, σ = 60

Skew factor,α 0.7
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Fig. 10. The rejection rates of MEDF, LPF, MCMD and P2MCMD
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Fig. 11. The rejection rates of MEDF, LPF, MCMD and P2MCMD

serve as the parents of late peers and provide them
with the video segments they lack, which can keep
the server from retransmitting duplicate video seg-
ments and thereby achieves more efficient utilization
of channels.

In the second experiment, we evaluate the perfor-
mance of P2MCMD in terms of the requirement of
plan-ahead times for no rejection. The average arrival
rate, λ, is fixed at 100 (requests/minute). The plan-
ahead times are set to be 0 and then follow the
normal distribution, N(µ, σ), whereµ is varied from
60 to 1020 with a step ofL = 120 andσ is fixed
at 20. Accordingly, the plan-ahead times fall within
the ranges: [0, 0] and [a∗L, (a+1) ∗L] respectively,
wherea runs from 0 to 8. The other parameters remain
unchanged as in the first experiment. The results are
shown in Figure 11. It can be observed that MEDF
and LPF experience the same rejection rates when the
plan-ahead times of requests are not more thanL. This
result is consistent with the implications of LPF. In
scheduling, LPF first applies MEDF to obtain an initial
schedule and then modifies the initial schedule by
postponing the groups with demand for more popular
videos and advancing the groups with demand for
less popular videos. If the room made in the sched-
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ule through the postponement of the aforementioned
groups is not enough to accommodate the groups to be
advanced, the modified schedule will remain the same
as the initial groups and thus LPF will give the same
performance as MEDF. Besides, Figure 11 reveals
that the minimum requirements placed by P2MCMD,
MCMD, MEDF and LPF on the plane-ahead times
for no rejection are[4L, 5L], [5L, 6L], [7L, 8L] and
[8L, 9L] respectively. P2MCMD demands the least
plan-ahead times among the four approaches, which
demonstrates the contribution from P2Deliver and the
ability of P2MCMD to efficiently utilize the channels
of the servers.

V. CONCLUSION

In this paper, we deal with the problem of providing
VoD services under SVD paradigm, in which users are
allowed to issue their requests for instantly viewing
or later viewing. We propose a novel P2P scheme,
P2Deliver, to augment our previous work. P2deliver
includes an administrative organization to represent
and manage the relationships among peers, a control
protocol to keep the information stored in the server
and peers up-to-date, a join algorithm. With the two-
tier architecture, a new node or an orphaned node only
contacts two node, the server and a batch leader, to
determine whether there is an appropriate parent for it.
Therefore, P2Deliver enables peers to join and recover
quickly. The experimental results show that with the
aid of P2deliver, P2MCMD outperforms the existing
works on SVD in terms of the rejection rate and the
requirement of plan-ahead times. Our future work is
aimed to address the issue of incentive for sharing in
P2P networks.
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