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Abstract 
Catering the buying behaviors of 

customers becomes more and more important by 

the popularization of E-Commerce recently. 

How to find the association rules efficiently 

from the transaction records is one of the most 

interesting topics to be investigated. In this paper, 

at first, we propose en efficient algorithm, 

named Early Pruning Partition algorithm (EPP), 

with extending the concept of Partition 

algorithm and using an early pruning technology 

to improve the performance of mining frequent 

itemsets under single minimum support. Then 

we add the checking of multiple thresholds in 

EPP algorithm to construct our Multiple 

Thresholds Early Pruning Partition algorithm 

(MTEPP). Our MTEPP algorithm can find more 

effective frequent itemsets corresponding to 

some events of buying behavior. For evaluating 

our algorithm, we also implement a simulation 

environment to verify it. According to our 

evaluations, our algorithms outperform than that 

of previous methods and find the more useful 

frequent itemsets indeed. The detailed 

descriptions of our algorithms will be given in 

the contents. 
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1. Introduction 
Recently, with the popularization of 

E-Commerce, how to predict consumer 

psychology and tendency correctly becomes 

more and more important [14][8]. One of the 

most interesting topics in data mining is the 

problem of discovering association rules over 

basket data [1][12-15]. An association rule 

consists of two subsets, antecedent and 

consequent, such that each subset may include 

several items. And these two subsets apply to an 

implied relation [6]. The possibility of this 

situation is the confidence of this association rule 

[1][2][6]. We can generate some 

recommendations from association rules. The 

search of frequent itemsets is one of the most 

important procedures of discovering association 

rules. How to develop an algorithm to gather 

frequent itemsets quickly is quite meaningful. 

We use an early pruning technique to 

construct our Early Pruning Partition algorithm 

(EPP). It is based on the concept of Partition 

algorithm embedded with early pruning 

technique to achieve better performance. 

However, if there are many the same 

transactions generated suddenly in a short time 

interval such as a week or a month and then 

disappear, which is called sudden event, 



traditional single threshold algorithms are not 

suitable to solve this case. To aim at this 

weakness, we add the checking of multiple 

thresholds in EPP to construct the Multiple 

Thresholds Early Pruning Partition algorithm 

(MTEPP). Our EPP algorithm outperforms at 

most 37% than that of Apriori algorithm and 

13% than that of Partition algorithm from the 

simulation results. Comparing with the total 

execution time, our MTEPP algorithm 

outperforms averagely 50% than that of Apriori 

algorithm and 28% than that of Partition 

algorithm.  

The remaining part of our paper is organized 

as follows. In section 2, we give a formal 

description of discovering frequent itemsets 

problem and give an overview of the previous 

algorithms. In section 3, we describe early 

pruning technology and our EPP algorithm in 

some detail. The benefits of using multiple 

thresholds and our MTEPP algorithm are 

described in section 4. In section 5, our 

simulation environment is introduced and some 

preliminary evaluations of our algorithms are 

collected and compared with other previous 

methods. Finally, some concluding remarks are 

given in section 6. 

 

2. Background and Related Work 
2.1 Problem Description [1-3] [6-7] 

Let I={i1, i2,…, im} be a set of literals called 

items. Let D be a set of transactions. Each 

transaction T contains a set of items ii, ij,…, ik ⊂  

I. An association rule is an implication of the 

form X ⇒ Y, where X,Y ⊂ I , X ∩ Y = ∅ . A set 

of items is called an itemset. An itemset with k 

items in it is referred to as k-itemset. Each 

itemset X ⊂ I has a measurement called support. 

The support(X) equals the fraction of 

transactions in D containing X. A rule has a 

measure of its strength called the confidence, 

where confidence(X ⇒ Y) = support(X ∪  

Y)/support(X) . 

The problem of mining association rules is 

to find all the association rules of the form X ⇒ 

Y that satisfy the following two conditions, 

support(X ∪  Y) ≥ minsup and confidence(X ⇒ 

Y) ≥ minconf. Here, minsup and minconf are 

user specified thresholds. All itemsets that have 

support above the user specified minimum 

support are generated. These itemsets are called 

the large itemsets (or frequent itemsets). For 

each large itemset X and any Y ⊂ X, check if 

rule (X-Y) ⇒ Y has confidence above minconf. 

These rules are called the strong rules. 

Generating strong association rules from 

frequent itemsets is relatively straightforward. 

However, finding all frequent itemsets is 

nontrivial if the size of the set of items, | I |, and 

the database, D, are large. We can conclude two 

following properties by observation: 

1. Any subset of a frequent itemset must 

also be frequent.   

 (2.1-1) 

2. Any superset of an infrequent itemset 

must also be infrequent.  (2.1-2) 

In the following subsections, we will 

introduce some basic algorithms based on the 

above problem description. For easy description, 

we usually notate the set of the frequent 

k-itemsets as Lk and the set of the candidate 

k-itemsets as Ck. 

2.2 Apriori Algorithm [1][2] 
Apriori algorithm is one of the most 

important level-wise algorithms for discovering 

frequent itemsets. Items are sorted in 



lexicographic order. Frequent itemsets are 

computed iteratively in the ascending order of 

size. Assume the largest frequent itemsets 

contain k items, it takes k iterations for mining 

all frequent itemsets. Initial iteration computes 

the frequent 1-itemsets L1. Then, for each 

iteration i≤ k, all frequent i-itemsets are 

computed by scanning database once. Iteration i 

consists of two phases. First, the set Ci of 

candidate i-itemsets are created by joining the 

frequent (i-1)-itemsets in Li-1 found in the 

previous iteration. Next, the database is scanned 

for determining the support of all candidates in 

Ci and the frequent i-itemsets Li are extracted 

from these candidates. This iteration is repeated 

until no more candidates can be generated. The 

Apriori algorithm needs to take k database 

passes to generate all frequent itemsets. For disk 

resident databases, this requires reading the 

database completely for each pass resulting in a 

large number of disk reads. It means that the 

Apriori algorithm takes a huge I/O operations. 

This is the major weakness of it. 

2.3 Partition Algorithm [12][10] 
The Partition algorithm focuses on times 

of scanning database. Initially the database D is 

logically partitioned into n partitions. Basically 

the Partition algorithm can be divided into two 

phases. In phase I, it takes n iterations. During 

iteration i, only partition pi is considered. Then 

take a partition pi as input and generate local 

large itemsets of all lengths, Li
2, Li

3, …, Li
m as 

the output. In the merge phase the local large 

itemsets with the same lengths from all n 

partitions are combined to generate the global 

candidate itemsets. The set of global candidate 

itemsets of length j is computed as CG
j = ∪

i=1,…,n Li
j . In phase II, the algorithm sets up 

counters for each global candidate itemset and 

counts their support in all n partitions. It outputs 

global large itemsets that have the minimum 

global support along with their support. Unlike 

the Apriori algorithm, the Partition algorithm 

just needs scan the entire database twice. Thus, 

we will adopt the principle of Partition algorithm 

combined with early pruning technique to 

develop a more efficient method, called EPP, and 

then extend it to handle multiple thresholds with 

mining association rules. In the following, we 

will describe them in some detail. 

 

3. Early Pruning Partition algorithm 
3.1 Early Local Pruning [9] 

The idea of early local pruning is as 

follows. When reading a partition pi to generate 

Lpi
1, we record and accumulate the number of 

occurrences for each item. Thus, after reading 

partition pi, we know both the number of 

occurrences for each item in partition pi, and the 

number of occurrences for each item in the big 

partition ∪j=1,2,…,i pj denoted by BP1…i . With 

this information, we can get frequent 1-itemsets 

of partition pi and partition BP1…i . We define 

Bpi
1 as the set of all better local frequent 

1-itemsets in partition pi, where Bpi
1 = Lpi

1 ∩ 

LBP1…i
1. With early local pruning, we use Bpi

1 

instead of Lpi
1 to start the level-wise algorithm to 

construct the set Bpi of all better local frequent 

itemsets in partition pi. Since the size of Bpi
1 is 

usually smaller than that of Lpi
1, Bpi can be 

constructed faster than Lpi. With Partition 

algorithm introduced before ensures that CG = 

∪i=1,2,…,n Lpi is a super set of the set LG of all 

global large itemsets. With early local pruning, 

Lemma 1 shows that CG = ∪i=1,2,…,n Bpi is also a 

superset of LG. 



Lemma 1 Let the database D be divided into n 

partitions, p1,p2,…,pn. Let CG = ∪i=1,2,…,n Bpi. 

Then, CG is a superset of LG.[9] 

Proof: see [9]. 

3.2 EPP algorithm 
In previous subsection, we have introduced 

the idea of early local pruning. Then we will 

describe how to combine it with Partition 

algorithm. We propose a method named Early 

Pruning Partition algorithm (EPP algorithm) for 

mining frequent itemsets quickly. Figure 1 is the 

complete steps of EPP algorithm. We use an 

array of object named “item” to keep the 

accumulative result such that item[j] means the  

item this site sold which id is equal to j. The 

object “item” consists of three elements: 

BPcount, count and tidlist to stores the 

occurrence of this item from the first reading  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

partition to the big partition, current partition 

and the occurrent transaction id. Here we also  

record the length account of each transaction in 

each partition and the length account in the 

whole database. When we have read the partition 

pi completely, we generate the better frequent 

1-itemsets by using early local pruning. We 

collect all items which count are larger than the 

local minimum support = minsup/n as Lpi
1, and 

check BPcount of all items with the big partition 

minimum support = i*minsup/n. If it is larger, 

put the item into LBPi
1. Then we get Bpi

1 by union 

Lpi
1 and LBPi

1. 

After getting the better frequent 1-itemsets 

Bpi
1, we calculate the length of local maximum 

frequent transactions. Finally, we use the  

procedure gen_frequent_itemset to generate all 

local frequent itemsets from Bpi
1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm EPP 
// Phase I 
1. for i = 1 to n do begin 
2.   forall transaction t ∈  pi do begin 
3.     forall item j ∈  t do begin 
4.       accumulate the occurrence of item[j] 
5.     end 
6.     accumulate the local and global maximum transaction count 
7.   end 
8.   calculate the values of local minimum support and big partition support 
9.   generate the better local frequent 1-itemset Bpi

1 of partition pi 
10.   calculate the length of local maximum frequent transaction M 
11.   Bpi = gen_frequent_itemset(M, Sup, Bpi

1, item) 
12.   reset all local variables 
13. end 
14. CG’ = Bp1 ∪  Bp2 ∪  … ∪  Bpn 
15. calculate the global minimum support MG 
16. CG = { c ∈  CG’ | c.length ≤ MG} 
// Phase II 
17. forall transaction t ∈  D do 
18.   forall subset s ∈  t do begin 
19.     if s ∈  CG then 
20.       s.count ++ 
21.   end 
22. LG = { c ∈  CG | c.count ≥ minsup} 
23. Answer = LG 

Figure 1. Early Pruning Partition algorithm 

 



Procedure gen_frequent_itemset(M, Sup, Bpi
1, 

item) 

1. for (k=2; Bpi
k≠∅  ∧  k ≤ M; k++) do 

2.   forall distinct itemsets l1, l2 ∈ B pi
k-1 do 

3.     if l1[1]=l2[1] ∧  … ∧  l1[k-2]=l2[k-2] ∧  

l1[k-1]<l2[k-1] then begin 

4.       c = (l1[1], l1[2], … l1[k-1], l2[k-1]) 

5.       forall (k-1)-subset s of c do 

6.         if all s ∈ B pi
k-1 then begin 

7.           c.tidlist = l1.tidlist ∩ l2.tidlist 

8.           if |c.tidlist| ≥ Sup then 

9.             Bpi
k = Bpi

k ∪  c 

10.         end 

11.     end 

12. Bpi = Bpi
1 ∪  Bpi

2 ∪  … ∪  Bpi
k-1 

13. Answer = Bpi 

We inherit the step of Partition algorithm 

and use Bpi
1 instead of Lpi

1 as the level 1 

frequent itemsets. Here we make an 

improvement, we add k ≤ M to the second term 

of “for loop”. We will not check level larger than 

M because there is no possible frequent 

transaction which length is larger than M. Then 

we use the join step of Partition algorithm to 

generate all new candidate itemsets. We do some 

check before joining these two tidlists. We check 

all (k-1)-subsets of c to confirm that all 

(k-1)-subsets of c belong to better local frequent 

(k-1)-itemset of partition pi. With the 

observation 2.1-2 we introduced in section 2.1, if 

itemset j is infrequent, all superset of j is also 

infrequent. After joining the tidlist of c, we can 

easily compute the support of c by calculating 

the length of tidlist. Finally we can calculate Bpi
k, 

the set of better frequent k-itemset in partition pi. 

At the end of procedure gen_frequent_itemset, 

we join all sets of better frequent itemset in each 

level to Bpi, the better local frequent itemsets of 

pi. After finishing to process all partitions in 

phase I of EPP algorithm, we can get all better 

local frequent itemsets Bp1, Bp2, … Bpn of each 

partition. Before joining all local frequent 

itemsets, we can use the length of global 

maximum transactions to eliminate some useless 

candidates. Finally we can join all remainder 

candidates from Bpi to CG to get the set of global 

candidate itemsets. Then we continue to process 

the phase II of EPP algorithm by rescanning 

each transaction t in the whole database D, and 

checking all subsets of t. The set of all candidate 

itemset c whose count is larger than minsup is 

the global frequent itemsets LG. This is the 

output of our EPP algorithm.  

 

4. Multiple Thresholds Early 
Pruning Partition algorithm 

4.1 Event latency 
When a new popular purchasing behavior 

occurs, it implies some new association rules 

will be found. If this kind of behaviors will 

disappear in a while, we call the appearance of 

these behaviors as event. The new association 

rules will not be found until the occurrence of 

purchasing behavior achieves the minimum 

support. There is latency between the first 

customer bought and the new frequent itemsets 

were found. We call this latency as event latency. 

It is intuitively better to reduce the event latency 

as short as possible because we can make some 

appropriate recommendations from those 

association rules quickly. In the previous 

discussions of frequent itemsets, there is only 

one global minimum support . It is impossible to 

reduce the latency unless we reduce the 

corresponding local minimum support. Before 

showing how to solve this problem, 



Table 1 Notation 
Hj the jth threshold of user specification 

Hi.s the local minimum support of threshold 

Hj 

Hi.v the time interval of threshold Hj 

HG the traditional threshold consist of the 

global minimum support. 

LHi Set of local frequent itemset within 

threshold Hi 

CHi Set of local candidate itemset within 

threshold Hi 

pi The partition I 

Lpi Set of all local frequent itemset in 

partition pi 

Lpi
k Set of all local frequent k-itemsets in 

partition pi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

we first denote some symbols using in our 

algorithm. These symbols are listed in Table 

1.We propose a multiple thresholds concept as 

follows. Assume that each threshold consists of 

one local minimum support and a time interval, 

denoted by H = (s, v), where s is local minimum 

support and v is time interval. For example, H1 = 

(10%, 30) denotes “the itemsets which appear in 

more than 10% of transactions happened in the 

last 30 days”. We can also denote HG=(minsup, 

total days during the store was operating) as a 

global threshold. This threshold HG is used to 

filter traditional frequent itemsets within the 

whole database in our algorithm. And then we 

can use these thresholds to filter frequent 

itemsets. Thus, we will get several sets LH1, 

LH2, … LHk and LG of frequent itemsets  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm MTEPP 
// Phase I 
1. for i = n to 1 do begin 
2.   for t = latest transaction in pi to earliest transaction do begin 
3.     forall item j ∈  t do begin 
4.       accumulate the occurrence of item[j] 
5.     end 
6.     accumulate the local and global maximum transaction count 
7.   end 
8.   calculate the current local and big partition support by gen_current_support() 
9.   generate the better local frequent 1-itemset Bpi

1 of partition pi 
10.   calculate the length of local maximum frequent transaction M 
11.   Bpi = gen_frequent_itemset(M, Sup, Bpi

1, item) 
12.   reset all local variables 
13. end 
14. CG = Bpn ∪  Bp(n-1) ∪  … ∪  Bp1 
// Phase II 
15. for t = latest transaction in D to earliest transaction do begin 
16.   forall subset s ∈  t do 
17.     if s ∈  CG then 
18.       s.count ++ 
19.   if the count of reading transactions fits to |Hz.v| then 
20.     LHz = { c ∈  CG | c.count ≥ Hz.s } 
21. end 
22. LG = { c ∈  CG’ | c.count ≥ HG.s } 
23. Answer = LH1, LH2, … LHh, LG 

Figure 2 Multiple Thresholds Early Pruning Partition algorithm 



corresponding to each threshold respectively. 

The newly additional association rules gathered 

from these frequent itemsets often correspond to 

some events. Thus we can make more suitable 

recommendations according to these rules. 

    The previous methods like Apriori and 

Partition algorithms can also generate the 

additional association rules by run more k+1 

times, which will be inefficient obviously. 

4.2 MTEPP algorithm 
In this subsection, we will describe our 

Multiple Thresholds Early Pruning Partition 

algorithm (MTEPP) in some detail. Basically 

MTEPP algorithm is generalized from EPP 

algorithm. In fact, EPP algorithm is a special 

case of MTEPP algorithm, with only one 

threshold. At first, we specify h local thresholds 

H1, H2, … Hh and a global threshold HG. Figure 2 

shows the complete steps of MTEPP algorithm. 

Unlike the traditional algorithms like Apriori, 

Partition algorithm, MTEPP algorithm scans 

database with inverse direction, from the latest 

transaction to the earliest transaction. While 

finishing to read a partition pi, we also calculate 

the better local frequent 1-itemset. We use 

another procedure get_current_minsup to 

compute the current local minimum support and 

current big partition minimum support. The 

procedure get_current_minsup solves some 

problems in supporting multiple thresholds 

because a partition pi may be included in many 

thresholds. Which support of these thresholds 

should we use to filter local frequent itemsets? 

Our solution is to use the minimum value. The 

reason can be explained in Lemma 2. 

Lemma 2 Let the database D be divided into n 

partitions, p1,p2,…,pn. Assume in partition pi, L1 

is the set of local frequent itemsets with local 

minimum support s1. L2 is the set of local 

frequent itemsets with local minimum support s2. 

If s2 ≥ s1, then L2 ⊆  L1. 

Proof:  It’s easy to prove it below.  

∀  local frequent itemset t ∈  L2, 

t.support ≥ s2 

∵ s2 ≥ s1 ∴ t.support ≥ s1  

⇒ t ∈  L1 ⇒ L2 ⊆  L1 - Q.E.D - 

The step of procedure get_current_minsup are 

described below: 

Procedure get_current_minsup( P , i) 

1. Locate Hcur in all thresholds H1, … 

Hh and HG where size of transactions 

in Hcur-1.v < | P | ≤ size of 

transactions in Hcur.v 

2. Sup=min( .sH
|.vH|

|P|
cur

cur
× ,      

.sH
|.vH|

|P|
h

h
× , )1(.sHG

+−× in
n

) 

3. Answer = Sup 

 

After finding the better local frequent 

1-itemset Bpi
1 in partition pi, we use the same 

steps as EPP algorithm to calculate the 

maximum frequent transaction and then finally 

compute the local frequent itemsets Bpi. Then we 

join all local frequent itemsets to global 

candidate itemsets CG and continue to process 

phase II. In the second scan, we also reverse the 

direction of scan. While finishing to read all 

transactions specified in threshold Hi, we 

calculate the frequent itemsets LHi. For the 

previous assumption |H1.v| < |H2.v| < … < |Hh.v| 

< |HG.v|, we can easily check this from H1 to Hh 

and HG. After reading all transactions in database 

D, we can finally calculate the global frequent 

itemsets LG. The sets LH1, LH2, … LHh, LG are the 

final outputs of our MTEPP algorithm. 



5. Simulation Environment and 
Performance Evaluation 

5.1 Simulation Environment 
The whole simulation environment is 

implemented in a PC with a 1000MHz AMD 

ThunderBird processor and 512 MB main 

memory. All simulation data resided on a 13 GB 

IDE Ultra DMA 66 hard disk. The operating 

system is FreeBSD 4.3-stable. We use C++ 

language to implement and g++ compiler to 

compile these algorithms. The overall 

architecture of our simulator is shown in Figure 

3.  

 

In this subsection we will compare our 

EPP with Apriori and Partition algorithms. We 

use two databases, T10.I4.D100K and 

T20.I4.D100K, to test the variation with 

changing minimum support. We divide the 

database into 10 partitions for EPP and Partition 

algorithms. The results for the T10.I4.D100K 

Figure 3 The overall architecture of our simulator
The synthetic data generation procedure is 

described in [2], whose parameters are shown in 

Table 2. We use the generator developed by IBM 

Quest project to generate the synthetic database 

[16]. The length of a transaction is determined 

by a Poisson distribution with mean µ to | T |. 

We have generated four different databases by 

using the generator and used them for 

performance evaluation. Table 3 shows the 

names and parameter settings for each database. 

5 .2 Performance Evaluation 
5.2.1 Evaluation of Single Threshold 
Algorithms 
 
 

Table 2 Parameters of synthetic database generator 

|D| Number of transactions 

|T| Average number of items per transactions 

|I| Average number of items of maximal  

potentially frequent itemsets 

|L| Number of maximal potentially frequent 

itemsets 

N Number of items 

Table3 Parameters setting of our input databases 

Name |T| |I| |D| |L| N Size(MB) 

T10.I4.D100K 10 4 100K 2000 1000 31 

T20.I2.D100K 20 2 100K 2000 1000 63 

T20.I4.D100K 20 4 100K 2000 1000 63 

T20.I6.D100K 20 6 100K 2000 1000 63 
and T20.I4.D100K databases are shown in 

Figure 4 and Figure 5 respectively. Our EPP 

algorithm always significantly outperforms 

Apriori and Partition algorithm at total execution 

time. For the case of database T10.I4.D100K, 

EPP algorithm outperforms Apriori from 21% to 

44.9% with minimum support of 2% to 0.25% 

respectively. The average efficiency of EPP is 

better than Apriori with 31.2%. Our EPP 

algorithm is also better than Partition algorithm 

with average efficiency of 12%. 

In the case of data base T20.I4.D100K, our EPP 

performs more efficient than that of 

T10.I4.D100K, It outperforms Apriori with 

average efficiency of 32.4% and Partition 



Figure 4 The execution time of database T10.I4.D100k 

Figure 5 The execution time of database T20.I4.D100 

 

algorithm with average efficiency of 10.7%.   

With these results, we can derive that our 

EPP algorithm performs a better execution time 

than that of Apriori algorithm when the 

minimum support is changed smaller and smaller. 

The reason is that there are more candidate 

itemsets in smaller minimum support, and we 

use the early pruning and partition technology to 

reduce the size of candidate itemsets. With 

smaller minimum support the improvement of 

early pruning and partition technology will be 

more obvious. 

5.2.2 Evaluation of Multiple 
Thresholds 
    Our interesting evaluation is about the 

relation of execution time and number of 

thresholds. We use two databases, T10.I4.D100K 

and T20.I4.D100K, and set the global minimum 

supports as 0.5%. And then we adopt 1 to 6 

thresholds using in our MTEPP algorithm and 

other algorithms as six conditions. The first 

condition is just using the global threshold HG 

and the second condition is using H1 and HG as 

thresholds, and so on. Table 4 shows the 

parameters of these six thresholds. 
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The evaluation result is illustrated in Figure 6 

and Figure 7 corresponding to database 

T10.I4.D100K and T20.I4.D100K respectively. 

When the number of thresholds increases, the 

total execution time of all algorithms grows. In 

the case of input database as T10.I4.D100K, our 

MTEPP algorithm outperforms 39.9% to 60.3% 

than that of Apriori algorithm, the average value 

is 50.1%. And MTEPP is also faster than that of 

Partition about 9.1% to 33.7%, average value is 

24.4%. In another database T20.I4.D100K, our 

MTEPP algorithm still has a better performance. 

It outperforms average 51% than that of Apriori 

algorithm. And the execution time of MTEPP is 

also faster than that of Partition about 31.6% in 

average. Basically the increasing rate of MTEPP 

is much lower than that of Apriori and Partition. 

Especially in Apriori algorithm, the growing 

curve looks like an exponential function. 

Although the growing rate of Partition algorithm 

is not very large, it is still larger than that of our 

MTEPP algorithm. According to the results of 

our simulation, we can claim that our MTEPP 

algorithm is a not only effective but also 

efficient algorithm for mining more useful 

association rules. 
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6. Concluding Remarks 
In this paper we presented a more efficient 

method, EPP algorithm, for mining global  



Table 4 The global threshold and five additional thresholds 

Threshold HG H1 H2 H3 H4 H5 

Minimum Support 0.5% 0.075% 0.125% 0.175% 0.225% 0.275%

Number of transactions in time interval  100K 10K 20K 30K 40K 50K 

Figure 6 Execution time and number of thresholds 

within database T10.I4.D100K 

Figure 7 Execution time and number of thresholds 

within database T20.I4.D100k 

 

frequent itemsets faster. The EPP algorithm 

outperforms average 31.8% than that of the 

Apriori algorithm. For comparing the Partition 

algorithm, the EPP algorithm also outperforms 

an average value 13%. The second interested 

concept of event latency is proposed in our 

algorithm. How to discover this kind of events 

quickly is very important. We extend the EPP by 

using multiple thresholds, named MTEPP, to 

solve this problem effectively. According to our 

simulation results, our MTEPP algorithm 

outperforms averagely 50.6% than that of 

Apriori algorithm with multiple operations and 

28% than that of Partition algorithm. In addition 

to our previous features, there are still several 

promising issues in future research. First, how to 

generate the local frequent itemsets of each 

partition more quickly is worth to be considered. 

If we can join some more efficient algorithm 

such as fast intersection or additional candidate 

pruning, the whole performance of our algorithm 

can be improved further [7]. Another approach is 

that we can combine the association rules with 

the issue of clustering [11]. Generally the 

concept of clustering is used to group customers. 

We can gather the association rules from these 

subdatabases corresponding to groups from 

clustering. We believe that it is more suitable for 

the corresponding group of customers. 

Furthermore, cooperating with incremental 

mining algorithms will make the whole 

recommendation system more complete. The 

incremental mining algorithm tries to decrease  
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[4][5]. 
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