
An Effective Algorithm for Mining Association Rules with

Multiple Thresholds
Yi Siou Lin, Kun Yuan Chang, Cheng Chen

Institute of Computer Science and Information Engineering National Chiao Tung
University, Hsinchu, Taiwan, R.O.C.

Email:{linys, kychang, cchen}@csie.nctu.edu.tw
Tel: +886-3-5712121 ext 54734

Abstract
Catering the buying behaviors of

customers becomes more and more important by

the popularization of E-Commerce recently.

How to find the association rules efficiently

from the transaction records is one of the most

interesting topics to be investigated. In this paper,

at first, we propose en efficient algorithm,

named Early Pruning Partition algorithm (EPP),

with extending the concept of Partition

algorithm and using an early pruning technology

to improve the performance of mining frequent

itemsets under single minimum support. Then

we add the checking of multiple thresholds in

EPP algorithm to construct our Multiple

Thresholds Early Pruning Partition algorithm

(MTEPP). Our MTEPP algorithm can find more

effective frequent itemsets corresponding to

some events of buying behavior. For evaluating

our algorithm, we also implement a simulation

environment to verify it. According to our

evaluations, our algorithms outperform than that

of previous methods and find the more useful

frequent itemsets indeed. The detailed

descriptions of our algorithms will be given in

the contents.

Keywords
Data Mining, Association Rules, Frequent

Itemset, E-Commerce, Multiple Thresholds

1. Introduction
Recently, with the popularization of

E-Commerce, how to predict consumer

psychology and tendency correctly becomes

more and more important [14][8]. One of the

most interesting topics in data mining is the

problem of discovering association rules over

basket data [1][12-15]. An association rule

consists of two subsets, antecedent and

consequent, such that each subset may include

several items. And these two subsets apply to an

implied relation [6]. The possibility of this

situation is the confidence of this association rule

[1][2][6]. We can generate some

recommendations from association rules. The

search of frequent itemsets is one of the most

important procedures of discovering association

rules. How to develop an algorithm to gather

frequent itemsets quickly is quite meaningful.

We use an early pruning technique to

construct our Early Pruning Partition algorithm

(EPP). It is based on the concept of Partition

algorithm embedded with early pruning

technique to achieve better performance.

However, if there are many the same

transactions generated suddenly in a short time

interval such as a week or a month and then

disappear, which is called sudden event,

traditional single threshold algorithms are not

suitable to solve this case. To aim at this

weakness, we add the checking of multiple

thresholds in EPP to construct the Multiple

Thresholds Early Pruning Partition algorithm

(MTEPP). Our EPP algorithm outperforms at

most 37% than that of Apriori algorithm and

13% than that of Partition algorithm from the

simulation results. Comparing with the total

execution time, our MTEPP algorithm

outperforms averagely 50% than that of Apriori

algorithm and 28% than that of Partition

algorithm.

The remaining part of our paper is organized

as follows. In section 2, we give a formal

description of discovering frequent itemsets

problem and give an overview of the previous

algorithms. In section 3, we describe early

pruning technology and our EPP algorithm in

some detail. The benefits of using multiple

thresholds and our MTEPP algorithm are

described in section 4. In section 5, our

simulation environment is introduced and some

preliminary evaluations of our algorithms are

collected and compared with other previous

methods. Finally, some concluding remarks are

given in section 6.

2. Background and Related Work
2.1 Problem Description [1-3] [6-7]

Let I={i1, i2,…, im} be a set of literals called

items. Let D be a set of transactions. Each

transaction T contains a set of items ii, ij,…, ik ⊂

I. An association rule is an implication of the

form X ⇒ Y, where X,Y ⊂ I , X ∩ Y = ∅ . A set

of items is called an itemset. An itemset with k

items in it is referred to as k-itemset. Each

itemset X ⊂ I has a measurement called support.

The support(X) equals the fraction of

transactions in D containing X. A rule has a

measure of its strength called the confidence,

where confidence(X ⇒ Y) = support(X ∪

Y)/support(X) .

The problem of mining association rules is

to find all the association rules of the form X ⇒

Y that satisfy the following two conditions,

support(X ∪ Y) ≥ minsup and confidence(X ⇒

Y) ≥ minconf. Here, minsup and minconf are

user specified thresholds. All itemsets that have

support above the user specified minimum

support are generated. These itemsets are called

the large itemsets (or frequent itemsets). For

each large itemset X and any Y ⊂ X, check if

rule (X-Y) ⇒ Y has confidence above minconf.

These rules are called the strong rules.

Generating strong association rules from

frequent itemsets is relatively straightforward.

However, finding all frequent itemsets is

nontrivial if the size of the set of items, | I |, and

the database, D, are large. We can conclude two

following properties by observation:

1. Any subset of a frequent itemset must

also be frequent.

 (2.1-1)

2. Any superset of an infrequent itemset

must also be infrequent. (2.1-2)

In the following subsections, we will

introduce some basic algorithms based on the

above problem description. For easy description,

we usually notate the set of the frequent

k-itemsets as Lk and the set of the candidate

k-itemsets as Ck.

2.2 Apriori Algorithm [1][2]
Apriori algorithm is one of the most

important level-wise algorithms for discovering

frequent itemsets. Items are sorted in

lexicographic order. Frequent itemsets are

computed iteratively in the ascending order of

size. Assume the largest frequent itemsets

contain k items, it takes k iterations for mining

all frequent itemsets. Initial iteration computes

the frequent 1-itemsets L1. Then, for each

iteration i≤ k, all frequent i-itemsets are

computed by scanning database once. Iteration i

consists of two phases. First, the set Ci of

candidate i-itemsets are created by joining the

frequent (i-1)-itemsets in Li-1 found in the

previous iteration. Next, the database is scanned

for determining the support of all candidates in

Ci and the frequent i-itemsets Li are extracted

from these candidates. This iteration is repeated

until no more candidates can be generated. The

Apriori algorithm needs to take k database

passes to generate all frequent itemsets. For disk

resident databases, this requires reading the

database completely for each pass resulting in a

large number of disk reads. It means that the

Apriori algorithm takes a huge I/O operations.

This is the major weakness of it.

2.3 Partition Algorithm [12][10]
The Partition algorithm focuses on times

of scanning database. Initially the database D is

logically partitioned into n partitions. Basically

the Partition algorithm can be divided into two

phases. In phase I, it takes n iterations. During

iteration i, only partition pi is considered. Then

take a partition pi as input and generate local

large itemsets of all lengths, Li
2, Li

3, …, Li
m as

the output. In the merge phase the local large

itemsets with the same lengths from all n

partitions are combined to generate the global

candidate itemsets. The set of global candidate

itemsets of length j is computed as CG
j = ∪

i=1,…,n Li
j . In phase II, the algorithm sets up

counters for each global candidate itemset and

counts their support in all n partitions. It outputs

global large itemsets that have the minimum

global support along with their support. Unlike

the Apriori algorithm, the Partition algorithm

just needs scan the entire database twice. Thus,

we will adopt the principle of Partition algorithm

combined with early pruning technique to

develop a more efficient method, called EPP, and

then extend it to handle multiple thresholds with

mining association rules. In the following, we

will describe them in some detail.

3. Early Pruning Partition algorithm
3.1 Early Local Pruning [9]

The idea of early local pruning is as

follows. When reading a partition pi to generate

Lpi
1, we record and accumulate the number of

occurrences for each item. Thus, after reading

partition pi, we know both the number of

occurrences for each item in partition pi, and the

number of occurrences for each item in the big

partition ∪j=1,2,…,i pj denoted by BP1…i . With

this information, we can get frequent 1-itemsets

of partition pi and partition BP1…i . We define

Bpi
1 as the set of all better local frequent

1-itemsets in partition pi, where Bpi
1 = Lpi

1 ∩

LBP1…i
1. With early local pruning, we use Bpi

1

instead of Lpi
1 to start the level-wise algorithm to

construct the set Bpi of all better local frequent

itemsets in partition pi. Since the size of Bpi
1 is

usually smaller than that of Lpi
1, Bpi can be

constructed faster than Lpi. With Partition

algorithm introduced before ensures that CG =

∪i=1,2,…,n Lpi is a super set of the set LG of all

global large itemsets. With early local pruning,

Lemma 1 shows that CG = ∪i=1,2,…,n Bpi is also a

superset of LG.

Lemma 1 Let the database D be divided into n

partitions, p1,p2,…,pn. Let CG = ∪i=1,2,…,n Bpi.

Then, CG is a superset of LG.[9]

Proof: see [9].

3.2 EPP algorithm
In previous subsection, we have introduced

the idea of early local pruning. Then we will

describe how to combine it with Partition

algorithm. We propose a method named Early

Pruning Partition algorithm (EPP algorithm) for

mining frequent itemsets quickly. Figure 1 is the

complete steps of EPP algorithm. We use an

array of object named “item” to keep the

accumulative result such that item[j] means the

item this site sold which id is equal to j. The

object “item” consists of three elements:

BPcount, count and tidlist to stores the

occurrence of this item from the first reading

partition to the big partition, current partition

and the occurrent transaction id. Here we also

record the length account of each transaction in

each partition and the length account in the

whole database. When we have read the partition

pi completely, we generate the better frequent

1-itemsets by using early local pruning. We

collect all items which count are larger than the

local minimum support = minsup/n as Lpi
1, and

check BPcount of all items with the big partition

minimum support = i*minsup/n. If it is larger,

put the item into LBPi
1. Then we get Bpi

1 by union

Lpi
1 and LBPi

1.

After getting the better frequent 1-itemsets

Bpi
1, we calculate the length of local maximum

frequent transactions. Finally, we use the

procedure gen_frequent_itemset to generate all

local frequent itemsets from Bpi
1.

Algorithm EPP
// Phase I
1. for i = 1 to n do begin
2. forall transaction t ∈ pi do begin
3. forall item j ∈ t do begin
4. accumulate the occurrence of item[j]
5. end
6. accumulate the local and global maximum transaction count
7. end
8. calculate the values of local minimum support and big partition support
9. generate the better local frequent 1-itemset Bpi

1 of partition pi
10. calculate the length of local maximum frequent transaction M
11. Bpi = gen_frequent_itemset(M, Sup, Bpi

1, item)
12. reset all local variables
13. end
14. CG’ = Bp1 ∪ Bp2 ∪ … ∪ Bpn
15. calculate the global minimum support MG
16. CG = { c ∈ CG’ | c.length ≤ MG}
// Phase II
17. forall transaction t ∈ D do
18. forall subset s ∈ t do begin
19. if s ∈ CG then
20. s.count ++
21. end
22. LG = { c ∈ CG | c.count ≥ minsup}
23. Answer = LG

Figure 1. Early Pruning Partition algorithm

Procedure gen_frequent_itemset(M, Sup, Bpi
1,

item)

1. for (k=2; Bpi
k≠∅ ∧ k ≤ M; k++) do

2. forall distinct itemsets l1, l2 ∈ B pi
k-1 do

3. if l1[1]=l2[1] ∧ … ∧ l1[k-2]=l2[k-2] ∧

l1[k-1]<l2[k-1] then begin

4. c = (l1[1], l1[2], … l1[k-1], l2[k-1])

5. forall (k-1)-subset s of c do

6. if all s ∈ B pi
k-1 then begin

7. c.tidlist = l1.tidlist ∩ l2.tidlist

8. if |c.tidlist| ≥ Sup then

9. Bpi
k = Bpi

k ∪ c

10. end

11. end

12. Bpi = Bpi
1 ∪ Bpi

2 ∪ … ∪ Bpi
k-1

13. Answer = Bpi

We inherit the step of Partition algorithm

and use Bpi
1 instead of Lpi

1 as the level 1

frequent itemsets. Here we make an

improvement, we add k ≤ M to the second term

of “for loop”. We will not check level larger than

M because there is no possible frequent

transaction which length is larger than M. Then

we use the join step of Partition algorithm to

generate all new candidate itemsets. We do some

check before joining these two tidlists. We check

all (k-1)-subsets of c to confirm that all

(k-1)-subsets of c belong to better local frequent

(k-1)-itemset of partition pi. With the

observation 2.1-2 we introduced in section 2.1, if

itemset j is infrequent, all superset of j is also

infrequent. After joining the tidlist of c, we can

easily compute the support of c by calculating

the length of tidlist. Finally we can calculate Bpi
k,

the set of better frequent k-itemset in partition pi.

At the end of procedure gen_frequent_itemset,

we join all sets of better frequent itemset in each

level to Bpi, the better local frequent itemsets of

pi. After finishing to process all partitions in

phase I of EPP algorithm, we can get all better

local frequent itemsets Bp1, Bp2, … Bpn of each

partition. Before joining all local frequent

itemsets, we can use the length of global

maximum transactions to eliminate some useless

candidates. Finally we can join all remainder

candidates from Bpi to CG to get the set of global

candidate itemsets. Then we continue to process

the phase II of EPP algorithm by rescanning

each transaction t in the whole database D, and

checking all subsets of t. The set of all candidate

itemset c whose count is larger than minsup is

the global frequent itemsets LG. This is the

output of our EPP algorithm.

4. Multiple Thresholds Early
Pruning Partition algorithm

4.1 Event latency
When a new popular purchasing behavior

occurs, it implies some new association rules

will be found. If this kind of behaviors will

disappear in a while, we call the appearance of

these behaviors as event. The new association

rules will not be found until the occurrence of

purchasing behavior achieves the minimum

support. There is latency between the first

customer bought and the new frequent itemsets

were found. We call this latency as event latency.

It is intuitively better to reduce the event latency

as short as possible because we can make some

appropriate recommendations from those

association rules quickly. In the previous

discussions of frequent itemsets, there is only

one global minimum support . It is impossible to

reduce the latency unless we reduce the

corresponding local minimum support. Before

showing how to solve this problem,

Table 1 Notation
Hj the jth threshold of user specification

Hi.s the local minimum support of threshold

Hj

Hi.v the time interval of threshold Hj

HG the traditional threshold consist of the

global minimum support.

LHi Set of local frequent itemset within

threshold Hi

CHi Set of local candidate itemset within

threshold Hi

pi The partition I

Lpi Set of all local frequent itemset in

partition pi

Lpi
k Set of all local frequent k-itemsets in

partition pi

we first denote some symbols using in our

algorithm. These symbols are listed in Table

1.We propose a multiple thresholds concept as

follows. Assume that each threshold consists of

one local minimum support and a time interval,

denoted by H = (s, v), where s is local minimum

support and v is time interval. For example, H1 =

(10%, 30) denotes “the itemsets which appear in

more than 10% of transactions happened in the

last 30 days”. We can also denote HG=(minsup,

total days during the store was operating) as a

global threshold. This threshold HG is used to

filter traditional frequent itemsets within the

whole database in our algorithm. And then we

can use these thresholds to filter frequent

itemsets. Thus, we will get several sets LH1,

LH2, … LHk and LG of frequent itemsets

Algorithm MTEPP
// Phase I
1. for i = n to 1 do begin
2. for t = latest transaction in pi to earliest transaction do begin
3. forall item j ∈ t do begin
4. accumulate the occurrence of item[j]
5. end
6. accumulate the local and global maximum transaction count
7. end
8. calculate the current local and big partition support by gen_current_support()
9. generate the better local frequent 1-itemset Bpi

1 of partition pi
10. calculate the length of local maximum frequent transaction M
11. Bpi = gen_frequent_itemset(M, Sup, Bpi

1, item)
12. reset all local variables
13. end
14. CG = Bpn ∪ Bp(n-1) ∪ … ∪ Bp1
// Phase II
15. for t = latest transaction in D to earliest transaction do begin
16. forall subset s ∈ t do
17. if s ∈ CG then
18. s.count ++
19. if the count of reading transactions fits to |Hz.v| then
20. LHz = { c ∈ CG | c.count ≥ Hz.s }
21. end
22. LG = { c ∈ CG’ | c.count ≥ HG.s }
23. Answer = LH1, LH2, … LHh, LG

Figure 2 Multiple Thresholds Early Pruning Partition algorithm

corresponding to each threshold respectively.

The newly additional association rules gathered

from these frequent itemsets often correspond to

some events. Thus we can make more suitable

recommendations according to these rules.

 The previous methods like Apriori and

Partition algorithms can also generate the

additional association rules by run more k+1

times, which will be inefficient obviously.

4.2 MTEPP algorithm
In this subsection, we will describe our

Multiple Thresholds Early Pruning Partition

algorithm (MTEPP) in some detail. Basically

MTEPP algorithm is generalized from EPP

algorithm. In fact, EPP algorithm is a special

case of MTEPP algorithm, with only one

threshold. At first, we specify h local thresholds

H1, H2, … Hh and a global threshold HG. Figure 2

shows the complete steps of MTEPP algorithm.

Unlike the traditional algorithms like Apriori,

Partition algorithm, MTEPP algorithm scans

database with inverse direction, from the latest

transaction to the earliest transaction. While

finishing to read a partition pi, we also calculate

the better local frequent 1-itemset. We use

another procedure get_current_minsup to

compute the current local minimum support and

current big partition minimum support. The

procedure get_current_minsup solves some

problems in supporting multiple thresholds

because a partition pi may be included in many

thresholds. Which support of these thresholds

should we use to filter local frequent itemsets?

Our solution is to use the minimum value. The

reason can be explained in Lemma 2.

Lemma 2 Let the database D be divided into n

partitions, p1,p2,…,pn. Assume in partition pi, L1

is the set of local frequent itemsets with local

minimum support s1. L2 is the set of local

frequent itemsets with local minimum support s2.

If s2 ≥ s1, then L2 ⊆ L1.

Proof: It’s easy to prove it below.

∀ local frequent itemset t ∈ L2,

t.support ≥ s2

∵ s2 ≥ s1 ∴ t.support ≥ s1

⇒ t ∈ L1 ⇒ L2 ⊆ L1 - Q.E.D -

The step of procedure get_current_minsup are

described below:

Procedure get_current_minsup(P , i)

1. Locate Hcur in all thresholds H1, …

Hh and HG where size of transactions

in Hcur-1.v < | P | ≤ size of

transactions in Hcur.v

2. Sup=min(.sH
|.vH|

|P|
cur

cur
× ,

.sH
|.vH|

|P|
h

h
× ,)1(.sHG

+−× in
n

)

3. Answer = Sup

After finding the better local frequent

1-itemset Bpi
1 in partition pi, we use the same

steps as EPP algorithm to calculate the

maximum frequent transaction and then finally

compute the local frequent itemsets Bpi. Then we

join all local frequent itemsets to global

candidate itemsets CG and continue to process

phase II. In the second scan, we also reverse the

direction of scan. While finishing to read all

transactions specified in threshold Hi, we

calculate the frequent itemsets LHi. For the

previous assumption |H1.v| < |H2.v| < … < |Hh.v|

< |HG.v|, we can easily check this from H1 to Hh

and HG. After reading all transactions in database

D, we can finally calculate the global frequent

itemsets LG. The sets LH1, LH2, … LHh, LG are the

final outputs of our MTEPP algorithm.

5. Simulation Environment and
Performance Evaluation

5.1 Simulation Environment
The whole simulation environment is

implemented in a PC with a 1000MHz AMD

ThunderBird processor and 512 MB main

memory. All simulation data resided on a 13 GB

IDE Ultra DMA 66 hard disk. The operating

system is FreeBSD 4.3-stable. We use C++

language to implement and g++ compiler to

compile these algorithms. The overall

architecture of our simulator is shown in Figure

3.

In this subsection we will compare our

EPP with Apriori and Partition algorithms. We

use two databases, T10.I4.D100K and

T20.I4.D100K, to test the variation with

changing minimum support. We divide the

database into 10 partitions for EPP and Partition

algorithms. The results for the T10.I4.D100K

Figure 3 The overall architecture of our simulator
The synthetic data generation procedure is

described in [2], whose parameters are shown in

Table 2. We use the generator developed by IBM

Quest project to generate the synthetic database

[16]. The length of a transaction is determined

by a Poisson distribution with mean µ to | T |.

We have generated four different databases by

using the generator and used them for

performance evaluation. Table 3 shows the

names and parameter settings for each database.

5 .2 Performance Evaluation
5.2.1 Evaluation of Single Threshold
Algorithms

Table 2 Parameters of synthetic database generator

|D| Number of transactions

|T| Average number of items per transactions

|I| Average number of items of maximal

potentially frequent itemsets

|L| Number of maximal potentially frequent

itemsets

N Number of items

Table3 Parameters setting of our input databases

Name |T| |I| |D| |L| N Size(MB)

T10.I4.D100K 10 4 100K 2000 1000 31

T20.I2.D100K 20 2 100K 2000 1000 63

T20.I4.D100K 20 4 100K 2000 1000 63

T20.I6.D100K 20 6 100K 2000 1000 63
and T20.I4.D100K databases are shown in

Figure 4 and Figure 5 respectively. Our EPP

algorithm always significantly outperforms

Apriori and Partition algorithm at total execution

time. For the case of database T10.I4.D100K,

EPP algorithm outperforms Apriori from 21% to

44.9% with minimum support of 2% to 0.25%

respectively. The average efficiency of EPP is

better than Apriori with 31.2%. Our EPP

algorithm is also better than Partition algorithm

with average efficiency of 12%.

In the case of data base T20.I4.D100K, our EPP

performs more efficient than that of

T10.I4.D100K, It outperforms Apriori with

average efficiency of 32.4% and Partition

Figure 4 The execution time of database T10.I4.D100k

Figure 5 The execution time of database T20.I4.D100

algorithm with average efficiency of 10.7%.

With these results, we can derive that our

EPP algorithm performs a better execution time

than that of Apriori algorithm when the

minimum support is changed smaller and smaller.

The reason is that there are more candidate

itemsets in smaller minimum support, and we

use the early pruning and partition technology to

reduce the size of candidate itemsets. With

smaller minimum support the improvement of

early pruning and partition technology will be

more obvious.

5.2.2 Evaluation of Multiple
Thresholds
 Our interesting evaluation is about the

relation of execution time and number of

thresholds. We use two databases, T10.I4.D100K

and T20.I4.D100K, and set the global minimum

supports as 0.5%. And then we adopt 1 to 6

thresholds using in our MTEPP algorithm and

other algorithms as six conditions. The first

condition is just using the global threshold HG

and the second condition is using H1 and HG as

thresholds, and so on. Table 4 shows the

parameters of these six thresholds.
0

50

100

150

200

250

300

350

400

450

500

550

2 1.5 1 0.75 0.5 0.25

Min Support (%)

E
xe

cu
ti

on
 T

im
e

(S
ec

)

EPP

Partition

Apriori

The evaluation result is illustrated in Figure 6

and Figure 7 corresponding to database

T10.I4.D100K and T20.I4.D100K respectively.

When the number of thresholds increases, the

total execution time of all algorithms grows. In

the case of input database as T10.I4.D100K, our

MTEPP algorithm outperforms 39.9% to 60.3%

than that of Apriori algorithm, the average value

is 50.1%. And MTEPP is also faster than that of

Partition about 9.1% to 33.7%, average value is

24.4%. In another database T20.I4.D100K, our

MTEPP algorithm still has a better performance.

It outperforms average 51% than that of Apriori

algorithm. And the execution time of MTEPP is

also faster than that of Partition about 31.6% in

average. Basically the increasing rate of MTEPP

is much lower than that of Apriori and Partition.

Especially in Apriori algorithm, the growing

curve looks like an exponential function.

Although the growing rate of Partition algorithm

is not very large, it is still larger than that of our

MTEPP algorithm. According to the results of

our simulation, we can claim that our MTEPP

algorithm is a not only effective but also

efficient algorithm for mining more useful

association rules.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2 1.5 1 0.75 0.5 0.25

Min Support (%)

E
xe

cu
ti

on
 T

im
e

(S
ec

)

EPP

Partition

Apriori

6. Concluding Remarks
In this paper we presented a more efficient

method, EPP algorithm, for mining global

Table 4 The global threshold and five additional thresholds

Threshold HG H1 H2 H3 H4 H5

Minimum Support 0.5% 0.075% 0.125% 0.175% 0.225% 0.275%

Number of transactions in time interval 100K 10K 20K 30K 40K 50K

Figure 6 Execution time and number of thresholds

within database T10.I4.D100K

Figure 7 Execution time and number of thresholds

within database T20.I4.D100k

frequent itemsets faster. The EPP algorithm

outperforms average 31.8% than that of the

Apriori algorithm. For comparing the Partition

algorithm, the EPP algorithm also outperforms

an average value 13%. The second interested

concept of event latency is proposed in our

algorithm. How to discover this kind of events

quickly is very important. We extend the EPP by

using multiple thresholds, named MTEPP, to

solve this problem effectively. According to our

simulation results, our MTEPP algorithm

outperforms averagely 50.6% than that of

Apriori algorithm with multiple operations and

28% than that of Partition algorithm. In addition

to our previous features, there are still several

promising issues in future research. First, how to

generate the local frequent itemsets of each

partition more quickly is worth to be considered.

If we can join some more efficient algorithm

such as fast intersection or additional candidate

pruning, the whole performance of our algorithm

can be improved further [7]. Another approach is

that we can combine the association rules with

the issue of clustering [11]. Generally the

concept of clustering is used to group customers.

We can gather the association rules from these

subdatabases corresponding to groups from

clustering. We believe that it is more suitable for

the corresponding group of customers.

Furthermore, cooperating with incremental

mining algorithms will make the whole

recommendation system more complete. The

incremental mining algorithm tries to decrease

140
156 170

189 202
220233

278

326

395

462

554

165
192

223

263

301
332

140

200

260

320

380

440

500

560

0 1 2 3 4 5

Number of additional thresholds

E
xe

cu
tio

n
tim

e
(S

ec
)

MTEPP

Apriori

Partition

645 658 680 699 721 745
915

1086

1332

1552

1954

2503

734
816

952
1104

1276

1468

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

0 1 2 3 4 5

Number of additional thresholds

E
xe

cu
tio

n
tim

e
(S

ec
)

MTEPP

Apriori

Partition

the probability of scanning the whole database

by analyzing those new coming transactions first

[4][5].

Reference
[1] R. Agrawal, T. Imielinski, A. Swami,

“Mining Association Rules between Sets

of Items in Large Databases”, Proceedings

of the 1993 ACM SIGMOD International

Conference on Management of Data,

pp.207-216, May, 1993.

[2] R. Agrawal, R. Srikant, “Fast Algorithms

for Mining Association Rules”,

Proceedings of the 20th International

Conference on Very Large Databases,

pp.487-499, Sep. 1994.

[3] M. Chen, J. Han, P. S. Yu, “Data mining:

An overview from a database perspective”,

IEEE Transactions on Knowledge and

Data Engineering 1996, 8(6): pp. 866-833,

Dec. 1996.

[4] D. W. Cheung, J. Han, V. Ng, et al.

“Maintenance of discovered association

rules in large databases:an incremental

updating technique”, In Proceedings of the

1996 International Conference on Data

Engineering, New

Orleans,Louisiana,1996.

[5] D. W. Cheung, S. D. Lee, B. Kao, “A

general incremental technique for

maintaining discovered association rules”,

In Proceedings of the 5th International

Conference on Database Systems for

Advanced Applications, Melbourne,

Australia, 1997.

[6] Jiawei Han, Micheline Kamber, Data

Mining: Concepts and Techniques,

Morgan Kaufmann Publishers, Chapter 6,

pp. 225-229, 2001.

[7] J. Hipp, U. Guntzer and G. Nakhaeizadeh,

“Algorithms for Association Rule

Mining –A General Survey and

Comparison”, SIGKDD Explorations,

ACM SIGKDD 2000, Volume 2, Issue 1,

pp. 58-64, Aug. 2000.

[8] Hsiangchu Lai, Tzyy-Ching Yang, “A

System Architecture of Intelligent-Guided

Browsing on the Web”, Proceeding of 31st

Annual Hawaii International Conference

on System Sciences, pp.423-432, Jan.

1998.

[9] Jun-Lin Lin, Margaret H. Dunham,

“Mining association rules: anti-skew

algorithms”, Proceedings of 14th

International Conference on Data

Engineering, pp. 486-493, Feb. 1998.

[10] A. Mueller, Fast sequential and parallel

algorithms for association rule mining:

A comparison, Technical Report

CS-TR-3515, Dept. of Computer Science,

Univ. of Maryland, College Park, MD,

Aug. 1995.

[11] Olfa Nasraoui, Raghu Krishnapuram,

Anupam Joshi, “Relational clustering

based on a new robust estimator with

application to Web mining”, Proceeding of

18th International Conference of the,

NAFIPS, pp. 705–709, Dec.1999.

[12] A. Savasere, E. Omiecinski, S. Navathe,

“An Efficient Algorithm for Mining

Association Rules in Large Databases”,

Proceedings of the 21st International

Conference on Very Large Data Bases

(VLDB’95), pp. 432-444, Sep, 1995.

[13] H. Toivonen, “Sampling Large Databases

for Association Rules”, Proceedings of the

22nd VLDB Conference, pp. 134-145, Sep.

1996.

[14] Don-Lin Yang, Hsiao-Ping Lee, “The

CPOG Algorithm for Mining Association

Rules”, Proceedings of the 5th Conference

on Artifficial Intelligence and Applications

(TAAI 2000), pp. 65-72, Taipei Taiwan,

Nov. 2000.

[15] M. J. Zaki, S. Parthasarathy, M. Ogihara,

and W. Li, “New Algorithms for Fast

Discovery of Association Rules”,

Proceeding of the 3rd International

Conference on KDD and Data

Mining(KDD’97), pp. 283-286, Aug. 1997.

[16] http://www.almaden.ibm.com/cs/quest/syn

data.html, Quest Synthetic Data

Generation Code, IBM Quest project at

IBM Almaden Research Center.

http://www.almaden.ibm.com/cs/quest/syndata.html
http://www.almaden.ibm.com/cs/quest/syndata.html

