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Abstract 

Visual secret sharing (VSS) scheme is a 

perfect secure method that protects a secret image 

by breaking it into shadow images (called shadows). 

Unlike other threshold schemes, VSS scheme can 

be easily decoded by the human visual system 

without the knowledge of cryptography and 

cryptographic computations. However, the size of 

shadow images (i.e., the number of columns of the 

black and white matrices in VSS scheme [1]), will 

be larger than the original image. Most recent 

papers about VSS schemes are dedicated to get a 

higher contrast or a smaller shadow size. 

In this paper, the gray (non-binary) sub pixel 

in the proposed method is completely different 

from the black and white (binary) sub pixel in the 

conventional VSS scheme. The new definition of 

gray sub pixel lets the proposed VSS scheme have 

non-expansible  shadow size. The term 

“non-expansible” means that the sizes of the shared 

secret and shadows are same. 

 

Keywords: Secret sharing scheme, visual secret 

sharing scheme. 

 

1 Introduction 

The secret sharing scheme, or sometimes 

called threshold scheme, was first introduced by 

Blakley [9] and Shamir [10] independently in 1979. 

A threshold scheme is a method to protect a master 

key by breaking it to a set of participants and only 

qualified subsets of participants can retrieve the 

master key by combining their shadows. For a (k , n) 

threshold scheme, the master key is divided into to 

n different shadows, so that we can recover the 

master key by combining any k )( nk ≤  shadows 

but k-1 or fewer shadows will get no information. 

A new type of secret sharing scheme [1]-[8] 

called visual secret sharing (VSS) scheme, was first 

proposed by Naor and Shamir in 1994 [1]. The 

shared secret is an image (printed text, handwritten 

note, pictures, etc.) and the VSS scheme provides 

an unconditionally secure way to encode the shared 

secret into shadow images. The decoder is human 



 

visual system so that we can easily recover the 

shared secret using the eyes of human being. For a 

(k , n) VSS scheme, k  or more participants can get 

the shared secret by stacking their shadows 

(transparencies). In the previous construction 

methods for VSS schemes, we use several sub 

pixels in the shadow to represent a pixel in the 

original secret image, i.e., the size of shadow is 

larger than the original image. Here we define the 

Pixel Expansion = (the size of the shadow) / (the 

size of the secret image). For example the Pixel 

Expansion  of Shamir’s (2, 2), (2, n) and optimal (k , 

k) VSS schemes are 2, n, and 2k-1. 

In this paper, we will propose the new VSS 

schemes with non-expansible shadow size. That is 

the Pixel Expansion of our scheme is 1. Our 

method is to expand the binary level (only “black” 

and “white”) of the sub pixel to non-binary level 

(gray level) instead of expanding their shadow size.  

This paper is organized as the following. In section 

2, we will describe the conventional VSS scheme. 

In section 3, we propose our VSS schemes and also 

define the new contrast and security conditions. 

Section 4 gives the experimental results  and our 

definition of the contrast. Section 5 concludes the 

paper. 

 

2 The Basic VSS Scheme 

As described in [1], in a (k , n) VSS scheme, 

the original image consists of a collection of black 

and white pixels. Each original pixel is divided into 

m black and white sub pixels in n shadows. VSS 

Scheme can be described by n × m Boolean matrix 

S = [sij], where sij = 1 if and only if the jth sub pixel 

in the ith shadow is black, otherwise sij = 0. When 

shadows i1, i2,…  ir, are stacked together in a way 

which properly aligns the sub pixels, we see a 

recovered image whose black sub pixels are 

represented by the Boolean “or” of rows i1, i2,…  ir in 

S. The gray level of this recovered image is 

proportional to the Hamming weight of the “or”ed 

m-vector v
r

. For the fixed threshold 1 ≦  d ≦  m 

and relative difference á ＞ 0, if H( v
r

)≧ d, this 

gray level is interpreted by the user’s visual system 

as black, and if H( v
r

) ≦ d  – ám, the result is 

interpreted as white. 

 

DEFINITION 1.  A (k, n) VSS Scheme can be 

shown as two collections of n × m Boolean function 

matrices B0 and B1. When sharing a white (resp. 

black) pixel, the dealer randomly chooses one row 

of the Boolean matrix B0 (resp. B1) to a relative 

shadow. The chosen matrix defines the gray level of 

the m sub pixels in every one of the n shadows. A 

VSS Scheme is considered valid if the following 

conditions are met [1] : 

1.  For any S in B0  (resp. B1), the “or”ed v
r

 of 

any k of the n rows satisfies H (v
r

) ≦ d –  

ám (resp. H ( v
r

) ≧ d). 

2.  For any subset {i1, i2, …, i q} of {1, 2, …, n} with 

q < k, the two collections of q×m matrices 

obtained by restricting each n×m matrices in 

Bi ,  i∈{0, 1}, to rows i1,  i2,  …, iq are not 

visual in the sense that they contain the same 

matrices with the same frequencies. 

 

The first condition is called contrast and the 

second condition is called security. Due to the 

security condition, we cannot get any information 

about the shared secret if we do not have more than 

k  shadows.  

For the basic (2, 2) VSS scheme, we will 

stack two shadows to recover the shared secret, and 

“black” is 2B and “white” is 1B1W in the 

recovered image. We cannot get any information 

from any one shadow, because every pixel in the 



 

shadow is represented as 1B1W. 

 

3 The Proposed VSS Scheme with 

Non-Expansible Shadow Size 

In this section, we use new definition of sub 

pixel to construct the VSS schemes. Instead of 

expanding the original pixel into m sub pixels , we 

expand the gray level of the sub pixel as a 

substitute. The new gray sub pixel is  shown in 

Fig.1(a), where a sub pixel is a fixed gray level, 

and the operation between sub pixels  is the 

“ADDITION”. It means that a gray sub pixel 

“ADD” a gray sub pixel will cause a more gray sub 

pixel. The stacking operation for the conventional 

VSS scheme is “OR” shown in Fig.1(b). The major 

difference between two schemes is that our scheme 

uses non-binary operation and the conventional 

scheme uses Boolean operation. 

 

As a replacement for using n × m Boolean 

matrix, we therefore define 1×n  matrix 

][ ipP =  where 1=ip  iff the sub pixel in ith 

shadow is gray level, otherwise 0=ip . When 

shadows riii ,...,, 21  are stacked, we can 

represent it by “ADD” operation of rows 

riii ,...,, 21  in P. The gray level of this combined 

sub pixel G( v
r

) is denoted by the “ADD”ed value 

of this r-tuple column vector v
r

, i.e., G( v
r

)= 

riii +++ ...21 .  

Next we use the DEFINITION 2 to show the 

formal required conditions of the proposed VSS 

scheme with non-expansible shadow size. As 

convenience, we herein use the abbreviation 

NEVSS (Non-Expansible VSS) scheme to denote 

our scheme. 

 

DEFINITION 2.  A (k, n) NEVSS scheme can be 

shown as two collections C0 and C1 consisting of nλ 

and n γ n × 1 matrices, respectively. When sharing a 

white (resp. black) pixel, the dealer first randomly 

chooses one column matrix in C0 (resp. C1), and 

then randomly selects one row of this column 

matrix to a relative shadow. The chosen matrix 

defines the gray level of one sub pixel in every one 

of the n shadows. A NEVSS Scheme is considered 

valid if the following conditions are met : 

1. For these nλ (resp. nγ ) matrices in C0 (resp. 

C1), the “ADD”ed value of any k-tuple column 

vector v
r

 satisfies G(v
r

)∈λ (resp. G(v
r

)∈ γ). 

2. The two sets λ and γ satisfy that |Pλ-Pγ| is 

great enough such that we can distinguish the 

“black” and “white”, where Pλ and Pγ are the 

probabilities of the dominant color in the set λ 

and γ, respectively. 

3. For any subset {i1, i2,  …, iq} of {1, 2, …, n} 

with q < k, the G(v
r

) in 0C  and 1C  are 

same with the same frequencies. 

 

The first two conditions are called contrast 

and the third condition is called security. Note that 

the two sets λ and γ are chosen to let us see the 

“black” and “ white”, and the dominant color means 

the color with the biggest contrast relative other 

colors in the set λ and γ. From the definition, C0 

and C1 are n × 1 matrices, so the Pixel Expansion is 

1; however B0 and B1 are n × m matrices, and thus 

the Pixel Expansion is m. 

 

3.1 A (2, 2) NEVSS Scheme 

For the description of the construction, we 

first define the notation ji,µ  to represent the n×1 

column matrices with the Hamming weight i of 

every column vector, and j denotes the matrices 

belong Cj where j∈{0, 1}. For example n =3, 0,2µ  



 

are three 3×1 column matrices shown as 

}

0

1

1

1

0

1

1

1

0

{0,2
















































=µ  and 0,2µ  belongs C0. 

Construction 1 : Let C0 and C1 be the two white 

and black collections of 2×1 matrices for a (2, 2) 

NEVSS scheme. Then, },{ 0,20,00 µµ=C , 

and }{ 1,11 µ=C . 

 

Theorem 1: The scheme from Construction 1  is a (2, 

2) NEVSS scheme with non-expansible shadow 

size. 

Proof: Since the matrices 
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= GG = {1, 1} when stacking 

two shadows. The dominant color is “0” (white), 

because “0” is the biggest contrast among the 

colors “0”, “1”, and “2” in λ and γ. Now, Pλ=1/2 

Pγ=0, the difference Pλ-Pγ=1/2, thus holds the 

second condition. 

For a proof of the third condition “security”, note 

that we randomly chooses one column  matrix in C0 

and C1, and then randomly selects one row of this 

column  matrix to a relative shadow. So for each 

shadow every pixel will be “0”(white) or “1”(gray) 

half and half, and one cannot see any thing from 

the shadow.                 £ 

   

Example 1 : For a (2, 2) NEVSS scheme and 

},{ 0,20,00 µµ=C , and }{ 1,11 µ=C . Fig. 

2(a)~(d) are the shared secret, shadow 1, shadow 2, 

and the recovered image shadow 1 + shadow 2. We 

can observe that the shadow size is not expansible 

from the following figures, and the gray level “1” 

is used to represent “black” and gray level “0” and 

“2” are used to represent “white”. 

 

3.2 A (2, n) NEVSS Scheme  
We now describe our 2-out-of-n NEVSS 

scheme based on the new gray sub pixel. 

 

Construction 2 : Let C0 and C1 be the two white 

and black collections of n×1 column  matrices for a 

(2, n) NEVSS scheme. Then, },{ 0,0,00 nC µµ= , 

and }{ 1  ,2/1 nC µ=  for even n or 

    } ,{ 1  ,12/1  ,2/1 += nnC µµ  for odd n. 

 

Theorem 2: The scheme from Construction 2  is a (2, 

n) NEVSS scheme with non-expansible shadow 

size. 

Proof: For even n, since the collections 

},{ 0,0,00 nC µµ=  and }{ 1  ,2/1 nC µ= , so 

λ )}( ),({ 0,0,0 nGG µµ= = {0, 2} and γ = 

{
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} when stacking any 

two shadows, where n0 = 2
2/

2
0

−× n
nCC , n1 = 

2
12/

2
1

−
−× n

nCC , n2 = 2
22/

2
2

−
−× n

nCC . The probability 

of “0” and “2” in λ are all 0.5; however the 

probability of “0” and “2” in γ 
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Since “0” is the dominant color among “0”, “1”, 

and “2”, and Pλ=1/2, Pγ=
44
2

−
−

n
n

≒1/4 for large n. 

The difference Pλ-Pγ=1/4, thus holds the second 

condition, and our (2, n) NEVSS scheme can show 

the shared secret correctly due to the difference 

probability. 

For a proof of the third condition “security”, the 

probability of G( v
r

)=0 in C0 is  1/2, and the 

probabilityr of G( v
r

)=0 in C1 is 2/1
2/

1
2/ =

−

n
n

n
n

C

C
. As 

the same reason, the probability of G( v
r

)=1 in C0 is  

1/2, and the number of G( v
r

)=1 in C1 is 

2/1
2/

1
12/ =

−
−

n
n

n
n

C

C
. So, it satisfies that “0”(white) and 

“1”(gray) half and half, and one cannot see any 

thing from the shadow.     

     

For odd n, using the same approach, we can 

get the similar result.  £ 

 

Example 2 : For a (2, 3) NEVSS scheme and 
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GGGGGG

={0, 1, 1, 2, 1, 1} when shadow 1 and shadow 2 are 

stacked. The dominant color is “0”, Pλ=1/2, Pγ=1/6, 

thus the difference Pλ-Pγ=1/3. Fig.3(a)~(f) are 

shadow 1, shadow2, shadow 3, and the recovered 

image shadow 1 + shadow 2, shadow 2 + shadow 3, 

shadow 1 + shadow 3. We can observe that the 

shadow size is not expansible from the following 

figures. 

 

Example 3 : For a (2, 4) NEVSS scheme, the two 

white and black collections C0 and C1 of 4×1 

column  matrices are shown below : 
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3.3 A (k, k) NEVSS Scheme 

 

Construction 3 : Let C0 and C1 be the two white 

and black collections of k×1 Boolean matrices for a 



 

(k , k) NEVSS scheme. Then, for even k 

},...,,{ 0,0,20,00 kC µµµ= , 

},...,,{ 1,11,31,11 −= kC µµµ , and for odd k , 

},...,,{ 0,10,20,00 −= kC µµµ , 

},...,,{ 1,1,31,11 kC µµµ= . 

 

Theorem 3: The scheme from Construction 3  is a (k , 

k) NEVSS scheme with non-expansible shadow 

size.. 

Proof: For even k , since the collections 

},...,,{ 0,0,20,00 kC µµµ= and 

},...,,{ 1,11,31,11 −= kC µµµ  so λ={
876

K

0

0,,0

n

, 

876
K

2

2,,2

n

, 
876

K

4

4,,4

n

,  …, 
876

K

kn

kk ,, }, where n0 = 

kC0 , n2 = kC2 , n4 = kC4 ,  …, nk = k
kC , and 

γ={
876

K

1

1,,1

n

, 
876

K

3

3,,3

n

, 
876

K

5

5,,5

n

,  … ,  

4484476
K

1

1,,1
−

−−
kn

kk }, where n1 = kC1 , n3 = kC3 , n5 = 

kC5 ,  …, nk-1 = k
kC 1− . Since “0” is the dominant 

color among “0”~”k”, and Pλ= kC0 /2k-1=1/2k-1, Pγ=0. 

The difference Pλ-Pγ=1/2k-1 holds the second 

condition. 

For a proof of the third condition “security”, for 

even n, when q(<k) shadows are stacked, the 

number of G( v
r

)=j in C0 is )(
:
∑ −

−×
eveni

qk
ji

q
j CC , 

and the number of G( v
r

)=j in C1 is 

)(
:
∑ −

−×
oddi

qk
ji

q
j CC , where j=0, 1, …, q , and i  ≦

k-q. Since )(
:
∑ −

−×
eveni

qk
ji

q
j CC = )(

:
∑ −

−×
oddi

qk
ji

q
j CC , 

so the third condition is satisfied. 

For odd n, using the same approach, we can 

get the similar result.   £ 

 

Example 4 : For a (3, 3) NEVSS scheme and  
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GGGG ={1, 1, 1, 3} 

when stacking these three shadows. Pλ=1/2(3-1)=1/4, 

Pγ=0, thus the difference Pλ-Pγ=1/4. Fig.4(a)~(c) 

are shadow 1, shadow2, shadow 3. Fig.4(d)~(f) 

show that we can not get any information when 

stacking any two shadows. Fig.4(g) is the 

recovered image. We can observe that the shadow 

size is not expansible from the following figures. 

 

Example 5 : For a (4, 4) NEVSS scheme, the two 

white and black collections C0 and C1 of 4×1 

Boolean matrices are shown below 
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4.Experimental Results and Contrast of 

the  NEVSS Scheme 

4.1 Experimental Results 

Example 1, Example 2, and Example 4 show 

the (2, 2), (2, 3), and (3, 3) NEVSS schemes. In this 

section, we use these three NEVSS schemes to 

show how to choose the optimal gray level of sub 

pixel such that we can get the clear recovered 

image. Fig.5~Fig.7 shows the recovered images 

using different gray levels of the basic sub pixel for 

(2, 2), (2, 3), and (3, 3) NEVSS schemes. The gray 

levels we use are  GL-0, GL-30, GL-60, GL-90, 

GL-120, GL-150. Here, GL-0 means black and 

GL-255 means white. 

 

From the above experimental results, Fig.5(a), 

Fig.6(a), Fig.7(a) have the best contrast a. We find 

an interesting observation that the optimal choice 

of the gray level will be the “black”. The reason is 

that when the sets λ or γ have the element “0”, the 

“0” (white) will perceive big contrast relative 

“black” color. 

According the experiment, we will define the 

“contrast” of our NEVSS scheme to meet the real 

situation in next section. 

 

4.2 Contrast of the NEVSS Scheme 

     The quality of the recovered image in a VSS 

scheme is usually called contrast. Since the original 

black and white pixels will be expanded to the 

black and white sub pixels, the recovered image is 

less clear to the human visual system than the 

original image. Contrast provides a measurement 

for the quality of the recovered image; however, 

there is no consensus on the definition of contrast. 

First, we introduce the former definitions about 

contrast. The parameters h  and l are the 

“whiteness” of a white and black pixel, and m is the 

Pixel Expansion. Naor and Shamir defined contrast 

as 
m

lh
NS

−=α  [1]. Verheul and Van Tilborg 

showed that Naor and Shamir’s definition is 

inadequate. For example, two schemes with the 

parameters h=2, l=0, m=7, and h=4, l=2, m=7 will 

have the same contrast value. However, these two 

schemes have different clearness of the recovered 

images. They gave the new contrast as 

)( lhm
lh

VV +
−=α  [7]. The definition of αVV does 

not show the correctness. Since αVV is always 1/m, 

when l=0, but in fact for larger h the recovered 

image will more clear. Eisen and Stinson improved 

the previous disadvantages and defined their 

contrast as 
lm
lh

ES +
−=α  [6].  

The authors  defined their own contrast by the 

observation of the real results. We also use the 

methodology to define the contrast of the NEVSS 

scheme such that the definition of contrast is 

consistent with the recovered image. The contrast 

of NEVSS αNEVSS is defined as the following: 

 

αNEVSS = |Pλ - Pγ 

|×
255

)     (255 pixelsubtheoflevelgray−
, 



 

where Pλ  is the probability of the dominant color in 

the set λ , and Pγ is the probability of the dominant 

color in the set γ . 

 

The first term in αNEVSS is the difference of 

the probability for the dominant color, and the 

second term is the background color.  The dominant 

color means the biggest contrast relative other 

colors in the set λ and γ mentioned in the early 

section. For example, for (2, 2), (2, 3), and (3, 3) 

NEVSS schemes, the dominant color is “0” (white). 

The contrast of the recovered images in Fig.5 ~ 

Fig.6 are calculated and shown in Table 1. 

 

 From Table 1, and Fig.5~Fig.7, we see that 

our definition of contrast is consistent with the 

experimental results. 

 Obviously, the value of αNS, αVV, αES, 

and αNEVSS will be different for one 

recovered image due to the different 

definitions. Here, we make a test to show 

the relation between clearness and the 

contrast value for different definitions of 

contrast. First, we choose five typical 

recovered images for the conventional (2, 

2) VSS scheme and use a score of 5 to 1 as 

“excellent” to “poor” to represent them. 

Then, select five recovered images for the 

(2, 2) NEVSS scheme with the same clear 

quality of the recovered images compared 

to the conventional (2, 2) VSS scheme. 

Calculate each contrast value, and we find 

every slope of line raises when the 

clearness increases shown in Fig.8. This 

shows the truth that these contrast αNS, αVV, 

αES, and αNEVSS really give a measurement 

of how clear the recovered image is. 

 

5. Concluding remarks 

In this paper, we have presented new (2, 2), (2, 

n), and (k , k) NEVSS schemes with non-expansible 

shadow size based on the new infrastructure and 

operation of the sub pixel.  In fact, we can also 

construct (k, n) NEVSS schemes by choosing the 

suitable sets λ and γ. Here, we give the white and 

black collections C0, C1 for (3, 4) NEVSS scheme to 

show the feasibility of (k, n) NEVSS 

schemes. },{ 0,30,00 µµ=C , },{ 1,41,11 µµ=C , 

and λ = {0, 0, 2, 2, 2, 3}, γ = {0, 1, 1, 1, 3, 3}, then 

Pλ - Pγ =1/3-1/6=1/6. If we use the gray level of sub 

pixel = GL-0, i.e., black, then αNEVSS 

= )
6
1

6
2

( − × )
255

0255
(

−
=

6
1

. However, the general 

method for constructing (k, n) NEVSS schemes may 

need the further studies. 
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Figure 1. The sub pixels of the proposed scheme and conventional 

scheme and their operations. 

 

 

 

 

 

 

 

 

 

 
Figure 2. The (2, 2) NEVSS scheme 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The (2, 3) NEVSS scheme 

 

 

 

 

Sub pixel  i             j        i+j       Sub pixel   i             j        i+j  

(a) “ADD” operation for gray sub pixels        (b) “OR” operation for black and white sub pixels 

“ADD” = 

= “ADD” 

= “ADD” 

“OR” = 

= “OR” 

= “OR” 

(b) Shadow 1 

(c) Shadow 2 (d) Shadow 1 + Shadow 2  

(a) Shared secret 

(a) Shadow 1 (b) Shadow 2 (c) Shadow 3 

(d) Shadow 1 + Shadow 2 (e) Shadow 2 + Shadow 3 (f) Shadow 1 + Shadow 3 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The (3, 3) NEVSS scheme 

 

 

 

 

 

 

 

 

 

 

Figure 5. The recovered images for (2, 2) NEVSS scheme with different gray levels  of sub pixel 

 

 

 

 

 

 

 

 

 

 

Figure 6. The recovered images for (2, 3) NEVSS scheme with different gray levels  of sub pixel 

 

(a) Shadow 1 (b) Shadow 1 (c) Shadow 3 

(d) Shadow 1 + Shadow 2 (e) Shadow 1 + Shadow 3 (f) Shadow 2 + Shadow 3 

(g) Shadow 1 + Shadow 2 + Shadow 3 

(a) gray level = GL-0 

(f) gray level = GL-150 

(b) gray level = GL-30 (c) gray level = GL-60 

(c) level = GL-90 (e) gray level = GL-120 

(a) gray level = GL-0 (b) gray level = GL-30 (c) gray level = GL-60 

(d) gray level = GL-90 (e) gray level = GL-120 (f) gray level =GL-150 



  

 

 

 

 

 

 

 

 

 

Figure 7. The recovered images for (3, 3) NEVSS scheme with different gray levels  of sub pixel 

 

     Table 1. The contrast αNEVSS for different NEVSS schemes 

Gray level of the sub pixel 
 

Types of NEVSS 
schemes GL-0 GL-30 GL-60 GL-90 GL-120 GL-150 

(2, 2) 0.50 0.44 0.38 0.32 0.26 0.21 

(2, 3) 0.33 0.29 0. 25 0.21 0.17 0.14 

(3, 3) 0.25 0.22 0.19 0.16 0.13 0.11 
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Figure 8. The value of αNS, αVV, αES, and αNEVSS 

(a) gray level = GL-0 (b) gray level = GL-30 (c) gray level = GL-60 

(d) gray level = GL-90 (e) gray level = GL-120 (f) gray level = GL-150 


