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摘要

本論文提出一個新型的隨機化 Chaum 盲簽章

機制，減輕了用戶的計算負擔，以適合於計算能力

受限的用戶環境，例如智慧卡使用者與行動通訊用

戶。和原始的機制相比，用戶端的計算量降低了

40%；而如果使用了較短的公開金鑰，例如 e =  3，

則可降低用戶端的計算量達 95%以上。另外，本論

文也檢驗了此盲簽章機制之隨機化與不可連結等特

性。
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Abstract

This manuscript presents a new randomized

Chaum's blind signature scheme to reduce users'

computation loads for the situations where their

computation capabilities are limited such as smart-card

customers and mobile clients.  Comparing with the

original scheme, the computations required for users are

reduced by about 40% in general and more than 95% if

we take a short key e = 3.  In addition, the

randomization and unlinkability of the proposed scheme

are examined.

Keywords: Blind signatures, Electronic cash, Electronic

voting, Cryptography

1  Introduction

The concept of blind signatures was first

introduced by Chaum [2] to prevent digital signatures

from being forged and to protect the privacy of users.

Based on the RSA cryptosystem, Chaum proposed the

first blind signature scheme to achieve the unlinkability

property [2].  By means of the techniques of blind

signatures, many anonymous electronic voting protocols

[1, 5, 11] and untraceable electronic cash systems [3, 10,

14, 15] have been proposed.

In general, two kinds of roles, a signer and a

group of users, participate in a blind signature protocol.

A user blinds a message by performing an encryption-

like process (or a blinding process) on the message, and

then submits the blinded message to the signer to request

the signer's signature on the blinded message.  The

signer signs on the blinded message by using its signing



function, and then sends the signing result back to the

user.  Finally, the user unblinds the signing result to

obtain the exact signature on the message by performing

a decryption-like operation (or an unblinding operation)

on the signing result he receives.  The signature on the

message can be verified by checking whether the

corresponding public verification formula with the

signature-message pair as parameters is true or not.  In

a secure blind signature scheme, it is computationally

infeasible for the signer to derive the link between a

signature and the instance of the signing protocol which

produces the blinded form of that signature.  This is

usually referred to as the unlinkability or blindness

property.

In [9], a modified Chaum's blind signature scheme

was proposed to enhance the randomization of the

signatures against the chosen-text attacks of [6] by

injecting randomization factors into the signatures.

However, the randomization factors can be removed

from the signatures by the users such that the

randomization is lost.  This manuscript presents a

method to repair the weakness and the improved scheme

is more user efficient than that of [9].

2  Related Works

In this section, we review Chaum's blind signature

scheme [2] and Fan-Chen-Yeh blind signature scheme

[9].

2.1  Chaum's Blind Signature Scheme

Chaum's blind signature scheme contains five

stages, initializing, blinding, signing, unblinding, and

verifying.  In the initializing stage, the signer publishes

the necessary information such as the public keys.  The

stage can be pre-performed just once.  To request the

signature on a message, the user blinds the message and

submits the blinded message to the signer in the blinding

stage.  In the signing stage, the signer signs on the

blinded message and sends the signing result back to the

user.  After receiving the signing result, the user

performs the unblinding operation on it to obtain the

exact signature on the message in the unbinding stage.

Finally, the signature is verified in the verifying stage.

The protocol is described below.

(1) Initializing.  Initially, the signer randomly selects

two distinct large primes p and q, and then computes

n = pq and φ (n) = (p-1)(q-1).  The signer chooses

two integers e and d at random such that ed ≡  1

(mod φ (n)).  Then, it publishes (e, n) and a one-

way hash function H such as SHA-1 [13].

(2) Blinding.  A user chooses a message m and

randomly selects an integer r in Zn
* which is the set

of all positive integers less than and relatively prime

to n.  The user computes and submits the integer α

= (reH(m) mod n) to the signer.

(3) Signing.  After receiving α, the signer computes

and sends the integer t = (αd mod n) to the user.

(4) Unblinding.  After receiving t, the user performs

the unblinding process to obtain s = (r-1t mod n).

The integer s is the signature on m.

(5) Verifying.  The signature-message pair (s, m) can

be verified by checking if se ≡  H(m) (mod n).

Given (s, m), the signer cannot derive the link

between (s, m) and α due to the blinding factor r.  This

is the unlinkability or blindness property.

2.2  Fan-Chen-Yeh Blind Signature Scheme

Fan-Chen-Yeh blind signature scheme [9] is a

variant of Chaum's scheme with an injected

randomization factor for each issued signature.  The

scheme is described below.

(1) Initializing.  According to the key generation of

Chaum's blind signature scheme shown in section 2.1,

the public and private keys of the signer are (e, n)

and (p, q, d), respectively.  Let H be a public one-



way hash function.

(2) Blinding.  To request a signature on a message m,

the user randomly chooses an integer r in Zn
* and a

positive integer u less than n, and then computes and

submits the integer α = (reH(m)(u2+1) mod n) to the

signer.  After receiving α, the signer randomly

selects a positive integer x less than n and sends it to

the user.  After receiving x, the user randomly

chooses an integer b in Zn
*, and then computes β =

(be(u-x) mod n).  Finally, the user submits the

integer β to the signer.

(3) Signing.  After receiving β, the signer computes t =

((α (x2+1)β-2)d mod n), and then the signer sends t to

the user.  The integer x is said to be the randomizing

factor.

(4) Unblinding.  After receiving t, the user computes
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(5) Verifying.  The integer s is the signature on the

tuple (c, m).  To verify (c, m, s), one can examine if

se ≡  H(m)(c2+1) (mod n).

However, the randomization factor x can be removed

by the user.  In the blinding stage, the user forms β =

((x2+1) 2

1+eθ

mod n) with an arbitrary odd number θ such

as θ = 1, and sends β to the signer.  After receiving β,

the signer computes t ≡  (α(x2+1)β-2)d ≡  (α

(x2+1)(x2+1)-θe-1)d ≡  (x2+1)-θαd (mod n), and sends t to

the user.  After receiving t, the user computes ((x2+1)θt

mod n) to obtain (αd mod n) which does not contain the

randomization factor x.

3  User Efficient Randomized Chaum's

Blind Signature Scheme

In this section we present a randomized Chaum's

blind signature scheme to repair the weakness of the

randomization in [9] and make it efficient for the users to

request and verify the signatures.  The details of the

proposed scheme are described as follows.

(1) Initializing.  Initially, the signer randomly selects

two distinct large primes p and q such that p ≡  q

≡  3 (mod 4), and then computes n = pq and φ (n)

=  (p-1)(q-1).  The signer chooses two integers e

and d at random such that ed ≡1 (mod φ (n)).

Then, it publishes (e, n) and a one-way hash

function H.

(2) Blinding.  To request a signature on a message m,

the user randomly chooses two integers r, v in Zn
*

and a positive integer u less than n, and then

computes and submits the integer α = (r2eH(m)(u2+1)

mod n) to the signer.  After receiving α, the signer

randomly selects a positive integer x less than n

such that (α(x2+1) mod n) is a quadratic residue

(QR)1 in Zn
*, and then sends x to the user.  After

receiving x, the user computes b = (rv mod n),δ =

(be mod n), and β = (δ(u-x) mod n).  Finally, the

user submits the integer β to the signer.

(3) Signing.  After receiving β , the signer computesλ

= (β-1 mod n) and a square root t of ((α(x2+1)λ2)d

mod n) in Zn
* such that t2 ≡  (α(x2+1)λ2)d (mod n).

The signer sends t and λ to the user.  The integer

x is the randomizing factor.

(4) Unblinding.  After receiving (t,λ ), the user

computes
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(5) Verifying.  The integer s is the signature on the

tuple (c, m).  To verify (c, m, s), one can examine if

s2e ≡H(m)(c2+1) (mod n).

                                                
1 Under a modulus n, w is a quadratic residue (QR) in Zn

*

if and only if there exists an integer y in Zn
* such that y2

≡  w (mod n).  Given w and n, it is intractable to
compute the square root y of w in Zn

* if n contains large
prime factors and the factorization of n is unknown [19].



4  Discussions

In this section we examine the correctness and

security of the proposed scheme.  First, from the

protocol of section 3, we have the following theorem to

ensure the correctness of the protocol.

Theorem 1.  If a triple (c, m, s) is produced by the

proposed scheme, then

s2e ≡H(m)(c2+1) (mod n)

Proof.  By the Chinese remainder theorem [21], an

integer w in Zn
*can be represented by < w1, w2 > where

w1 = (w mod p1) and w2 = (w mod p2).  For convenience,

< w1, w2 > is denoted by < w > sometimes.  For each < k

> = <k1, k2 > and < w > = < w1, w2 > in Zn
*, < kw mod n >

= < k1w1 mod p1, k2 w2 mod p2 >, and < k-1 mod n > = <k1
-

1 mod p1, k2
-1 mod p2>.  In addition, for each < k1, k2 >

and < w1, w2 > in Zn
*, < k1, k2 > = < w1, w2 > if and only if

k1 ≡w1 (mod p1) and k2 ≡w2 (mod p2).

Let 




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h

q  denote the Legendre symbol g over h

where h is a prime [21].  Since both (α(x2+1) mod n)

and (λ2 mod n) are QR's in Zn
*,
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Therefore, we have that (α(x2+1)λ2 mod n) is a QR in

Zn
*, and

(α(x2+1)λ2)d

≡ (α(x2+1)β -2)d

≡ (r2eH(m)(u2+1)(x2+1)(be(u-x)) -2)d

≡ (b-2er2eH(m)(u2+1)(x2+1)(u-x) -2)d

≡ (b-2er2eH(m)((ux+1)2+(u-x)2)(u-x) -2)d

≡ (b-2er2eH(m)((ux+1)2(u-x)-2+1))d

≡ (b-2er2eH(m)(((ux+1)(u-x)-1)2+1))d

≡ (b-2er2eH(m)((beb-e(u-x)-1(ux+1))2+1))d

≡ (b-2er2eH(m)((beλ(ux+1))2+1))d

≡ (b-2er2eH(m)(c2+1))d

≡ b-2r2H(m)d(c2+1)d

is a QR in Zn
*, too.  Because
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the integer (H(m)d(c2+1)d mod n) also is a QR in Zn
* and

there are 4 different square roots of (H(m)d(c2+1)d mod n)

in Zn
* [19].  Let < w1,w2 > be one of the square roots of

the integer (H(m)d(c2+1)d mod n) in Zn
*, then the four

square roots of the integer in Zn
* are < ±w1 mod p1, ±w2

mod p2>.  Thus, the four square roots of (b-

2r2H(m)d(c2+1)d mod n) in Zn
* are < ± b1

-1r1w1 mod p1,

±b2
-1r2w2 mod p2 >.  As t2 ≡ b-2r2H(m)d(c2+1)d (mod n), t

belongs to {< ± b1
-1r1w1 mod p1, ±b2

-1r2w2 mod p2 >}.

Since s = (tv mod n) = (tbr-1 mod n), s is an element in

{< ± b1b1
-1r1

-1r1w1 mod p1, ± b2b2
-1r2

-1r2w2 mod p2 >} = <

±w1 mod p1, ±w2 mod p2>.  It follows that s is a square

root of the integer (H(m)d(c2+1)d mod n) in Zn
*.  Hence,

s2 ≡ H(m)d(c2+1)d (mod n).  Thus, we have that s2e ≡

H(m)(c2+1) (mod n).

4.1 Randomization

In the proposed scheme, the attackers can choose

m but that they cannot choose (c, m) on which a

signature is computed due to the randomizing factor x.

In the blinding stage, if the user forms β =

((x2+1) 2

1+eθ

mod n) with an odd number θ, and sends β to

the signer.  After receiving β, the signer computes an

integer t such that t2 ≡ (α(x2+1)β-2)d ≡ (α(x2+1)(x2+1)-θe-

1)d≡ (x2+1)-θαd(mod n), and sends t to the user.  After

receiving t, the user cannot derive any of the four square

roots of ((x2+1)-θ mod n) to remove x from t since θ is

odd and computing a square root of the integer in Zn
* is

intractable without the factorization of n [19].

Given an integer s, attackers can derive (w, y)

such that s2e ≡ (w2+y2) (mod n) by [16] without p and q.

However, it is still intractable to compute a square root c

of (w2+y2-1) in Zn
* such that s2e ≡ (c2+1) (mod n) without



the factorization of n [19], and deriving an integer s’

such that (s’)2e ≡ ((y-1w)2+1) (mod n) depends on the

security of [20] since )  (' mod
1

nsys e−−= .

4.2 Unlinkability

For each instance, numbered i, of the proposed

protocol, the signer can record the transmitted messages

(αi, β i, x i) between the user and the signer during the

instance i of the protocol.  The triple (αi, β i, x i) is

usually referred to as the view of the signer to the

instance i of the protocol.  Thus, we have the following

theorem.

Theorem 2.  Given a triple (c, m, s) produced by the

proposed scheme, the signer can derive bi’, ri’, and ui’

for each (αi, β i, x i) such that
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Proof.  If c ≡ (ui’xi+1)(ui’-xi)
-1 (mod n), we have that ui’

≡ (cxi+1)(c-xi)
-1 (mod n).

If αi ≡ (ri’)2eH(m)((ui’)2+1)(mod n), then we have the

followings,

αi ≡ (ri’)2eH(m)((cxi+1)2(c-xi)
-2+1)(mod n)

αi ≡ (ri’)2eH(m)((cxi+1)2+(c-xi)
2) (c-xi)

-2 (mod n)

αi ≡ (ri’)2eH(m)((c2+1)(xi
2+1) (c-xi)

-2 (mod n)

αi ≡ (ri’)2es2e(xi
2+1) (c-xi)

-2 (mod n)

(ri’)2e ≡ αis
-2e (xi

2+1)-1 (c-xi)
2 (mod n)

(ri’)2 ≡ αi
ds-2 (xi

2+1)-d (c-xi)
2d (mod n)

Since ((αi(xi
2+1)-1)d mod n), ((s-1)2 mod n), and

(((c-xi)
d)2 mod n ) are QR’s, the signer can obtain 4

different values of ri’ in Zn
*.

If βi
 ≡ (bi’)e (ui’-xi) (mod n), we have that

βi
 ≡ (bi’)e ((cxi+1)(c-xi)

-1- xi) (mod n)

(bi’)e ≡ βi((cxi+1)(c-xi)
-1- xi)

-1 (mod n)

bi’
 ≡ βi

d((cxi+1)(c-xi)
-1- xi)

-d (mod n)

Hence, given a triple (c, m, s) produced by the

protocol, the signer can always derive the three blinding

factors bi’, ri’, and ui’ for each view (αi, β i, x i).  It turns

out that all of the signature-message triples are

indistinguishable from the signer's point of view.

Therefore, it is computationally infeasible for the signer

to derive the link between an instance i of the protocol

and the blind signature produced by that protocol.

4.3 Performance

Typically, under a modulus n, the computation

time for a modular exponentiation operation is about

O(|n|) times that of a modular multiplication where |n|

denotes the bit length of n [21].  The modulus n is

usually taken about 1024 bits or more in a practical

implementation [13, 21].  In [4, 8], some fast modular

exponentiation algorithms are proposed. In [8], it

requires 0.3381|n| modular multiplications and large

amount of storage, e.g. 83370 stored values for a 512-bit

modulus, to perform a modular exponentiation

computation. An enhanced version of [8] is introduced in

[4].  However, it still requires 0.3246|n| modular

multiplications and large amount of storage, e.g. 36027

stored values for a 512-bit modulus, to perform a

modular exponentiation computation [4].  Besides, an

inverse computation in Zn
* takes about the same time as

that of a modular exponentiation computation in Zn
*, and

a hashing computation does not take longer time than

that of a modular multiplication computation [21].

In the proposed blind signature scheme, 3

modular exponentiation computations are performed by

a user, while 3 modular exponentiations and 2 inverse

computations are required for a user in the original

scheme [9].  Compared to [9], the proposed scheme

reduces the amount of computations for users by about

40%. In addition, if a short public key e = 3 is adopted

and we take a modular exponentiation computation to be

0.3246|n| modular multiplications [4], the proposed

method largely reduces the amount of computations for



users by more than 95% under a 1024-bit modulus since

no inverse computation and modular exponentiation is

needed for users in the proposed scheme.

In the proposed scheme, the signer performs 1

modular exponentiation computation, 1 square root

computation, and 1 inverse computation in Zn
*.

Comparing with [9], the proposed protocol does not

decrease the computation load for the signer.  However,

in most of the applications based on blind signatures, the

signer usually possesses much more computation

capabilities than a user such as the bank of an

untraceable electronic cash system or the tally center of

an anonymous electronic voting protocol, while the

computation capabilities of the users are limited in some

situations such as mobile clients and smart-card users.

Hence, to guarantee the quality of these ever-growing

popular communication services based on blind

signatures, it is more urgent to reduce the computation

load for the users than that for the signer.

5  Conclusions

We have proposed an improved randomized

Chaum's blind signature scheme.  The scheme greatly

reduces users' computations for mobile and smart-card

environments.  By performing an additional square-root

operation for signing, the weakness of the randomization

in the original scheme has been repaired.
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