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Abstract—  We propose a new learning 
paradigm of neural network and apply it 
to solve the subspace decomposition 
problem for  feature analysis. In this 
proposed network, each neuron learns 
about the environment through a process 
of self-regulation which actively controls
the neuron’s own learning by perceiving 
its status in overall learning effectiveness.
Based on this concept of self-regulation, 
we der ive the pr imary learning rules of the 
synaptic adaptation in the network. The 
self-regulative neural network is utilized 
to explore significant features of the 
environment data in an unsupervised way 
and to implement subspace decomposition
of the data space. Numer ical simulations 
demonstrate the efficiency of the learning 
model and ver ify the practicability of the 
concept of individual neuron’s 
self-regulation for  learning control.

Index Terms— Neural Networks, Subspace 
Decomposition, Dimensionality Reduction.

I. INTRODUCTION

Most unsupervised neural networks utilize 
the Hebbian learning rules [1] to adapt their 
synaptic weights such that the output can 
reflect features of the input. Usually, various 
competitive learning models [2][3][4] are 
also employed in these networks. A 
representative example with wide-spread 

applications is the self-organization networks 
[5][6]. In the competitive learning models, 
the winner-take-all mechanism and the lateral 
inhibition are used for synaptic adaptation. 
Only the weights corresponding to the 
best-matching neuron or winning neuron 
clusters are changed responding to input with 
the Hebbian learning rules. However, the 
competitive process which decides the 
best-matching neuron for each learning 
involves intensive search and comparisons 
among all the neurons in the whole network. 
It implies that we need global arbitrators to 
perform such decision tasks for the 
competitive learning networks. Different to 
the Hebbian rules, there is no strong 
physiological evidence for the arbitrators. 
This encourages us to introduce new 
applicable neural network paradigm based on 
the Hebbian rules in a neurobiological 
manner.

To establish the paradigm, we utilize a 
concept of neuron’s self-regulation. 
Considering an individual neuron in the 
learning process, we think a neuron learns 
about the environment through a process of 
self-regulation which actively controls this 
neuron’s own learning not by expecting the 
arbitration feedback, but by perceiving its 
status in overall learning effectiveness. There 
are various self-regulation theories which 
have been proposed in many different aspects, 
for example, [7][8][9]. From these concepts, 
we attempt to construct a self-regulative 



learning model for individual neuron in 
accordance with the Hebbian learning. And 
further, we apply this model to develop the 
feature-analyzing networks.

Feature analysis refers to explore the 
intrinsic information contents of a set of 
input data. The effective features are found 
through different dimensionality reduction or 
subspace decomposition techniques. There 
are many well-studied neural networks 
proposed for this purpose, for example, 
[10]-[16]. Many applications, for example, 
face recognition, image coding, and robotics, 
are also reported. However, the arbitration 
among neurons in the lateral inhibitory 
process is usually needed in these networks. 
To implement the lateral process without 
arbitration, some of these networks employ 
decreasing number of outgoing connections 
which are pre- determined for different 
neurons. This leads to the results that the 
neurons with more specified lateral 
connections will have more impacts upon 
feature analysis in the learning process. 
Neurons hold different significance for the 
learning. The capability for fault tolerance, 
which is one important benefit of neural 
networks, will be diminished.

In this paper, we propose the self-
regulation learning model and apply it to 
solve the subspace decomposition problem 
for feature analysis. The networks are 
constructed on the basis of fundamental 
neuronal models. Without arbitration process 
or varying-number connections for different 
neurons, the networks have the potential to 
be inherently fault tolerant. More importantly, 
this model is effective to solve the feature 
analysis problems. The simulation results 
will be presented in the paper to verify its 
effectiveness. This paper is organized as 
follows. In Section II, the concept of 
self-regulation is introduced. The primary 
learning rules of the synaptic adaptation in 
the networks are derived in Section III. 
Applications of the model to the subspace 
decomposition problem are described in 
Section IV. Experimental results and 
comparisons are shown in Section V. Finally, 
Section VI gives the conclusions and some 
discussions.

II. NEURON’S SELF-REGULATION

Considering an individual neuron in 
network, all its synaptic weights are 
excitatory to the stimulus input. There are no 
inhibitory connections to other neurons. The 
concept of neuron’s self-regulation, rather 
than competition or arbitration among 
neurons, is utilized to achieve overall 
cooperative learning in the whole network. 

To a certain stimulus, one neuron has its 
own output responding to the input. Our 
primary interest is focused on the learning 
process without global arbitration and the 
synaptic adaptation to the stimulus using 
Hebbian learning. The real issue is how to 
know one’s learning effectiveness in overall 
learning results. To an individual neuron, the 
learning effectiveness reflects its familiarity 
status with the stimulus. Without arbitrators, 
information about the status is completely out 
of conscious awareness.

The concept of neuron’s self-regulation 
refers to one’s control over the learning 
process according to its status with the 
activation to stimulus. The status information 
is obtained in an individual manner and 
evaluated from its environment. With certain 
learning goals, the evaluated status 
information can be utilized to control one’s 
learning actively. While its status is superior, 
the synaptic weights are strengthened, but on 
the other hand, they are weakened for inferior 
status. After self-regulation of each neuron, 
the network will be trained to form an 
organized output mapping to all input 
stimuli.

Notations in the concept are formulated as 
follows. Given a set of n-dimensional data 
with zero mean, the m neurons in the 
self-regulation networks are employed to 
learn the features of the input space. Let 

t
nxxx ],...,[ 21=x  represents the input vector. 

The synaptic weight vectors are 
W= },...,{ 21 mwww  for the m neurons, 
respectively. Suppose that the overall output 
of the network responding to the input x  is 

t
muuu ],...,[ 21=u . Each neuron regulates its 

learning by perceiving the status in overall 



effectiveness. We introduce the learning 
status vector of the network t

mrrr ],...,[ 21=r . 
The status vector r  will be a function of x, u, 
and W. Utilizing the vector r  to indicate the 
learning status, the neuron’s self-regulation 
model is constructed and the cooperative 
learning rules without arbitration are also 
derived.

III. LEARNING MODEL

A. The Network

Consider the network model used for the 
self-regulation. Figure 1 shows the basic 
network structure. The input vector x and the 
synaptic weight vectors },...,{ 21 mwww of all 
neurons have the same dimension n. 
Generally, the value of m is not greater than 
that of n. Note that the synaptic weight 
vectors of neurons in the network are all
excitatory.

Fig. 1. A self-regulative neural network.

The output vector of neurons and the 
output vector of the network are denoted in u
and y, respectively. The output vector of the 
network t

myyy ],...,[ 21=y  can be regarded 
as the feature vector extracted for the input 
vector x. The relationship between u and y
can be described with a rescaling form using 
the status vector r  as follows

iii ruy =                         (1)
or

ruy t= .                        (2)

The rescaling extent varies in different 
processing neurons.

The synaptic weight vectors of neurons are 
},...,{ 21 mwww , onto which the input vector 

x is to be projected using the inner projection
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And all the synaptic weight vectors 
},...,{ 21 mwww are subject to the constraint 

of normal vectors with norm 1.

B. The Objective Function

To derive the learning rules, we use the 
objective function as a measure of learning 
performance for the network. The similarity 
between the input vector and the constructed 
vector can be measured by
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x
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i
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The learning process is to adapt the synaptic 
weight vectors of the network to maximize 
the objective function E.

To maximize the function E, we can 
derive the learning rules for the synaptic 
weight vectors using

iii www ∆+= ,                (5)
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C. The Status Vector

As described above, the status vector r , 
which indicates the neuron’s learning 
effectiveness, plays a key role in the 
self-regulation model. Without global 
arbitration, only the parameters of neurons, u, 
y, and W, are available to evaluate it. Based 
on the concept of neuronal self-regulation, 
we thus define the status vector 

t
mrrr ],...,[ 21=r  as
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Note that the denominator in (7) 
summarizes the squared output of all neurons. 
The network to evaluate it can be 
implemented by a fundamental neuronal 
model. Figure 2 shows the network, where U
denotes the sum-of-squares denominator in 
(7).

Fig. 2. Evaluation of the overall learning 
effectiveness in the network.

D. The Learning Rules

Using the definition of the status vector, 
the learning rules can be easily derived. 
Differentiating the objective function E with 
respect to the synaptic weight vectors yields 
the gradient

2

2
4

u
ji

ji
ij

xEu
xy

w
E

−=
∂
∂

.          (8)

After simplification, the synaptic updates in 
(5) can be expressed as

xrxw iiii u-ur 22∝∆ .           (9)

Note that the derived learning rule in (9) 
have the form in accordance with the 
Hebbian learning. Each neuron’s learning 
status to overall effectiveness takes part in 
the synaptic updates to control its adaptation. 
The larger the value of one’s status is, the 
more the synaptic weights are updated, and 
vice versa. The self-regulation appears to 

realize the lateral inhibition among neurons, 
and the arbitration process is not needed in 
the learning process.

IV. SUBSPACE DECOMPOSITION

In this Section, we apply the self-
regulation learning model to solve the 
subspace decomposition problem for feature 
analysis and demonstrate the simulation 
results in next Section. There are three main 
processes involved in the application of this 
model, including feedforward process, 
learning status evaluation, and synaptic 
adaptation. The algorithm to solve the 
subspace decomposition problem is listed as 
follows:

1. Initialization of W.
2. Sampling of x from the input space.
3. Calculating the output vectors, y and u.
4. Evaluating the learning status vector r .
5. Adjusting the synaptic weight vectors 

},...,{ 21 mwww  according to the 
learning rule (9).

6. Continuation with the step 2 until no 
noticeable changes are observed.

V. EXPERIMENTAL RESULTS

We present two experimental results to 
demonstrate the proposed efficiency of the 
learning model and verify the practicability 
of the concept of neuron’s self-regulation for 
learning control.

Firstly, a set of 400 two-dimensional 
input data is tested. The input is chosen from 
one of two groups of normally distributed 
random data with the same mean (5,20) and 
with the same variances (1,1/6). In Figure 3, 
the data are depicted as an illustration. We 
apply the self-regulation model to solve the 
eigen-decomposition problem, and compare 
the results with those by the principal 
component analysis. The experimental results 
are shown in Fig. 9(a) and 9(b), respectively.

From the results, we can observe that 
the neuronal self-regulation model compute 
the effect feature vectors associated with the 
data, however, in comparisons, the principal 
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component analysis computes a vector that 
has the largest variance. Furthermore, the two 
eigenvectors obtained by the principal 
component analysis hold different 
significance for the input data. 

Secondly, the IRIS data set [17][18] are 
used to test the proposed model. There are 
four-dimensional data from three classes. 
Figure 4 shows the projection results of the 
data onto the feature vectors by the 
self-regulation learning. The sum-of-squares-
error for the learning is 16.4121 (c.f. that by 
the principal component analysis, 15.2046) 
These simulations have verified the 
effectiveness and efficiency of the proposed 
learning model.

VI. CONCLUSIONS

A new learning paradigm of neural 
networks is proposed in this paper. We apply 
it to solve the subspace decomposition 
problem effectively. By introducing the 
learning status evaluation for each neuron, 
we accomplish the cooperative model which 
learns the environment through neuron’s 
self-regulation not by global arbitration. The 
model provides a network with fault tolerant 
capability for feature analysis. Future works 
will focus on the simplification of its learning 
rules and the proof of its effectiveness.
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Fig. 3. The experimental results by (a) the self-regulative neural networks, and by (b) the 
principal component analysis.

Fig. 4. The experimental results by the self-regulative neural networks.
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