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ABSTRACT

Designing an optimal k-fault-tolerant network
for token rings is equivalent to constructing an
optimal k-hamiltonian graph, where k is a positive
integer and corresponds to the number of faults.
A graph G is k-hamiltonian if G — F is hamil-
tonian for any set F C (V U E) with |F| < k.
An n-node k-hamiltonian graph is optimal if it
contains the least number of edges among all n-
node k-hamiltonian graphs. In this paper, we pro-
pose a construction scheme for the optimal k-
hamiltonian graphs for every positive integer k.

Applying this scheme, we can easily construct a.

family of optimal k-hamiltonian graphs with di-
ameter 2logy_1n — O(1), where n is the number
of vertices and d 1is the mazimum degree. This
diameter equals 2 times of Moore bound.

1 INTRODUCTION AND DEFINI-
TIONS

Fault tolerance is essential in massively parallel
systems that have a relatively high failure proba-
bility. A number of fault-tolerant designs for spe-
cific multiprocessor architectures have been pro-
posed based on graph theoretic models in which
. the processor-to-processor interconnection struc-
. ture is represented by a graph.

Let the graph G = (V, E) represent an under-
lying interconnection network. Two types of fail-
ures in a multiprocessor system are of interest,
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ence Council of the Republic of China under Contract NSC
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processor failures and link failures. A link failure
corresponds to the deletion of an edge from G,
while a processor failure corresponds to the dele-
tion of a node and all edges incident on it from G.
If F is a set of faulty components including faulty
nodes and faulty edges in G, then G — F denotes
the graph obtained by deleting the fault set F
from G. To be specific, F=V;UEFE, for BE{C E
and V1 C V. We use G — F to denote the graph

= (V-Vi,(E-B)n((V = VA) x (V = ).
Note that a link fault cannot be ascribed to a
fault at one of the adjacent processors since the
adjacent processors of a faulty link are still in-
cluded in reconfigurations while faulty processors
are not. Most of previous research in design-
ing optimal fault-tolerant topologies were concen-
trated on the cases that only processor failures
were allowed [1, 2, 5, 8], or only link failures were
allowed (3, 7, 9, 10, 14, 15, 17, 19, 20]. In their
constructions, a supergraph G’ = (V’, E') with
respect to G is constructed such that G’ — F con-
tains G as a subgraph where F is a set of faulty
components with restriction to either FF C V'
or F C E'. On the other hand, we consider
F C V UFE that is any combination of proces-
sor failures and link failures of G = (V, E). Our
design concern is that G — F contains a speci-
fied network topology that includes all nonfaulty
processors. Henceforth, by “k faults” we mean k-
component faults in any combination of processor
failures and link failures. In this paper, we aim
at designing k-fault-tolerant networks G for token
rings, that is, for any k-fault set F', G — F con-
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tains a token ring including all of the nonfaulty
processors. Furthermore, our constructions are
shown to be optimal in terms of the number of
edges contained in G. Note that token rings con-
tained in G — F may contain different number of
processors for different k-fault F.

A path is a sequence of nodes such that two con-
secutive nodes are adjacent. A path is delimited
by “(” and “)”, for example, (vg,v1,...,v4-1)-

The path (vg,v1,v2,...,v-1) is also written
as (’Uo — P - Viy Vit1y..+,05 — P, -
Uk, Vk41y--->VUt—1), wWhere P = (vg,v1,...,%i),
Py = (vj,vj41,-..,%), and j > 4. A cycle is a

path, with at least three nodes, whose first node
and last node are the same. A hamiltonian cycle
is a cycle whose nodes are distinct and span all
nodes. A hamiltonian graph is a graph that has a
hamiltonian cycle. Let k be a positive integer. A
graph G is k-hamiltonian if G — F' is hamiltonian
for any set FF C VUE with |F| < k. It follows
that a k-hamiltonian graph is a k-fault-tolerant
network for token rings since G — F contains a
token ring that includes all of the nonfaulty pro-
cessors for any k-fault set F. The design of k-
fault-tolerant networks for token rings is equiva-
lent to the design of k-hamiltonian graphs. It is
obvious that a k-hamiltonian graph has at least
k + 3 nodes. Moreover, the degree of any node
in a k-bamiltonian graph is at least £k + 2. An
n-node k-hamiltonian graph is optimal if it con-
tains the least number of edges among all n-node
k-hamiltonian graphs. Henceforth, we use n to
denote the number of vertices in a graph.

In [7, 8], Harary and Hayes presented a family
of optimal 1-hamiltonian graphs whose diameter
is |2#]. Mukhopadhyaya and Sinha [12] pro-
posed a family of optimal 1-hamiltonian graphs.
The diameter of any graph in this family is | 2 |+2
if nis even and §]+3 if n is odd. Wanget al. 18]
proposed another family of optimal 1-hamiltonian
graphs with diameter O(y/n). It is natural to
ask whether we can find optimal 1-hamiltonian
graphs with a smaller diameter. This problem
relates to the famous (n,d, D) problem in which
we want to construct a graph of n nodes with
maximum degree d such that the diameter D is
minimized. When d and n are given, the lower
bound on diameter D, called the Moore bound, is
given by D > logy_;n— & [4].

An undirected graph G is called circulant graph
with distance sequence {dy,ds,---,d;} if V(G) =
{091, vn-1} and B(G) = {(wi,v;) | (i —
J) mod n = d;, V1 <1 < k}. Given two posi-
tive integers n and k with n > 2k, we construct a
graph Gy as follows: The nodes of Gy, x are de-
noted by zg, Z1,...,%n—1 and are arranged clock-
wise with the ascending order of the indices. If &
is even, G, ; is defined as a circulant graph with
distance sequence {1,2,...,5+1}. If k is odd and
n is even, G, x is defined as a circulant graph with
distance sequence {1,2,..., %’,‘—1-, 2}. Otherwise,
Gax is not a circulant graph but has the edge set
{(zivziz;) |0<i<n—-1land1<j < Bl
{(Zi,$i+g¥l) | 0 <1 < %}U {(xo,.’l:n%l)}.
Wang et al. {19] and Paoli et al. [14] proved that
any Gpk is optimal k-node-hamiltonian and op-
timal k-edge-hamiltonian. Sung et al. [16] proved
that any G, is optimal k-hamiltonian for k = 2.
and 3. They also conjectured that any G is op-
timal k-hamiltonian. We note that the diameter
of the family of G, x is O(n) if k is considered as
a constant.

In this paper, we present a general scheme to
construct optimal k-hamiltonian graphs. Apply-
ing this scheme, we can easily construct a family
of optimal k-hamiltonian graphs with diameter
2logy_1 n—O(1), that is 2 times of Moore bound.

2 HAMILTONICITY OF COMPL-
ETE GRAPHS

In what follows, p is an integer with p > 3 and
k = p—2. The degree of a vertex v in G is denoted
by degg(v). We use K, to denote the complete
graph(also called clique) that has p nodes.

Lemma 1 Let F be any faulty edge set in K,
with |F| < p—3 =k —1. Then the graph G =
K, — F has a hamiltonian cycle.

Proof. Let z and y be two different nodes of K.
The Ore’s Theorem [13] state that a graph H of
order p satisfies degy (z) + degu (y) > p for every
pair of non-adjacent vertices z,y in H; thus H
has a hamiltonian cycle. It follows that degs;(z)+
degg(y) > 2(p —2) — (p—4) = p for every pair of
non-adjacent vertices z,y in G. Therefore, G has



a hamiltonian cycle. Hence this lemma is proved.
O

Corollary 1 Let F be any faulty edge set in K,
- with |F| < k. Then the graph K,—F has a hamil-
tonian path.

Let 7 > 2 be an integer. A graph G = (V, E)
is 7-HP if there exists V' C V with |V'| = r such
that every pair of nodes in V' can be joined by a
hamiltonian path of G.

Theorem 1 K, — F is (p — f)-HP for any F C
VUE with |F| = f <k.

Proof. We prove this theorem by induction on
p. This theorem is obviously true for p = 3 and
4. Assume that it is true forall K; for 3 <t <p
and p > 5.

First, we consider that |FFNV| =14 > 0. Then
the graph K, — F is isomorphic to K,_; — F*
for some |F*| < f — 4. By induction hypotheses,
Kp_i—F"is (p— f)-HP. Hence K, — F is (p— f)-
HP.

Next, we consider that F C E. When |F| =
k = p—2, it follows from Corollary 1 that K, — F
has a hamiltonian path, and thus K, — F is 2-HP.

Now consider that ¥ C E and |F| < p — 3.
Let H denote the subgraph given by (V,F) of
K, generated by F. We have 3 .y deggy(v) <
2(p — 3). Thus, there exists a vertex v € V with
degn (v) < 1.

Case 1: there exists a node v with degy(v) = 0.

In other words, all the edges incident with v
are fault-free. Thus, F is in K, — v and K, —
v — F is isomorphic to K,_; — F. By induction
hypotheses, K,—v—F is (p—1— f)-HP. Therefore,
there exists a subset Y C V — {v} with |Y| =p—
1 — f such that every two distinct nodes z,y € Y
can be joined by a hamiltonian path of K, —v—F.
Let P be a hamiltonian path of K, —v—F joining
z and y which can be written as (z,7/ - P/ —
y) where z’ is a node adjacent to z and P’ is a
path from z to y. Then (z,v,2/ — P’ — y) and
(v,z, — P' - y) form two hamiltonian paths
of K, — F joining ,y and v, y, respectively. Since
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z and y are arbitrary nodes in Y, we can conclude
that there exists a hamiltonian path of K, — F
joining any two different nodes in Y U{v}. Thus,
K, — Fis (p — f)-HP.
Case 2: there exists a node v with degy (v) = 1.
In other words, exactly one edge incident with
v is faulty. Thus, K, — v — F is isomorphic to
Kp1 — F* where |F*| = f — 1. By induction
hypotheses, K, —v—F is (p— f)-HP. Thus, there
exists a subset Y C V — {v} with [Y| =p— f
such that every two distinct nodes z,y € Y can be
joined by a hamiltonian path of K, —v—F. Let P
be a hamiltonian path of K, —v— F joining = and
Yy, which can be written as (z = 2z, 21,..., 22 =
y). Since p > 5, there exists z;, 0 < j < p—3,
such that (v,2;) ¢ F and (v,2j41) ¢ F. Then
(z = 2z0,215-++,2,,Zj41,...,2p—2 = y) forms a
hamiltonian path of K, — F' joining  and y. In
other words, K, — F' is (p ~ f)-HP.

This theorem is proved. o

3 CONSTRUCTION SCHEME

Let z be a vertex of G = (V, E) and degg(z) =
p. All the vertices adjacent with z can be de-
noted by z1,72,...,2p. Let Z = (Y,W) beap
nodes clique whose vertex set Y = {y1,%2,--., %}
and edge set W = {(y1,y;)l¢ # j}. The p-
node ezpansion of G on z, which is denoted by
EXP,(G,z), is a graph that is obtained from G
by replacing z by the clique Z. To be specific,
the graph EXP,(G,z) = (V*, E*) in which V*
(V—{z})UY and E* = EUW U {(z;,w)[1 <i <
p}—{(z,2:) | 1 <i < p}. The graph EXP,(G, z)
is obviously p-regular. K5 and EX Py(K3, ) are
shown in Figure 1.

Theorem 2 Let = be a vertex of G = (V,E)
and degg(z) = p. If G is k-hamiltonian,
EXP,(G,z) = (V*, E*) is k-hamiltonian.

Proof: Let F* be a subset of V* U E*, where
|[F*| < k. Let a be the cardinality of the set
F*Nn(YUW). Thus, a < k. It follows from
Theorem 1 that there exists a set Y/ C Y of size
(p — a) such that every two distinct nodes in Y’
can be joined by a hamiltonian path of the graph
Z —~ F*.
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Figure 1: The graphs K5 and EX P4(Ks, z).

We define a faulty set F' of G as follows: F =
(F* = (Y UW U {(z:,y)|1 <1 <p})) U{(z, i) |
yi ¢ Y'). Since | F| < |F*—(YUW)|+{(z, vo)lus ¢
Y'}, it follows that |F| < |F*| < k. Since G is
k-hamiltonian, there exists a hamiltonian cycle
C = (zi,z,2; & P — z;) in the graph G — F in
which P is a path from z; to z;. By the definition
of F, y; and y;j are in Y'. Thus, there exists a
hamiltonian path @ joining y; and y; of the graph
Z — (F* N (Y UW)). Therefore, (z;,y; = Q —
y;,%; — P — x;) forms a hamiltonian cycle in
the graph EX Pp(G,z) — F*. Thus, EXP,(G, 1)
is k-hamiltonian and this theorem is proved. O

Applying Theorem 2, we can easily obtain
other k-hamiltonian graphs from a known k-
hamiltonian graph by p-node expansion on a
vertex of degree p. Note that the complete
graph Kp41 is the smallest optimal k-hamiltonian
graphs. For the same reason, graphs obtained
from K,41 by a sequence of p-node expansion are

optimal k-hamiltonian. One possible sequence of

p-node expansion is described by the following al-
gorithm.

B(l, 1)

B(1, 2)

B(1, 3)

Figure 2: The graphs B(1,1), B(1,2), and

B(1,3).

ALGORITHM Bell(p, s)
G « Kp+1
pick any vertex r as the root of G
fori+< 1tos—1do
B + {v|distance(v,r) = i}
forallv € B
G « EXP,(G,v)

Let B(k,s) denote the optimal k-hamiltonian
graph obtained by Bell(p,s). The graphs
B(1,1), B(1,2), and B(1,3) are shown in Figure
2. The node labeled with r indicates the root
assigned by Bell(p, s). It can be verified that the
number of nodes in B(k,s) is 1+ 2{%2&2. More-
over, the distance between a node v to the root r
is at most s. The diameter of B(k, s) is at most
2s. In other words, we have constructed a fam-
ily of optimal k-hamiltonian graphs with diameter
2log,_, n—0(1), that is 2 times of Moore bound.



4 CONCLUDING REMARKS

In this paper, we have presented a gen-
eral scheme to construct optimal k-hamiltonian
graphs. Furthermore, we use this scheme to con-
struct B(k,s) whose diameter is less than previ-
ous results in [7, 8, 18]. It would be interesting
to find other families of optimal k-hamiltonian
graphs whose diameter is smaller than that of
B(k,s). In Theorem 2, we prove that if G is
k-hamiltonian, EX P,(G, z) is k-hamiltonian. In
addition, we feel that the converse part of this
theorem is also true:

Conjecture 1 Let z be a vertez of G = (V, E)
and degg(z) p. If EXPy(G,z) is k-
hamiltonian then G is k-hamiltonian, for k =
p— 2.
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