1998 International Computer Symposium
Workshop on Algorithms ’
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Parallel Algorithms for the Hamiltonian Circuit Problem in
Convex Bipartite Graphs and Circular Convex Bipartite Graphs

Y. Daniel Liang
- Department of Computer Science
Indiana Purdue University at Fort Wayne
Fort Wayne, IN 46805
email: liangy@ipfw.edu

Maw-Shang Chang
Department of Computer Science and Information Engineering
National Chung Cheng University
Min-Hsiung, Chiayi 621, Taiwan
Republic of China
email: mschang@cs.ccu.edu.tw

Abstract

The problem of deciding whether a graph G has a Hamil-
tonian circuit is AP-complete. The problem remains
N'P-complete even if G is bipartite. Polynomial algo-
rithms for the Hamiltonian circuit problem are found in
cocomparability graphs, circular-arc graphs, convex bi-
partite graphs and circular convex bipartite graphs. How-
ever, no N'C algorithms for this problem have been found
on any graphs except on trivial cases such as the graphs of
degree 2 or less. This paper presents an O(log2 n) time,
n® processor EREW PRAM algorithm to determine if
there is a Hamiltonian circuit in a convex bipartite graph.
If there is a Hamiltonian circuit, we can find it within
the same resource bounds. This paper also presents an
O(log® n) time, n processor EREW PRAM algorithm to
determine and find a Hamiltonian circuit in a circular
convex bipartite graph, assume that the input graph is
not a convex bipartite graph.

Keywords: Circular Convex Bipartite Graphs, Convex
Bipartite Graphs, Hamiltonian Circuits, NC, Maximum
Matching. Parallel Algorithms.

1 Introduction

The Hamiltonian circuit (HC) problem asks whether there
is a eycle in a graph that passes through each node exactly
once. If such a cycle exists, it is called a Hamiltonian cir-
cuit of the graph. The importance of this problem is well-
known and widely documented in the literature. Below
we mention a few of the results regarding HC. Through-
out this paper we will be concerned only with undirected
graphs.

The problems of deciding whether a graph G has an HC

is N'P-complete [14]. The problem remains N'P-complete
even if GG is bipartite or planar, cubic, 3-connected, and
has no face with fewer than five edges [6, page 199]. If
either the starting point, ending point, or both are speci-
fied, the problem is still NP-complete [6, page 200]. The
problem can be solved in polynomial time if G has no
vertex with degree greater than two or if G is a line
graph [6, page 199]. In the former case the problem is
easily seen to be in NC?. The problem is polynomi-
ally solvable in cocomparability graphs, a superclass of
many special graphs such as trapezoid graphs, permuta-
tion graphs and interval graphs. The problem can also be
solved in time O(n?logn) if G is a circular-arc graph (a
generalization of interval graph), where » is the number
of vertices in G [17]. If the circular-arc model is given
with presorted endpoints, the problem can be solved in
O(n) time [13]. The HC problem in a circular convex bi-
partite graph (a generalization of convex bipartite graph)
was recently solved in linear time by reducing in linear
time to the same problem in an appropriate circular-arc
model [12].

NC algorithms have been developed on chordal graphs,
a superclass of interval graphs, for finding the following:
all maximal cliques, an intersection graph representation,
an optimal coloring, a perfect elimination scheme, a max-
imum independent set and a minimum clique cover [15].
Several of these results were improved in [9]. In [1].
weighted versions of several of these and related prob-
lems are shown to be in A'C for circular-arc graphs. It is
not difficult to see that the sequential algorithms in [2] for
the domination problem and its variants (connected, to-
tal, independent domination) in convex bipartite graphs
can be parallelized and extented to solve the same prob-
lems in circular convex bipartite graphs. However, no VC
algorithins have been found for the HC problemn except in

36

some trivial cases such as the graphs of degree 2 or less.

In this paper we present an O(log®n) time, n’® pro-
cessor EREW PRAM algorithm to determine if there is a
Hamiltonian circuit in a convex bipartite graph. If there
is a Hamiltonian circuit, we can find it within the same
resource bounds. The result is obtained by exhibiting two
subpaths and the concatenation of these two subpaths re-
sults in an HC. We also present an O(log n) time, n pro-
cessor EREW PRAM algorithm to determine and find a
Hamiltonian circuit in a circular convex bipartite graph,
assume that the input graph is not a convex bipartite
graph. The algorithm is supported by the fact that if G
is a circular convex bipartite graph not a convex bipartite
graph and G = (4, B, E) has an HC, then there exists an
HC in G that connects every two neighboring vertices in
4 using vertices in B.

The remainder of this paper is outlined as follows. In
section 2, we describe some background material and sev-
eral results necessary for obtaining our algorithms. In sec-
tion 3, we introduce a parallel algorithm for finding a spe-
cial complete path cover on 4 in a CBG G = (4, B, E).
This algorithm is a preliminary result for establishing the
main algorithms. In section 4 and 5, we give the parallel
algorithms for finding an HC in convex bipartite graphs
and in circular convex bipartite graphs, respectively.

2 Preliminaries

We assume the reader is familiar with basic complexity
theory, the complexity class AC, and the EREW PRAM
model of computation. For background material in these
areas, see for example one of the following: [5, 8, 10].
Let n denote a problem’s input size. As is customary
we call an NC algorithm, if the algorithm that runs on
a PRAM in log® n time for some constant k while using
only a polynomial number of processors.

A common approach in complexity theory for studying
problems that are N'P-complete on arbitrary graphs is to
restrict the problems to a large subclass of graphs. Con-
vex bipartite graphs and circular convex bipartite graphs
are an important class of graphs that we focus our atten-
tion on. They arise in resource allocation problems and
in a number of scheduling problems.

- Let G = (4, B, E) be a bipartite graph with two dis-
tinct sets of vertices 4 = {ay,---,a,} and B = {b,---,
bin}. A bipartite graph G is convez if for any b € B and
aj.a; € A with ¢ < 4, (a;, b) € E and (a;, b) € E implies
that (a,, b) € E, fori < u < j. In other words, a bipar-
tite graph G = (.4, B, E) is convex if there is a total order-
ing on A such that for any b € B the set of vertices of 4
counected to b forms an interval in this ordering. A hipar-
tite graph G = (A4, B, E) is circular convexif for any b € B
and a;, a; € A with e; < a; such that (a;,b) € E and
{(aj, b) € E implies either (a;,b) € E, (aj+1,b) € E, -+,
(aj.b) € E or (a;,b) € F, (aj+1,0) € E, ---, (an,b) € E,
{ai,b) € E, ---, (a;,b) € E. In other words, a bipartite
graph G = (4, B, E) is circular convex if there is a cir-
cular ordering on 4 such that for any b € B the set of

1998 International Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

vertices of 4 connected to b forms a circular arc in this
ordering.

Assume that the convex bipartite graph (CBG) G =
(4,B,E) is given by specifying the total ordering on
A= {a, - -,a,} with a; < --- < @,. For every vertex
b € B in G, the left-end neighbor and right-end neigh-
bor of vertex b , denoted by BEG[b,G] and END[b,G],
are the smallest and largest vertices, respectively, of A
connected to b in G. (G may be omitted in the no-
tation for simplicity if G is clearly noted in the con-
text.) Let B = {by,---,b,,} with END[b;] < END[b;]
or END[b;] = ENDI[bj] and BEG[p;] < BEGIbj] for
1 <i<j<m. Wecall a CBG satisfying this ordering
to be in compact form.

Assume that the CCBG G = (4,B,E) is given by
specifying the circular ordering on 4 = {a;,---,a,} in
a circle with a; < --- < a,. For every b € B in G, let
BEGI[b,G] and ENDI[b, G] denote the clockwise first and
last elements, respectively, of the consecutive elements of
A connected to b in G.

Our algorithms make use of the maximum matching
problems in CBG and CCBG. Glover [7] gave a greedy al-
gorithm for finding a maximum matching M in a CBG G.
His algorithm is an implementation of the following sim-
ple idea. For each a;, i = 1,---,n, if a; is adjacent to at
least one unmatched vertex in B, select an unmatched
smallest vertex b € B adjacent to a; and add (a;,b)
to M. Otherwise, simply leave a; unmatched. Dekel
and Sahni [3] gave a parallel algorithm for the maximum
matching problem using the binary tree method of [4].
Their result is summarized in the following lemma.

Lemma 2.1 The mazimum matching problem in con-
vex bipartite graphs can be solved on an EREW PRAM
in time O(log” n) using n processors. Furthermore, the
parallel mazimum matching algorithm produces the same
matching by Glover’s algorithm.

We now describe a parallel algorithm for finding a
MM in a CCBG. Liang and Blum {12] gave a linear time
algorithm for finding a maximum matching in a CCBG by
applying Glover’s algorithm twice on subgraphs G’ and
G" of a CCBG. G’ is defined directly from the structure
of G as follows.

BEG(b,G'] = BEG[b,G]

END[b,G' = END[b,G|,if BEG[b,G] < END[b,G];

ENDI[b,G') =n+ END[b,G], if b is a boundary ver-
tex;

Note that if BEG[b,G] > END[b, G|, b is adjacent to
ay and a,. Such a vertex b is called a boundary vertez.
After obtaining a maximum matching M’ in G’ using
Dekel and Sahni’s parallel algorithm, G can be defined
as follow: for each unmatched boundary vertex b € B,
let BEG[b,G"] = a; and END[b,G"] = END[b,G], and
for each other vertex b € B, let BEG[b,G"] = BEGb,G]
and END[b,G"} = END[b,G’]. It was shown in [12]
that a maximum matching M” in G” is also a maximum
matching in G. Thus, finally applying Dekel and Sahni's
parallel algorithm on G" we obtain a MM in G. Hence,
we have the following result.

-37-.

1998 Intemational Computer Symposium
Workshop on Algorithms -
December 17-19, 1998, N.C. K., Tainan, Taiwan, R.0.C.

Lemma 2.2 The mazimum matching problem in circu-
lar conver bipartite graphs can be solved on an EREW
PRAM in time O(log®> n) using n processors. Further-
more, the parallel mazimum matching algorithm produces
the same matching by Liang and Blum’s algorithm.

3 Find a complete path on A in a
CBG

A complete path on A is a path that connects all vertices
in 4 using |.4|—1 vertices in B. We first give the following
algorithm to find a complete path in G. This algorithm is
a stepping stone to establish the HC algorithm in a CBG.

Algorithm: Greedy-Path-CBG (Finding a complete
path in a CBG)

Input: A CBG G = (A, B, E) in compact form.
Ouput: A complete path on A, or
a message stating that G has no
complete path.
1 P+« {a}

2 fori«2,---,ndo
3 if there exists an unmatched vertex b € B
such that b is adjacent to a;_; and a; then
4 Select the smallest such vertex b,
remove b from B, and append b, a; into P;
5 else report no complete path, exit
6 endfor.

Lemma 3.1 Algorithm Greedy-Path-CBG returns a com-
plete path iff G has a complete path.

Proof. Suppose that the algorithm terminatesat i = k <
n. Let the partial path be P = a;,b;,,0a2,b4,, -+, Qk-1-
Two sets are disjoint if no vertices in the two sets are
adjacent. We begin the following procedure to remove
some h number of vertices from B and show that the
remaining graph has h + 2 pair-wise disjoint sets where
each set contains at least one vertex in A.

Step 1. Let Fy = {af,Qk+1s---18n}

u{b: b € B,BEGIb,G] 2 ar} and B = {b: b € B\
(F, U P)}. Clearly, END[},G] < ay for every b € B'.
Let R C B be the set of vertices in P adjacent to ay.
It is easy to see that every vertex in F} is not adjacent
to any vertex in P\ R. It is also easy to see that every
vertex in B’ is not adjacent to any vertex in F;. Suppose
R is empty. Clearly Fi and PU B’ are two disjoint sets.
In other words, G is not connected. Thus, the procedure
stops if R is empty.

Step 2. Let r be the maximum vertex in R. Removing
r from G, P is divided into two paths P, and P, where
P = P, - r = P,. By Algorithm Greedy-Path-CBG ,
no vertex of B in P; is adjacent to any vertex of 4 in P,
and every vertex in Fy is not adjacent to any vertex in
P\ R and P>\ R. By similar arguments, if a vertex in
B' is adjacent to a vertex in P; then it is not adjacent to
any vertex in P», and if a vertex in B’ is adjacent to a
vertex in P, then it is not adjacent to any vertex in P,.
We have two paths P, and P,. In the following steps, we

will continue to divide the paths into smaller and smaller
paths.

Step 3. Let R; denote the set of vertices of B in P;
that are adjacent to some vertices of 4 not in P;. Let
R =UR;. If R is empty, then the procedure stops.

Step 4. Let r = max R. If R is not empty, remove r from
G. The path containing r is split into two paths. This
path is therefore replaced by the two new paths. The
number of paths is increased by 1 after the split. Go to
Step 3.

Let C be the set of vertices in B removed by the above
procedures. We can see that there are |C|+ 1 paths when
the above procedure terminates. Note that the starting
vertex and ending vertex of each path are the vertices
in A. Let the set of paths are sorted in increasing order
of their starting vertices. The following three properties
hold throughout the procedure:

(1) Each vertex of B in P; is not adjacent to any vertex
in Py forj < f.

(2) Each vertex of Fi is not adjacent to any vertex in
P; \ R; for all paths P;.

(3) Let N(b) denote the set of vertices adjacent to a ver-
tex b € B'. Then, N(b) C P; for some path P;.

When the above procedure terminates, R = §. By the
above properties, clearly, no two vertices in different paths
are adjacent and no vertex in B’ is adjacent to two ver-
tices in different paths. Each path P, and vertices in B’
that are adjacent to a vertex in P; form a set in the re-
maining graph, denoted by P/. P|, P}, ---, Pl’C'|+l’ F) are
|C|+ 2 disjoint sets in G\ C. By the pigeonhole principle,
G cannot have a complete path. |

A Hamiltonian path (HP) in a graph G is a path that
passes through each node exactly once. We state several
useful properties.

Property 3.2 G has no Hamiltonian path if G has no
complete path.

Property 3.3 Let r be an arbitrary verter in G. G has
no Hamiltonian circuit if G\{r} has no Hamiltonian path.

Let the path produced by Algorithm Greedy-Path-
CBG be called greedy complete path. Let. G’ be a subgraph
of G by removing the first (left-most) edge of each b € B
inG.

Lemma 3.4 G' has a matching of size |A| — 1 iff G has
a complete path on A.

Proof. Note that a; is isolated in G'. If G’ has a match-
ing of size | 4| — 1, clearly, ay,match{as),as, - -,
match(ay), a, is a path in G that connects all vertices in
A using |4| — 1 vertices from B. By Lemma 3.1, G has
a complete path on 4. Conversely, if G has a complete
path, ay, b a2, --,bi,_,,a,, b, is matched to apyy in
G'. Hence, G' has a matching of size |4| ~1. § '

Property 3.5 Let ay,b;,,as,--,b;,_,.a, be a greedy
complete path in G. bj, matches ary for 1 < k < n in
G' by Glover’s algorithm.

38

Theorem 3.6 A greedy complete path on A in a CBG
G = (4,B,E) can be found in O(log'2 n) time using n
processors on an EREW PRAM.

Proof. Since G’ is a subgraph of G where BEG[b,G'] =
BEG([b,G] -1 and END{,G'] = END[b,G]. G’ can be
obtained in O(1) time using n processors. By Lemma 2.1,
Dekel and Sahni’s parallel matching algorithm produces
the same matching as Glover’s greedy algorithm, a greedy
complete path on A in G can be found in the same time
and processor complexity by Lemma 3.4 and Property 3.5.

4 Hamiltonian circuit in a CBG

The necessary condition for a CBG G = (4, B, E) to have
an HC is |4| = |B| and G has a complete path on A. Let
P = ay,b;,03,---,bi,_,,a, be a greedy complete path
and b;, = B\ {bi,,---,b;,_,}. If b;, is not adjacent to
ay,, clearly, G\ {b;,_, } has no complete path on 4. Hence,
G has no HC. From now on we assume that &;_ is adjacent
to a,. .

The idea of the HC algorithm is finding two subpaths,
each of which begins at a, and ends at a;, the concate-
nation of the two paths forms an HC in G. We show the
nonexistence of an HC, if such two subpaths cannot be
found. To help identifying these two paths, we construct
a directed graph H = (VH EH), where V¥ = A and
edges are constructed as follows:

1. for ay,av € A\ {a1,a,}, (ay,a,) € EF if u > v,
(bi",(lu) € E, BEG[b,U] < Qy;

2. (an,a,) € E¥ifv <n, (b, ,a,) € Eand BEG[b;,] <

Qy;
3. (au. 1) € E¥ if u>1and (b;,,a;) € E;

Let PH = Gh,»Qh,_y, "+, 0p, be a path from a, to a;
in H, where ap, = a, and as, = a;. Let P(a;,a;) de-
note a subpath of P starting from a; reversely to a; for
i > j. For example, P(as,a2) = as, bi,, a4, bi;, as, bi,, az.
We construct two paths P; and P, based on P and P¥.
Consider the following cases.

Case 1. t = 2. In this case, we let

Py = P(!l/,',(lhl)-

Pg = ay,, b,',” s Qpy -

Case 2. t = 3. In this case, we let

Py = P(an,,an+1): biy, » @ny, and

Py =ay,, bih, 7P(ah21ah1)-

Case 3. t > 3. If t is even, (see Figure 5.1) let

Py = Plan, any_y+1):bin,_» Plan, gy @y _g41)5bin,_ o0
Plan,, any+1), by Plany, an,), and

Py = an; by, P(an,_ys @n,_g+1), b1, P(@hygy Bh_gt1),
bih:-»; PN P((lh.;;, a;.2+|), bgh2 sy Qhy -

If t is odd, let

Py = Plan, ah 4103, Plan,_pr @y _g1) bin, o0
P(ans, Anys1)sbiy,, an,

P = ay,, bih, , P(“h,-; v @hy _ak1), bih,_2 y P(ah:-a ' @hy_y+1)’

1998 Internationai Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

bi;\'_41‘ o 7P(("h47ah3+l)1bih37P(ah21ah|)-

In the following, we describe the algorithm and give
two examples followed by the proof for the algorithm.

Algorithm: HC-CBG (Finding an HC in a CBG)
Input: A CBG G = (4, B, E) in compact form.
Ouput: AnHCin G, or
a message stating that G has no HC.

1 Finding a greedy complete path on A4 in G.

If not found, report no HC, exit;
2 Construct H from P;
3 Find a path P¥ in H from a, to ai;

If not found, report no HC, exit;
4 Obtain P, and P, and establish an HC.

Example 1: For the graph in Figure 5.2, P = a, by, a1,
b3, a3, b, a4,by, a5,bs, a6, b, a7,b7,a5. We construct H
shown in Figure 5.3 (Note we omitted isolated vertices
in H). If we select P¥ = ag,a5,a,,4a;, an HC is found by
joining Py = P(as, as), bs, P{as,a,) = as, b, a7, b, as, b5,
az,by,a; with P, = ag,bg,P(as,ag),b3,a1 = ag, bg, as, by,
a4,b2,a3,b3,a1. If we select PH = as,as,05,a2,a1, an
HC is found by joining P, = P(ag,a7), bs, P(as,as), bs, a
= ag,b7,a7,b6,a5,b4,a4,b2,a3, bs,a; with P, = ag, bg,
P(as, as), b5, P((lg,al) = as, bg,as, b5, as, bl,al.

Example 2: For the graph in Figure 5.4, P = ay, by, a2,
ba, as, by, aq, by, as, bs, ag, bg, ar, by, as. Clearly, ag is not
adjacent to any vertex in H, Thus, P¥ cannot be found.
Hence, G has no HC.

A vertex a, is said to be reachable in H if there exists
a path from a, to a, in H.

Property 4.1 If (ay,a,) € Ef, then (a,,a,) € EY for
every vertez a, between a,, and a, in P with BEG[b;] <
Ay

Property 4.2 If a, is reachable from a,, in H, then a,
15 reachable from a,, in H for every a, between a, and a,

in P with BEG[b;,] < a,.

Lemma 4.3 G has an HC iff H has a path from a, to
aj.

Proof. If H has a path P¥ from a, to a;, by the algo-
rithm, we can construct P, and P, to form an HC. Sup-
pose that H does not have a path from a,, to a,. Let a, be
a reachable vertex in H with the smallest BEG[b;,] value
and a,, = BEG(b;,]. If there exists a vertex b;, of B be-
tween a,, and a, in P having an BEG value smaller than
ay (i.e. BEG[b;,] < ay), then (a,,a,) € E”. Thus, a, is
reachable from a,, in H and a, is a vertex in H with the
smaller BEG(b;,] than BEG[b;,](= a.), a contradiction.
Hence, no vertex of B between a,, and a, in P has an
BEG value smaller than a,,. If there exists a vertex &;, of
B between a, and a, in P having an BEG value smaller
than a,, then (a,,a,) € E¥ according to Property 4.2.
This also contradicts that a, has the smallest BEG[b;,]

..39_

1998 International Combuter Symposium
Workshop on Algorithms
December 17-19, 1998, N.C.K.U,, Tainan, Taiwan, R.0.C.

value. Therefore, no vertex of B between a,, and a, in P
has an BEG value smaller than a,,. Hence, b, -+, b, _,
are the only possible vertices for linking a;,- -, @y—1, Gy-
This implies that G \ {b;,_,} does not have a complete
path on 4. Therefore, G has no HC. |

Note that P¥ can be any path in H from a, to a;.
Thus, it is sufficient to find one such path. To speed
up the computation of finding a path P# we introduce
H', a subgraph of H, defined-as follows. (a,,a,) € E¥
(a, < ay) is in H' if BEG(b;,] is the smallest among all
a. adjacent to a, in H.

Lemma 4.4 H has a path from a, to ay iff H' has a
path from a, to a;. Furthermore, such a path P¥ can be
found in O(logn) time using n? processors on an EREW
PRAM.

Proof. If H’ has a path from a, to a;, clearly, this path
is also in H. Suppose that H has a path from a, to a;.
Let a, be the vertex adjacent to a, with the smallest.
BEG(b;,] value and a, be any vertex adjacent to a,.
Then (i) for any vertex ay with ay < a, and ay < aq,
if (aw,as) € E¥, then (au,ay) € E¥; (ii) for any vertex
ay with ay < ay, if ay is reachable from a,, it is also
reachable from a,; (iii) if there exists a path from a, to
a, through a,, there also exists a path from a, to a;
through a,, not including a,. Hence, after eliminating
edge (a,.ay) from H, a path from a, to a; still exists.
For the same reason, we can eliminate all (a,,a,) € Ef
(aw < a,) except the one with the smallest BEG[b;].
The result of the eliminations is H’. Therefore, H' has a
path from a, to a;.

To construct H’, for each a,, we examine every a,
with (b;,,a,) € E and find an a, with the smallest
BEG]Ib;,] value, this takes O(logn) time using n proces-
sors on an EREW PRAM. Hence, constructing entire H’
takes O(logn) time using n® processors on an EREW
PRAM. Since H' is a forest, a path from a, to a; can be
found in O(logn) time using n processors. Therefore, P#
can be found in O(logn) time using n? processors. [

Theorem 4.5 Algorithm HC-CBG finds an HC in a CBG
G = (4,B, E) in O(log® n) time using n? processors on
an EREW PRAM.

Proof. The correctness is established in Lemma 4.3.
Finding a greedy complete path takes O(log2 1) time us-
ing n processors by Lemma 3.6. Finding P takes O(log n)
time using n® processors by Lemma 4.4. Therefore, the
algorithm can be implemented in O(log? n) time using n2
processors. l

5 Hamiltonian circuits in a CCBG

The necessary condition for a CCBG G = (4, B, E) to
have an HC is |4} = |B]|. Several definitions are useful
to establish out algorithm. Two vertices of 4’ C A are
said to be consecutive in A" if one of the vertices is the

next vertex clockwise from the other in A’. a; is clockwise
connectable to a; by b € B if b is adjacent to every vertex
from a; to a; clockwise. a; is clockwise connected to aj
in a path by b € B if b is adjacent to every vertex from
a; to a; clockwise. A path is called a sequential path of
A’ if (i) it connects all A’ vertices using |4'| — 1 vertices
from B; (ii) every b € B clockwise connects a pair of two
consecutive vertices of A'. (i.e. the path connects all ver-
tices of A’ consecutively in clockwise order starting from
some a; € A’, and there is only one pair not connected
in the path.) A sequential path is complete if A’ = 4. A
Hamiltonian circuit is called a sequential HC if every pair
of two consecutive vertices of 4 is clockwise connected by
a vertex in B. We show that if a CCBG G has an HC,
then G has a sequential HC.

Lemma 5.1 Let A’ be a subset of A.and P, be a path
that connects vertices in A’ using |A'| — 1 vertices from

B. Then P; can be transformed into a sequential path of
A

Proof. Clearly, the lemma holds for |4’} = 1 and |4'| =
2. Assume it is true for |4} = i. Let |4'| =i+1and P,
P/, b,,a, where P/ is a partial path of P, that connects i
vertices in A’ using i — 1 vertices in B. By the induction
hypothesis, P| can be transformed into a path P} that
clockwise connects adjacent vertices of P| in A’ using the
same vertices of P] in B. Let Py beay,,bj, , -, bji,_ s
Note that as,,- -, as; are in clockwise order from ay,. Let
a¢, denote the last vertex in P/. a;_is connected to b, in
Py,. Consider two cases.

Case 1. a, lies clockwise between ay, and ay,. If ay,
is clockwise connectable to a, by b,, then we obtain P»
as Py, by, ay. If ay is clockwise connectable to a;, via b,
then we obtain P; as ay, b, PJ.

Case 2. a, lies clockwise between a4, and a,,, for
some h # i. If a, is clockwise connectable to a, by b,.
then we obtain P, as a,_l,bj,],---,a,,_,b,,,a,‘,bj,h.a,,m,
ey g an- If a, is clockwise connectable to a;, by b,,.
then we obtain P, as a,,,bj,l,n-,a,,,,bj,h,a,,,b,,,ar,m,
...,bj,‘,_l,ati.

Therefore, P, can be transformed into P, that clock-
wise connects consecutive vertices in .1’ using the same
|A’] — 1 vertices from B. |

Corollary 5.2 If Py is a path connecting all vertices in A
using |A| — 1 vertices from B, then P, can be transformed
into a complete sequential path.

Our algorithm makes use of the minimal path cover
on A in a CCBG. A path cover on A is a set of vertex-
disjoint paths in G such that (i) each path has more than
one vertex from 4 than from B; (ii) it covers all vertices in
A. A minimal path cover on A is a path cover of minimal
cardinality.

Lemma 5.3 An arbitrary minimal path cover T on A
in @ CCBG can be transformed into a new minimal path
cover T’ on A such that every vertex of B in T’ connects
two consecutive vertices of 4.

40

Proof. By Lemma 5.1, any path in T can be transformed
into a sequential path. Hence, we assume each path in T
is a sequential path. For convenience, we call vertices of
B in T connectors to link two vertices of 4. We perform
the following procedure to rearrange connectors. (Note
T always has the same number of paths throughout the
procedure, but paths may change due to rearrangement
of connectors.)

Step 1. If every path in T is a sequential path, then
the procedure stops. Otherwise, T has a path P, =
@i, . bj,, a0, bj,_,,a;, with at least one connector that
is not connecting two consecutive vertices. Let b;, be the
first such connector in P;. Then a;, 41 is not in P;. Let
aj,+1 be in path P;. Consider two cases:

1. a;,+1 is the first vertex in P;. Then simply use b;,
to connect a;, with a;, 4.

2. aj,+1 Is not the first vertex in P;. Let ' clockwise
connects a’ with a;, 1 in P;. Since all vertices of
A in P; before a;, are consecutively connected, a;,,
iy, -+, a;, are located clockwise between a’ and
a;, +1. Thus, ¥’ is adjacent to a;,, a;,, -+, as,. Use
b’ to connect a’ with a;; and bj, to connect a;, with
Qipt1-

Step 2. Go to Step 1.

We call a pair of two consecutive vertices of 4 linked
by connector in a path a consecutive connection. Step 1
increases consecutive connections by at least 1 (possibly 2
if @’ and a;, are consecutively connected in Case 2.} Once
a connector is used for a consecutive connection, it will
never be rearranged. Therefore, this procedure eventually
terminates when all connectors are used for consecutive
connections. |

We assume that no vertex in B is connected to all ver-
tices in 4. We will handle the case when G has vertices in
B adjacent to all vertices in 4 later. Further assume that
the graph G = (4, B, E) is not a CBG. To test whether a
CCBG is CBG, one merely searches for a pair of consecu-
tive vertices in 4 that is not adjacent to any vertex in B.
If such a pair exists, G is a CBG. Let G’ be a subgraph
of G by removing the first clockwise edge of each b € B
in G. :

Lemma 5.4 & has an HC iff G’ has a complete match-
mg.

Proof. (if part) If G' has a complete matching, then an
HC in G is ay,matched(as), ay, matched(as),
matehed(a,), a,, matched(a,), where matched(a;) denotes
a vertex matched to a; in G'.

(only if part) If G has an HC, denoted by H,, starting
from a vertex in A and ending at a vertex in B, let this HC
be P.b, where P is an arbitrary path connecting all ver-
tices in 4 using B\ {b} and b connects the first vertex in P
with the last one in P. By Corollary 5.2, P can be trans-
formed into a complete sequential path P’. Without loss
of generality, let P’ = a1, bj,,02,bj,, -+, an-1,bj,_, .-

oy Qn—1,

1998 International Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

If an and a; are adjacent to b, clearly, G’ has a complete
matching, where a; matches bj;_, and a, matches b.

Assume that a, and a; are not adjacent to b. Let

R denote the set of vertices that are adjacent to a, and
a;. Such R is nonempty since we assume that G is not a
CBG. Let T denote a minimal path cover in G \ R. By
Lemma 5.3, we assume that T is a minimal path cover on
A such that every vertex of B in T connects two consec-
utive vertices of A. Since G has an HC, |T| = |R|. Then
every vertex in B\ R is used to connect two vertices of
Ain T. We call bj,_, that connects a;,_, and a; in P’
a designated connector for a;_; and a;. We perform the
following procedure to rearrange the vertices of B \ R in
T.
Step 1: If there exists a pair of unconnected consecutive
vertices, (a;—1,a;), in T, such that the designated con-
nector of (a;—1,a;), bj,_,, is not in R, then bj,_, currently
connects (ax—1,ax) for some k in T, disconnect (ay_;, ay)
and use bj,_, to connect (a;_1,a;); otherwise, exit. go to
Step 1.

A pair of consecutive vertices in T once is connected
by a designated connector, this connector will never be
rearranged in the procedure. We call such a pair that is
connected by a designated connector a designated pair.
Since Step 1 increases the number of designated pairs by
1, the above procedure eventually will terminate. When
it terminates, the designated connector of every pair of
unconnected consecutive vertices in T is in R.

Since the number of pairs of unconnected consecutive
vertices is |[R| — 1 in T, they can be connected by |R| — 1
vertices in R. The remaining vertex in R can be used to
connect a, with a;. Therefore, H; can be transformed
into a sequential HC. |

If G has an HC, then G\ {b} has a complete sequential
path for any b € B. Assume there is a vertex b € B
adjacent to all vertices in 4. Suppose (a;_1,a;) is the
only pair not connected in a sequential path in G \ {b}.
Then b can be used to clockwise connect a;_; with a;. In
general, we can obtain the following lemma.

Lemma 5.5 Let U be the set of vertices adjacent to all
vertices in A with |U| > 0 and G’ be u subgraph of G\U by
removing the first clockwise edge of each b€ B in G\ U.
Then G has an HC iff |M| = |A| - |U|, where M is a MM
inG'.

Proof. If |M| = |4]|-|U|, an HC in G can be obtained as
follows: (i) if (b,a;) is matched in A, then (a;_;,b) and
(b, a;) are edges in the path; (ii) any unconnected pair of
consecutive vertices in 4 can be connected using a vertex
inU. ’

Assume that G has an HC. Then G\ U has a minimal
path cover of cardinality JUU]. By Lemma 5.3, there exists
a minimal path cover T' = {Py,---, P}, in which every
vertex of B connects two consecutive vertices of 4. Let
F; be a;,,bj,,---,bj,_,,ai,. Then bj,_, can be matched
to a;, in G'. Thus, every vertex in P; is matched except
a;,. Therefore, every vertex in A is matched except the

41

1988 International Computer Symposium
Workshop on Algorithms
December 17-18, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

first vertex in each path of T. Clearly, |M| = | 4| — |U].
|

We give the detailed algorithm as follows.

Algorithm: HC-CCBG (Finding an HC in a CCBG)

Input: A CCBG G = (4, B, E) with |4| = |B|
. and G is not a CBG.
Ouput: An HC in G, or

a message stating that G has no HC.
1 Let U be the set of vertices adjacent to all
vertices in A;

2 Let G’ be a subgraph of G\ U by removing

the first clockwise edge of each b € B in G\ U;
3 ifU =0 then
4 if G’ has a MM of size |A] then
5 An HC is ay, biy, a9, b;,, - SQn-1,bi,_, Qn, bi,
6 where b;,_, matches a; for 1 <k <n

and b;, matches a;;

7 else G has no HC;
8 end if;

9 else {U is not empty}

10 Find M,aMMin G,

11 if [M|+|U| = |A| then

12 G has an HC constructed as follows:

11 if (b,a;) is matched in M, then (a;_,,b)

and (b, a;) are edges in the path;

any unconnected pair of consecutive vertices
can be connected using a vertex in U;

13 else

12

14 G has no HC;
15 end if;
16 end if

Theorem 5.6 An HC in a CCBG G = (4, B, E) can be
found in O(log® n) time using n processors on an EREW
PRAM.

Proof. If |U| = 0, the correctness for this case is estab-
lished by Lemma 5.4. Since G’ can be identified in O(1)
time using n processors and a MM in G* can be found in
O(log® n) time using n processors by Lemma 2.2, an HC
can be found in O(log® n) time using n processors.

If [U] # 0, the correctness for this case is established
by Lemma 5.5. Similarly, the complexity for finding an
HC in this case is also O(log® n) time and n Processors.

References

[1] A. A. Bertossi and S. Moretti. Parallel algorithins on
circular-arc graphs. Information Processing Letters
33(6) (1990) 275-281.

[2] M-S Chang, Y-C Tsai and Y. D. Liang. Efficient Al-
gorithms for the Domination and Steiner Tree Prob-
lems on Convex Bipartite Graphs. Manuscript, 1995.

(3] E. Dekel and S. Sahni. A parallel matching algo-
rithm for convex bipartite graphs and applications

to scheduling. J. of Parallel and Distributed Com-
puting 1 (1984) 185-205.

E. Dekel and S. Sahni. Binary tree and parallel
scheduling algorithms. IEEE Transactions on Com-
puters 33 (3) (1983) 307-315.

Faith E. Fich. The complexity of computation on the
parallel random access machine. In Reif [16], chapter
20, pages 843-899.

(6] M. R. Garey and D. S. Johnson. Computers
and Intractebility: A Guide to the Theory of NP-
Completeness, W. H. Freeman and Company, San
Fransisco, 1979.

[7]

F. Glover. Maximum matching in convex bipartite
graphs. Naval Res. Logist. Quart. 14 (1967) 313-316.

(8] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Topics
in Parallel Computation: A Guide to the Theory of
P-completeness. Oxford University Press, New York,

to appear.

C-W. Ho and R. C. T. Lee. Efficient parallel al-
gorithms for finding maximum cliques, clique trees,
and minimum coloring on chordal graphs. Informa-
tion Processing Letters 28(6) (1988) 301-309.

(10] R. M. Karp and V. Ramachandran. Parallel algo-
rithms for shared-memory machines. In van Leeuwan

[11], chapter 17, pages 869-941.

(11] Jan van Leeuwan, editor. Handbook of Theoretical
Computer Science, volume A: Algorithms and Com-
plexity. M.I.T. Press/Elsevier, 1990.

(12] Y. D. Liang and N. Blum. Circular convex bipar-
tite graphs: maximum matching and Hamiltonian
circuit. Information Processing Letters, 56 (1995)

215-219.

(13] Y. D. Liang, G. K. Manacher, C. Rhee, and
T. A. Mankus. An O(n) algorithm for finding Hamil-
tonian paths and circuits in circular-arc graphs.

Manuscript, August, 1992.

R. M. Karp. Reducibility among combinatorial prob-
lems, in R. E. Miller and J. W. Thacther, eds., Com-
plezity of Computer Computations, Plenum Press,
New York, (1972) 85-103.

14]

[15] J. Naor, M. Naor, and A. A. Schiffer. Fast parallel
algorithms for chordal graphs. Proceedings 19th Ann.
ACM Symposium on Theory of Computing (1987)

355-364.

John H. Reif, editor. Synthesis of Parallel Algo-
rithms. Morgan Kaufman, San Mateo, CA, 1993.

W. Shih, T. C. Chern, and W. L. Hsu. An O(n? log n)
algorithm for Hamiltonian cycle problem on circular-
arc graphs. SIAM J. Computing 21 (6) (1992) 1026-
1046.

[16]

[17]

42

1998 International Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

ihy bihl-.’!

ap, (1114] ah, U Qhp,_ /a‘h'_:sl Qh, ")/nht_l] Ph,

a thya thy_g

Figure 5.1: Identifying two paths P; and P.

by by b3 by bs bs b7 bs

a a» as as as (47 ar as

Figure 5.2: A CBG G having an HC.

v as
ay as as\ ag

Figure 5.3: Illustration of H constructed for Figure 5.2.

by by b3 by bs bg be bs

a a (g a4 Qas Qg az asg

Figure 5.4: A CBG having no HC.

-43_

	
	36
	37
	38
	39
	40
	41
	42
	43

