1998 Internationai Computer Symposium
Workshop on image Processing and Character Recognition
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

VECTORIZATION USING BRESENHAM LINES
Lijung Jiang and Jiang-Hsing Chu

Department of Computer Science
Southern Illinois University at Carbondale
Carbondale, IL 62901, USA

jehu@cs.siu.edu

ABSTRACT

We study vectorization algorithms which vectorize raster into
vector files consisting of lines with the restriction that pixels
corresponding to a line can be fully recovered by applying
the Bresenham line drawing algorithm on the endpoints of
the line. We also study the problem of finding a minimum
number of line segments which is needed to represent a given
raster. We prove that this problem is NP-complete and pres-
ent an efficient approximation algorittm which produces

near optimal results.

1. INTRODUCTION

Computer images are stored mainly in two types of formats:
vector and raster. A vector image contains descriptions of
picture objects such as lines and circles that make up the im-
age. For example, a vector file may contain the image in-
formation like “line (10,20)(30,30), line (30,30)(40,50), line
(40,50)(100,50)...” A vector output device such as a plotter
interprets a vector file and draw the corresponding image. On
the other hand, a raster image consists of a two-dimensional
array of tiny dots that could be screen pixels or printer dots.
We will simply call these dots pixels hereafter. A raster out-
put device displays a raster image by setting the correspond-
ing pixels on. Pixels which are on will be referred to as black
pixels hereafter. In a raster file of a binary image, each pixel
is represented by a bit. More bits per pixel are needed in im-
ages with more gray levels or color images. Asa result, the
raster files are usually considerably larger than the vector
files.

Almost all computers today are equipped with raster output
devices such as monitors and laser printers. These devices
can display raster images as well as vector images, thank to
the development of the rasterization algorithms that produce,
on the raster devices, the image described by vector files. A
good example is the famous Bresenham [1] line drawing al-
gorithm which draws straight lines on raster devices. Algo-
rithms for drawing circles and ellipses are also available [4].

Eastman [2] indicated that current engineering drawing sys-
tems are based on vector display technology because vector

system provides many benefits during revision. For example,
it is easy to delete a portion of a dense drawing perfectly.
Also, the vector system has minimum loss of precision in
rotation or scaling. Although raster images can display solid
shaded images very well, they are hard to rotate and scale
due to the absence of underlying logic structures in most
raster systems. In general, the raster systems are best for
shaded images and the vector systems are best for engineer-
ing line drawing. Therefore, most CAD systems are use the
vector system. This causes a problem to many engineering
companies who have archives of designs or blueprints and
would like to use a CAD system to edit them.

As a summary, there are two main advantages for converting
the raster images into vector images:

Compression: unless the image is very complicated, a
vector file is usually much smaller than its corresponding
raster file. As a result, a vector file uses less memory,
less disk space, and less transferring time.

Compatibility: since some applications and some devices
only deal with the vector images, we must covert the
raster image into vector form. For example, if we are
going to edit a raster image using a vector editor such as a
CAD editor, the image needs to be converted.

Parker [5] developed a vecotrization algorithm which uses
the chord property to find the set of pixels that are covered
by a given line. However, the method is not compatible with
the Bresenham line drawing algorithm. To use vectorization
algorithm as an image compression tool, we need to guaran-
tee that the vector file obtained through vectorization can be
converted back to the original raster image. Because many
display devices use Bresenham line drawing algorithm to
draw vector lines on raster devices, so it is important to make
vectorization algorithm compatible with Bresenham line
drawing algorithm.

In this paper, we present a vectorization method which is
based on the Bresenham line drawing algorithm. But first we
study the problem of finding a minimum number of lines to
cover all black pixels in a raster.

21

1998 International Computer Symposium
Workshop on image Processing and Character Recognition
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

2. NP-COMPLETENESS

The problem we are trying to solve is: Can we find a mini-
mum number of Bresenham lines to cover all black pixels in
a raster? Whenever we are confronted with a new problem
without an obvious polynomial time solution, a question
arises naturally: Is this an NP-complete problem?

Let us first analyze this problem. In order to find a minimum
number of lines, we can first find all possible wusefi! lines. We
say a line is useless if all its pixels are covered by another
line. We use L,y to represent the set of all useful lines. We can
then divide the set L, into two subsets L; and Lg. L, contains
only the lines that cover at least one pixel that is not covered
by any other lines in Ly. The rest of the lines in L,y are be-
long to Ly (Lg =L,y - L;). We use P to represent the black pix-
els. Similarly we divide P into two sets P, and P,. The set P,
contains all pixels which are covered by at least one line in
L,. The set P, contains the rest of the pixels in P which are
not covered by any line in L, (P4 =P - P;). Obviously any set
with a minimum number of lines that covers all pixels in P
must contain all lines in L, So what is left is to find a mini-
mum number of lines from L4 to cover all pixels in Py. It is
worth mentioning that lines in Ly may also cover some pixels
covered by P,, but we need not worry about these pixels since
they are covered by lines in L;, which are always included in
the final set. Now our problem can be reduced to the follow-
ing decision problem :

INSTANCE: An image R=(L,P), where L is a set of
lines and P is a set of pixels with every pixel in P being
covered by at least two lines in L, and a positive integer
K.

QUESTION: Is there a subset L’ < L such that [L’} < K
and, every pixel in P is covered by at least one line in
L’. In other words, is there a subset of L with K or less
lines which cover all pixels in P.

We will refer to this problem as the LINE COVER (LC)
problem. We now prove that LC is NP-complete. To prove
that a problem is NP-complete, we need to show that the
problem is in NP and also reduce an NP-complete problem to
the problem in polynomial time [3]. It is easy to see that LC
is in NP since a non-deterministic algorithm needs only guess
a subset of L and check in polynomial time to see whether
every pixel in P is covered by at least one line in this subset.
To prove that it is NP-complete, we reduce the well known [
VERTEX COVER (VC) problem to LC.

Now we describe a way to transform any instance of VC, a
graph G=(V, E) and a positive integer K < |V|, to a raster im-
age R (R with a pixel set P and lines as an instance of LC),
so that R has a line cover of size K or less if and only if G
has a vertex cover of size K or less. The transformation is

straightforward. The main idea is to transform a vertex to a
line in R, and an edge to a pixel in R. To be more precise, an

. edge is transformed to a pixel which is covered by the two

lines corresponding to the two vertices incident to the edge.
An example is shown in Figure 2.1. In R, line a corresponds
to vertexain G line ¢ to ¢, line b to b, line d to d. pixel ac
to edge ac, pixel ab to edge ab, pixel be to edge be, pixel ad
to edge ad, pixel bd to bd

a
c d
b
agraph g
DIXEL 3t
IV‘—.‘)
: ix"_“;/ \ Ine it
pixel pd/ 2 =] |
linda | At d) pigel [bod
% i
y. \\
(&) N
pi el Jac 2
. Ing ¢}’

a corresponding transformation in R
Figure 2.1 a transformation of a graph G

A raster that is created by the transformation must meet the
following conditions:

1. Different vertices in G correspond to different lines in
R, and different edges in G correspond to different pix-
elsin R

2. Every pixel in R is covered by exactly two lines.

3. If(uv) is an edge in G, then the pixel it transforms to
must be a member of the intersection of the two lines 1,
and I, If (u,v) is not an edge, then none of the pixels in
the intersection of 1, and 1, should be included in the
pixel set P.

..22_

It is easy to see how the construction can be accomplished in
polynomial time. The graph R we get through this transfor-
mation will contain [V|. We now show that the G has a vertex
cover of size K or less if and only if R has a line cover of size
K or less.

First, suppose that there is a line cover L’ in R which covers
all pixels and |L’| < K. In Figure 2.1, if line a in R is selected,
it covers pixel ac, pixel ab, and pixel ad. Because of the con-
ditions about the raster stated earlier, if we select the vertices
corresponding to the lines in L’ as our element of V, V’ will

cover all edges in G and [V’[£ K.

Conversely, suppose that V' V is a vertex cover for G with
[V’] < K. For each vertex in V’, it covers all edges which are
incident to this vertex. Its corresponding line in R covers all
pixels which correspond to those edges in G. So if we select
all lines in R which correspond to the vertices in V’ to form a
line cover L, then |L’| £ K, and L’ will cover all pixels in R.

We have proved that the LC problem is NP-complete. Our
original problem is a problem in P (finding L,y and extract-
ing L, from Ly can be finished in polynomial time) com-
bined with a NP-complete problem (LC), which is NP-
complete.

3. THE OPTIMAL ALGORITHM

Now that we have proved that the problem we want to solve
is NP-complete, it is not likely that we can construct an effi-
cient algorithm running in polynomial time and produces an
optimal solution. We will thus concentrate our efforts in
finding an efficient approximation algorithm. Nevertheless it
will be usefiil to have an optimal algorithm so that it can be
used as a benchmark to see how well the approximation algo-
rithm performs. In this section we present an optimal algo-
rithm for extracting a minimum number of Bresenham lines
in a raster image.

Before we discuss the optimal algorithm, we have the fol-
lowing definitions:

Bresenham Property: A line set is said to have Bre-
senham Property if and only if the lines in this set will
give exactly the same pixels as the original raster im-
age, when we use Bresenham line drawing algorithm to
draw them on the raster device.

Bresenham Cover Property: A line set is said to have
Bresenham Cover Property if drawn by using Bresen-
ham line drawing algorithm, it covers all black pixels
in the raster image.

Static Line: In a Bresenham line set{l;, I., 5, ..., }, a

23

1898 International Computer Symposium
Workshop on Image Processing and Character Recognition
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

line ; is static if it covers at least one pixel that is not

belong to any other line li(j # i). Otherwise we say the
line is dynamic.

Useless Line: A line is a useless line, if all its pixels are
covered by another line.

As described in section 3, we first try to obtain all possible
lines Ly, then find the static lines set L, from these lines. Re-
call that Ly =Lay - Ls. Then we can divide all the pixels in P
into P and P4. All we need to do now is finding a line set L
with a minimum number of lines from L4 which cover all
pixels in P4. Put L’ and L, together, we will get the result we
wanted.

If we try to get all possible lines Lqy at once, potentially there
will have a lot Bresenham lines that can be generated. It will
need a lot of memory to store these possible lines. To avoid
this situation, our approach is getting all possible lines
gradually. In each step, we divide the Lyzinto L, and L. L,
is used to store static lines and some dynamic lines so far. L,
used to store the dynamic lines (i.e., all pixels of the line are
covered by some lines in L, but they are not useless lines,
they may be needed later to find the set with minimum num-
ber of lines), the useless lines are discarded. After we obtain
all possible lines, the L, has Bresenham Cover Property. we
use N to represent the number of lines in L.

We can then extract L, from L, which is straightforward. Let
us use Ny to represent the number of lines in L,. The only
thing needs to be done is to find a subset L’ with minimum
number of lines from Ly, Ly = L, + L, - L.. In order to reduce
the number of lines in Ly, We discard the lines in Ly whose
pixels can'be covered by lines in L,. We will erase all pixels
which can be covered by lines of L, We know that if the
minimum number of lines is N’, it means we can get at least
one line set whose line number is N’, and this set has Bre-
senham Cover Property. Because the N’ is the minimum
possible value, so we can not get any line set of less than N’
lines and satisfies the Bresenham Cover Property. In order
to reduce computing time, we first try all possible line sets
whose lines’ number is (N- N, -1) in Lq. We will check all
such sets to see whether the Bresenham Cover Property is
satisfied in any of them. If none of these sets has the Bresen-
ham Cover Property, we will stop our algorithm, and we
can conclude that the N is the minimum value, the line set L,
is the optimal line set we can get from P,. Otherwise, we will
store the set who has Bresenham Cover Property into L,,
then we will repeat search for a line set with one fewer lines,
until we can not find such line set, finally, the minimum lines
set will be L plus L,.

Below we list our algorithm in a C-like syntax. In our algo-

1998 International Computer Symposium -
Workshop on Image Processing and Character Recognition
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

rithm, Assume the raster image in a screen buffer (two di-
mensional array). We define the lower left corner of screen to
be (0, 0), the lower right comer to be (0, WIDTH), the upper
left corner to be (0, HEIGHT), and the upper right corner to
be (WIDTH, HEIGHT).

Algorithm: extracting minimum Bresenham lines in the in-
put raster image

Input : Raster image with WIDTH * HEIGHT resolution
Output: A vector file contain minimum number of Bresen-

ham lines
/* get the all possible lines */
L,=@ ; /*initialize the L; to empty */
L,=@; /*initialize the L, to empty */
for(x,= 0; x, <WIDTH; x, ++)
for(yy= 0; y: <HEIGHT; y, ++) {
if (Screen[x;, 1]= 1){ /* I means the pixel(x,, y;) is on*/
for(X, =WIDTH-1; x,>= X;; X3 =)
for(y, = y1; y2<= HEIGHT; y,++) {
/* using Bresenham line drawing alg. to draw the line from(x;, y)) .
(x5, y2). if all pixels of this line is turned on in the raster image(i.e.
Screen[x,y]=1) then return true, otherwise return false */
if{ Is_a_Bresenham_Line(x; , ¥1, X2, Y2)}{
if{ls_Usefull_Line(L;,N,X;,y1,X2,Y2)&&
Is_Usefull_Line(L2,N2, Xy, ¥1,%3, ¥2)){
Add to_Ly(Ly, N, Xy, Y1, X2, ¥2); /* N is#rof linesinL, */
/* move some redundant dynamic lines from Ly to L, */
Migrate Line(Ly, N, L2, N2); /*N2is#oflineinL, */
}
}
}
}
}

/* get the minimum number of lines set */
Minimize_Line(L,, N2); /*discarded useless linesin L, */
Extract_Static_Line(Lyye, L1, N); /* get Lyand Ly =L, - L, */
Merg_Line(Ly;, Ly, Ly, N,N2);, /* Ly=L,+L, *
for(N’=N-1; N'>=1; N--){ /* N is the number of lines in L, */
/* get all possible set L, with lines’ number N’, if any set has Bre-
senham Cover Property, the function return TRUE, otherwise re-
turn false. */

if(Find_ set_ lines(Ly, Lo, N'){

N=N’;

}
else break;
}
Return (L, +Ly);

In the function Migration_Line(L,, N, L,, N2), if we find a
line whose pixels are included by other lines in Ly, then we
move it to the L,. So there will never be redundant lines in
L,. After search for all possible useful lines is finished, we
use the Extract_Static_Line(Ly, Ly, N, L,, N, N2) function to
get the static lines from L,. That is if any pixel of a line in L,
is covered only by itself, the line is put in L,. After getting
all static lines, we will discard the lines in L, whose all pixels
are covered by the lines in L,.

4. THE APPROXIMATION ALGORITHM

In this section, we present an approximation algorithm which
is based on the optimal algorithm. The first different part of
our approximation algorithm from optimal algorithm is the
function Add_to_L;(Ly, N, x;, y1, X2, ¥2)- In approximation
algorithm, we will discard the line when we try to add it to L,
but find its all pixels can be covered by other lines in L, we
do this because this line is the shorter line, so it has a smaller
chance of being need at later. We also move the dynamic
lines from L, to L, using Migrate Line(L,, N, L,, N2) func-
tion. After we stop to find the possible lines, L; will have
Bresenham Property. We don’t extract L, from L,. We use
heuristic method to minimize our line number in L,, we fetch
one line from L,, put it to L,, then check to see whether or
not we can move two or more lines from L, and don’t change
L,’s Bresenham Property. If we can, the number of lines in
L, will reduced. We try all lines in L, using this idea, when
L, is empty, we will stop, and return L, as our result.

The algorithm is in following:
Input : Raster image with WIDTH x HEIGHT resolution
Output: A vector file contain minimum number of Bresen-
ham lines
/* get the all possible lines */
L;=@;
L2 =g,
for(x= 0; x, <WIDTH; x, ++)
for(y;=0; y1 <HEIGHT, y, ++) {
if (Screen[x;, y,]= 1){
for(x, =WIDTH-1; x,>=x;; X3 --)
for(y2 =y1; y2 <= HEIGHT; y,++) {
/* using Bresenham line drawing alg. to draw the line from(x,, y,) ,
(x3 y2). if all pixels of this line is turned on in the raster image(i.e.
Screen{x,y]=1) then return true, otherwise return false */
if{ Is_a_Bresenham_Line(x, , y1, X3, ¥2)) {
if(Is_Usefull_Line(L;,N,x,,y,,Xs,y2)&&
Is_Usefull_Line(L,,N2, X, ¥1,Xa, ¥2)) {
Add_to_Ly(Ly, Xy, Y1, X2 Y2);
/* move redundant lineinL;to Ly, */
Migrate_Line(L,, N, L, N2); /*N2is #oflineinL, */
}
}
}
)
}

/* use heuristic method to get the minimal number of lines set */
Minimize_Line(L,, N2); /*discarded useless linesin L, */
for(i=1; i <=N2; i++){
Fetch_a_line(1, Ly); /* fetch a line from L, */
Add_a_line(L),1); /*addalinetoL,*/
/* try move two or more lines from L; */
Try_remove_two_more_lines(L, ,N));
} /* end for loop */
Return (L,);

24

1998 International Computer Symposium
Workshop on Image Processing and Character Recognition
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Optimal Algorithm Approximation Algorithm
Execution Time(ms) # of lines Execution Time(ms) # of lines
Figure 5.1-1 30620 7 220 8
Figure 5.1-2 9601 9 110 10
Figure 5.1-3 330930 8 80 8

Table 5.1 the result of vectorizing images

The function Minimize_Line(L;,N2) is used to reduce the
line number in L,. Because there maybe is a line we move it
from L, to L,, it can cover all pixels of some lines migrated
early in L,, so we use this function to remove some useless

line from L,.
5. EMPIRICAL RESULTS

We conducted several experiments to see the performance of
our algorithm. We implemented our algorithm using Bor-
land-C++ 5.0 running on a PC with 200 MHZ Pentium-Pro
processor in a Window 95 environment. We shut down all
other applications so that our program was the only running
application. The times were measured from the program
started till it ended.

5.1 Optimal Algorithm vs. Approximation Al-
gorithm

Our first experiment was to show the performance of our al-
gorithm compared to that of the optimal algorithm. The per-
formance is measured by the number of lines produced by the
algorithms to represent the given raster images. Due to the
extremely slow running time of the optimal algorithm, we
limited the size of input raster images to 16 x 16 with 50 or
fewer useful lines. Three raster images, one dense image as
shown in Figure 5.1-1, and two sparse images as shown in
Figure 5.1-2 and Figure 5.1-3, were used as the input data
and the results are listed in Table 5.1 shown below. The im-
ages have been magnified so each pixel is shown as a square.

Figure 5.1-1 a dense image

b

Figure 5.1-2 a sparse image

Figure 5.1-3 another sparse image

The optimal algorithm ran a lot slowly, which is not surpris-
ing at all. The difference in execution times is more signifi-
cant when the input image is dense. The execution times us-
ing optimal algorithm depend not- only on the density of the
image but also on the number of lines in Ly. Figure 5.1-3 has
more lines in Ly than Figure 5.1-1 does, and that is the reason
why the execution time needed for Figure 5.1-3 is much
longer than that of other images. The number of lines pro-
duced by the approximation algorithm is quite close to the
optimal number in all three cases. It is hard to see if the
closeness of the results have any relation with the sparseness
of the input images.

_25-

1998 Intemnational Computer Symposium
Workshop on Image Processing and Character Recognition
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Using our vectorization Alg. Using ZIP Tool
Input Map (size) Vector file size Comp. Rate Zip file size Comp. Rate
Figure 5.2-1 (5174bytes) 128 bytes 98% 1005 bytes 81 %
Figure 5.2-2(5174bytes) 352 bytes 93 % 1155 bytes 78 %

Table 5.2-1 The results of compression

5.2 Compression Rates

We also conducted experiments to study the compression rate
of our algorithm and compared it to that of ZIP software, a
popular general purpose compression tool. The compression
rate of our algorithm is measure by the size of the output
vector file to the size of the input raster image. We use two
raster images of 64 x 64 resolution, the first raster image is a
bus route map shown in Figure 5.2-1 and the second raster
image is a city map shown in Figure 5.2-2. We compare the
compression rates of our algorithm and the ZIP software. The
results are shown in Table 5.2.1.

Figure 5.2-1 a bus route map

| ==

- | L
.;-"" ~. [
Iy

Figure 5.2-2 a city map

The results show that our algorithm gives a better compres-
sion rate in both input raster images. As one would have
guessed, if the image consists of fewer lines (a sparse image),
our algorithm is much better than the Zip tool. When the im-
age becomes dense, the gap between the performance of our
algorithm and the Zip tool narrows.

6. CONCLUSION

In this paper we prove that to represent a raster image by a
minimum number of line is an NP-complete problem. We
also developed an approximation algorithm to solve this
problem. Our experiments confirm that the performance of
the approximation algorithm is close to the optimal algorithm
for raster images that are mainly formed by lines such as bus
route maps or city maps.

Our algorithm can serve as a special purpose compression al-
gorithm which generates a portable vector file that can be un-
compressed to the original raster image on any devices that
use the Bresenham line drawing algorithm. Empirical results
show that for some type of raster images, our algorithm has
high compression rates and outperforms the general purpose
compression utility ZIP tool.

We only use lines as our primitive geometric object in the
vector file. It will be interesting to see whether our algorithm
can be improved by including more primitive objects such as
circles or lines with thickness greater than 1.

REFERENCES

[1] Bresenham, J. E., “Algorithm for Computer Control of
a Digital Plotter”, IBM Systems Journal, Vol. 4, No. 1,
pp- 25-30, 1965.

[2] Eastman, “Vector vs. Raster: A Functional Comparison
of Drawing Technologies”, IEEE Computer Graphics
& Application, Vol. 10, pp. 68-80, 1990.

{31 Micheal R. Garey, David S. Johnson. “Computers and
intractability”, W.H. Freeman and company, 1979.

[4] Donald Hearn, M. Pauline Baker. “Computer Graph-
ics” Prentice Hall, INC. 1986

[5] Parker, J. R. “Extracting Vectors from Raster Images”,
Computer & Graphics, Vol 12, No. 1, pp. 75-79,
1988.

-26_

	
	21
	22
	23
	24
	25
	26

