1998 International Computer Symposium
Workshop on image Processing and Character Recognition
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Color Video Compression Using Fractal-Based Segmentation Scheme

BIRE - SIEE - IRE
John Y. Chiang, H. C. Liu and C. Z Wang
[ REERARERRTAE
Department of Applied Mathematics
National Sun Yat-Sen University
Kaohsiung, Taiwan 80424

Abstract

Low bit rate color image sequence coding is very
important for video transmission and storage applications.
Color images are usually compressed in a luminance-
chrominance coordinate space, with the compression
performed independently for each coordinate by applying
the monochrome image processing techniques. For image
sequence compression, the design of an accurate and
efficient algorithm for computing motion to exploit the
temporal redundancy has been one of the most active
research areas in computer vision and image compression
[1-4]. Pixel-based motion estimation algorithms address
pixel correspondence directly by identifying a set of local
features and computing a match between these features
across the frames [5]. These direct techniques share the
common pitfall of high computation complexity resulting
from the dense vector fields produced. For block matching
motion estimation algorithms, the quad-tree data structure
is frequently used in image coding to recursively
decompose an image plane into- four non-overlapping
rectangular blocks [6, 7].

1. Introduction

Fractal based image and video compressions have
been studied [8-11]. The theory of iterated contractive
transformations is utilized to record the transformation
function for every partition between the domain and range
block. However, the results reported, 0.68 bit/pixel
compression rate (11.76 compression ratio) with SVR 27.7
dB in the two-dimensional case [8], and 41.80 and 74.39
compression ratio with PSVNR around 29dB and 33dB,
respectively, in the three-dimensional one [9-11], still
leave much room to be desired in the very low bit rate
applications. In order to meet the compression
requirements of the diverse image sequence characteristics,
we propose a robust segmentation technique based on the
fractal dimensions of the ensemble luminance and
chrominance difference, respectively, relative to a
reference frame inside a group of pictures (GOP). The
segmentation criterion employing the fractal dimension of
the GOP frame difference captures and exploits both the
interframe and intraframe redundancy. Since the fractal
dimension of the ensemble of the GOP frame differences,
rather than the value of every interframe pixel difference
itself, is utilized as the basis for splitting, only one
segmentation topology is needed to represent the moving
information along each color coordinate for a GOP.

Sporadic noises, which may cause significant
perturbations in a random fashion, incur large amount of
intraframe and interframe pixel differences leading the
traditional segmentation techniques to divide a region into
many small, fractured partitions. On the other hand, a
fractal based frame difference segmentation scheme is
insensitive to scattered variations in either the spatial or
temporal domains. A spike caused by the random noise in
any single frame will not bring significant deviation in
terms of the fractal dimension obtained from an ensemble
of the frame differences inside a GOP [12]. Therefore, a
metric measures the fractal dimension distance between
two matching regions can better reflect the degree of
similarity than that based on changes in pixel values.

The segmentation criterion discussed in this paper is
based on the fractal dimension of the GOP frame
difference. To this purpose, a modified box-counting
method is introduced in Section 2 for estimating the
ensemble fractal dimensions corresponding to differences
in the digital luminance y, and chrominances C,, C,-In

Section 3, the fractal dimensions obtained, namely, feature
maps, are treated as the major feature for a variation of a
quad-tree segmentation approach, namely, “slicing
floorplan,” by recursively partitioned a rectangle either
horizontally or vertically to form two new rectangles [6].
The partitioning repeats recursively until a covering
tolerance based on metric relating to fractal dimension is
satisfied. The three partitioning topologies converged
independently along Y-C,-C, color coordinates are merged
into a single mask to further increase the compression ratio.
The method proposed is tested on image sequences
containing various motion dynamics in Section 4. The
performance in terms of the compression ratio is tabulated
and the peak signal-to-noise ratio (PSNVR) in all three color
channels for each reconstructed frame are illustrated.
Finally, conclusions are made and future works are
discussed. :

2. Ensemble Fractal Dimension
Estimation

Fractal dimension is a promising feature metric
proposed to characterize roughness and self-similarity in
an image sequence. Roughness is usually resulted from the
edge components in the spatial domain and movement in
the temporal domain, while self-similarity corresponds to
both spatial and temporal redundancy. The above
observation serves as the motivation for employing fractal
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dimension as the major feature discriminator to segment
an image sequence. In this section, a modified box-
counting approach for estimating fractal dimension of an
ensemble of the GOP pixel luminance and chrominance
differences is described. The feature maps corresponding
to the fractal dimensions of the luminance and
chrominance components are used as the bases for the
next-stage slicing floorplan segmentation in the following
section.

ApixelIfx, y ), 1Sx,y<n,t>0,x,y,teN,isa
discrete sample in both the spatial and temporal domains
of a continuous color image sequence. Digital color
images are often acquired in an RGB (red-green-blue)
coordinate system, with the RGB values quantized to
integers within a fixed range. We first convert the original
RGB image to Y-C,-C, system through the following
formulation:

Y] [0257 0504 0.098TR] [16
C,|=|-0.148 —0291 0.439 |G|+ 128|.
c | | 0439 -0368 -0.071] B| |128

Fig. 1 (a) is the first frame F, in consecutive 33 frames of
the color Claire sequence. Fig. 1 (b) — (d) are the
corresponding Y, C, and C, color component images of the
first frame F, in (a), respectively.

For a fixed ¢ value, the two-dimensional vector
composed of n X n pixels is denoted as an image frame F,.
An ensemble of m+1 successive image frames F), F,, ...,
F,.1, is termed as a group of pictures (GOP). A GOP

containing m+/ temporally consecutive image frames is

the basic processing unit considered in our scheme.

Among them, a frame F, is chosen as the reference for all
the other constituent frames within the same GOP. The
reference frame for the aforementioned Claire sequence in
a GOP is the 17" frame, as shown in Fig.7 (a). For every Y,
C, and C, color components, a total of m interframe
differences derived from the matching pixel values in the
same spatial location between F, and the remaining frames
can be derived. The interframe differences Y-Dif(x, y, ),
Cy-Difix, y, ) and C-Diffix, y, ©) represent the pixel
luminous and chromonous variations between the
reference and the #* frames at spatial coordinate (x, y),
respectively. A small value of Y-Diff(x, y, ¢), C;-Diff{x, y, 1)
or C,-Diff(x, y, t) corresponds to a similar intensity or color
component at the same coordinate position along the
temporal direction, while a large one indicates a dynamic
scene caused by motion or sporadic noises. The interframe
differences of the three color components Y-Diff(x, y,1),
Cy-Diff(x, y, 1) and C,-Difflx, y,I) for the Claire sequence
are shown in Fig.2 (a) - (c), respectively, after normalizing
to 255 for ease of observation.

Given the frame differences Y-Diff(x, y, 1), C,-Diff(x, y,
1) and C,-Diff(x, y, ©), how to effectively split the image
plane into rectangular blocks corresponding to regions
moving in unison while at the same time maintain high
compression rate and signal-to-noise ratio is the major task
facing the segmentation scheme. Rather than directly
utilize pixel difference Y-Diff(x, y, ), Cy-Diff(x, y, £) and
C.-Difflx, y, {) as the measure for segmentation, the fractal
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dimensions of the frame differences within a GOP are
employed as the discriminating metric for the slicing
floorplan segmentation scheme in our approach.

A modified box-counting approach, extended to an
image sequence by following Sarkar and Chaudhuri’s
method, is used to estimate the fractal dimensions of the
frame differences Y-Diffix, y, ), C,;-Diffix, y, £) and C,-
Diff(x, y, f) inside a GOP relative to the reference frame F,.
For each color component, a three-dimensional difference
volume ¥V is formed by tiling up the planes of the
interframe difference together, where the value of each
voxel represents the interframe luminous or chromonous
difference between matching pixels I(x, y, r) in the
reference frame F, and Kx, y, {) in the #* frame F,,
I<x,y<sn and 1<t<m+Lt#r. For the sake of

notational clarity, the third parameter ¢ in all interframe
differences Y-Diffix, y, 1), C,-Diff(x, y, 1) and C,-Diff(x, y, 1)
is re-indexed from 1 to m, ie, 1<1<m. The scaling
factor s, used in the calculation of fractal dimension below,
between the temporal and spatial dimensions is defined as
5= % . Fig. 3 illustrates the notations used in this section.

The difference volume V is partitioned into cubes of
size axX axX a. On each cube partitioned, we can follow the
fractal paradigm using a “yardstick” of size a to measure
the magnitude of the interframe difference inside the cube.
Let the minimum and maximum values of the interframe
difference in the partitioned cube enclosing the voxel (x, y,
/) fall into the /- and the j*-fold measurements,
respectively. Then the contribution attributable to this

specific cube is defined as cont(x, y,t)= J=i+l.

Summing up the contributions from all cubes over an
overlapping volumes of size m X mx m centered at voxel
x, » O, ie, the volume including voxels

(x+p9y+q:t+r)a (—%+])Sp,q,r$m2, we have the

total contribution C from this overlapping volume as
follows:

cont (x+p,y+q,l+r).

z
(—%H)s p,q,rs'%

The fractal dimension Fp .

oy for the voxel (x, y, )

inside the difference volume ¥ can be derived from the
contribution C and the scaling ratio s according to the
following fractal formulation:
log (C)
FD (x,y.y = ) 1
0g s

A higher value of FD,,,,, implies abrupt changes in the

neighborhood of the voxel (x, y, #) along the corresponding
Y, C, or C, coordinate in the temporal domain. The
phenomenon can be attributed to the relative movement
between the reference frame and the rest of the frames
belonging to the same GOP or drastic changes in scene
contents. A small FD,,, indicates a relatively stationary

scene following the Y, C, or C, axis along the temporal
direction. According to the above formulation, the
calculation of the fractal dimension is repeated for every

voxel (x, y, ) onthe ¢ =m/2 plane inside the difference



volume V. The dynamic range of the fractal dimension
obtained for a three-dimensional volume is between 3 and

4, The fractal dimension FD,,, is organized as a two-

dimensional array F(x, y), called feature map. This feature
map represents the overall motion dynamics of a GOP by
taking frame F, as the reference. Based on the value of the
F(x, y), the image plane can be classified into intense
moving and stationary areas. A single feature map F(x, )
for each color component representing the fractal
dimension of the ensembile difference, rather than multiple
interframe differences Y-Diff(x, y, 1), C,-Diffix, y, £) and
C-Diffix, y, H), 1<t<m, is utilized as the feature
descriptor in the following segmentation processing. The
feature maps representing the fractal dimensions of the
corresponding interframe differences for each color axis
are shown in Fig. 4 (a) — (c), respectively, after
normalizing to 255 for ease of observation. The head
portion, especially the area surrounding the eyes and
mouth, corresponds to intense motion in the GOP, while
the background and the majority of the torso remain
stationary.

The slicing floorplan coding scheme, introduced in
the next section, segments the image frames into non-
overlapping, varying-size rectangles according to the
ensemble fractal dimension F(x, y) reached for each color
coordinate. The three independently converged splitting
topologies are merged into one single partitioning mask.
The blocks partitioned are then compared with those of the
reference frame. The relative displacements between
matching blocks are recorded and used in the later
reconstruction process.

3. Slicing Floorplan Segmentation

The feature map F(x, ¥), representing the degree of
variation along specific color coordinate in both temporal
and spatial domains, is partitioned by applying vertical or
horizontal cutting lines into rectangular blocks according
to a variation of the quad-tree paradigm, namely, “slicing
floorplan” [6]. The slicing floorplan representation is
created by recursively splitting a single rectangle into two
smaller rectangles, not necessarity the same size, as
opposed to the four equal-sized subsquares in the quad-
tree case. A binary tree can be constructed to represent the
segmentation topology, where the coordinates of the
rectangles are stored in the nodes and the structure of the
rectangles can be derived from the hierarchy of the tree.
The convention that the slicing floorplan algorithm always
splits first along the larger side of a rectangle is observed.
A cutting line L separates a rectangular plane R into two
neighboring ones, g and RZ, having the dissimilarity
between them maximized. The potential cutting line is
tested by comparing the mean value of the constituent
elements on both sides of the line. The difference in terms

of the motion dynamics in the rectangles partitioned, R}
and R?, is discriminated through the amount of disparity

in the mean value of the fractal dimension. A cutting line
therefore differentiates regions with high contrast of
motion dynamics, i.e. stationary versus intense movement,
into two smaller rectangles. A cutting operation is
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performed on F(x, y) when the maximum mean difference
is reached by following:

A cutting line L along larger side of rectangle R is chosen,
if and only if,
for Le R, Maximize( |MRL— MRZ‘ )

where RiAR}=L R UR}=R and , _ 5 Flxuy),
xmer IR

Ffx, y) is the fractal value corresponds to the (x,y)”

position in the feature map and ||R|| the total number of
elements in R.

Once segmented, the variance of the fractal
dimension on each partitioned rectangle is compared with
a threshold to determine whether additional splitting
operation is required.

Ve2T= rectangle R will be segmented in the next

iteration,

where , _ 5 (F(xy}-Mz) | Fx, y) is the feature map
IR

and T the threshold.

This procedure is repeated until the variances of all the
blocks partitioned are less than the threshold T selected,
representing pixels inside a block having a homogeneous
motion dynamics. A homogeneous block satisfying the
variance requirement may subject to different
interpretations depending on the block fractal dimension.
A block with low value of fractal dimension indicates a
portion with less intense activity across the entire GOP. A
rectangular block with uniformly high fractal dimension
corresponds to intense movement and is subjected to
further splitting operation. The rectangular pattern finally
reached is called the partitioning mask for the group of
pictures examined. The slicing floorplan algorithm isolates
relatively stationary portions within an ensemble into
larger rectangular areas and regions with more intense
activities into finer partitioned rectangles. The partitioning
masks corresponding to the Claire sequence for each color
coordinate are shown in Fig. 5(a) - (c), respectively. The
partitioning masks for both the C, and C, axes are much
simpler than that of ¥ axis. This observation remains valid
for all the image sequences tested and serves as the
motivation for merging the three partitioning masks into a
single one to further decrease the amount of data stored.

The locations and sizes of the blocks determined from
the recursive splitting process are used as a mask for the
later motion compensation processing. In order to reduce
the amount of partitioning data stored, the three
partitioning masks for all color coordinates are grouped
together into one single mask. Fig. 5 (d) is the final
partitioning mask obtained after grouping the three Y-C,-
C. masks in Fig. 5 (a) — (c). Every frame within a GOP is
partitioned according to the final mask obtained. Each
rectangle partitioned is associated with an independent
motion vector in each frame. The motion vector of a
rectangle for a frame represents the relative displacement
between the corresponding rectangles in the reference
image and the specific frame currently considered. Only
one partitioning mask is required for the entire GOP in our
scheme as opposed to the general practice that one
segmentation topology is needed to represent the moving
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information for each frame.

The image frames within the same GOP are split
according to the partitioning mask obtained. Each block is
compared with its counterpart in the reference frame
within a limited search region. A match is reached with the
least amount of error for the whole search region and the
corresponding displacement is recorded. Let b, be the /*

block in the mask M and S the search region. For each
block b, & M, a motion vector (dx,,dy,), for the "

frame is determined by exhaustively shifting the pixels
within block 5, of the #* frame F, with an amount

(dx,,dy,),, such that the summed squared error of all

three color components between the pixels inside the

displaced block and those in the matching location of the
reference frame F is minimized, i.e.

(dx;,dy;), is the motion vector for the block b, of mask
M in the &

T {3 S(r+de,y+dy0)-I(x )}

=Y.G.C (xn e
is minimized, where (dx,,dy,) e b,.

frame if and only if

The mask, the motion vector, and the reference frame
are used in the decompression process by segmenting the
image frames into blocks according to the stored mask
topology. Each block b, inside the # frame is

reconstructed by copying the contents of a matching
rectangular area in the reference frame with a

displacement specified by the motion vector (dx,,dy,),.

The three color components of the first frame in the Claire
sequence after decompression are shown in Fig. 6 (a) -

(c).

The computational complexity on the encoding side,
mostly attributed to the calculation of GOP fractal
dimension and motion compensation processes, is much
higher than that of the decoding operation. However, the
decompression process involving only duplication of the
pixel contents from the reference blocks to the matching
locations according to the motion vector is extremely
simple. Due to this desirable property, not only real-time
decompression on the receiving ends is feasible, but also
the implementing hardware cost can be lowered. The
performance of this proposed fractal video compression
algorithm is studied in the next section by employing color
image sequences with diverse motion dynamics.

4. Experimental Results

Computer simulation is performed using the approach
described in the previous sections to demonstrate the
feasibility and efficiency of our approach. Four standard
image sequences - Claire, Susie, Train and Football, with a
resolution of 352 x 240 pixels and a depth of 8 bits per
color channel for a total of 24 bits per pixel - are employed
as test sequences. Fig. 7 (a) — (d) show one typical frame
for each of the four test image sequences.

In our implementation, a GOP is consisted of 33

successive frames. The 17® frame is chosen as the
reference frame. The fractal dimension of the 32 intensity
differences between the reference and the remaining
frames is calculated according to Eq. (1). The dynamic
range of the fractal dimension obtained for the piling of
two-dimensional planes is between 3 and 4. The number
of blocks partitioned relates directly to the compression
ratio and PSNR. As the number of blocks increases, the
higher the PSNR and the lower the compression ratio, and
vice versa. The number of partitioned blocks can be
controlled by adjusting the wvariance thresholds as
formulated in Eq. (2). The peak signal-to-noise ratio
(PSNR) per color channel is defined as:

2
per — channel — PSNR =10log 233 _y4p,
MSE

nxn jist j=l

where MSE=( 1 )ifﬁ(x.,-—iy)z’ xij is the value of a

specific color channel in the original image and ;'E:,-j the

decompressed one. The per-channel-PSNR of every frame
within a GOP for the four test sequences are illustrated in
Fig. 8 (a) — (d). Since the reference frame itself is not
motion compensated, the reference frame has the highest
fidelity and PSNR value across a GOP. The average PSNR
of each color channel is calculated by taking the average
of per-channel-PSNR for all 33 decompressed frames
within a GOP.

In order to decompress the image sequence at the
decoding end, the global partitioning mask, the block
motion vector with respect to the reference frame, and the
reference frame itself needs to be stored. The partitioning
topology contains only rectangles and can be easily
encoded. The size of each motion vector will reflect the
range of search region selected. In our implementation, we
define a window of size 32 x 32 as the search area.
Therefore, 10 bits are sufficient for each motion vector.
The reference frame itself is encoded by the JPEG
standard. The results show consistent low bit rates ranging
from 0.06 ~ 0.08 bit/pixel (corresponding to a
compression ratio 300 ~400) for videos with low motion
dynamics, e.g., Claire and Susie.

5. Conclusion

The utilization of the fraction dimension of the
frame difference, rather than the intensity value of the
frame difference, as the major means for segmentation
allows a more robust and consistent compression result.
The computational complexity on the decoding side is
simpler than that of transform-based algorithms, such as
MPEG, since only duplication of the pixel contents in the
reference blocks to the matching locations is required.
Real-time decompression can be achieved with simplified
hardware requirements rendering lower system cost. As a
practical video compression algorithm, the proposed
method can be utilized in a wide range of image sequence
compression, transmission and archiving applications.
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Fig. 1 (a) The first frame of a GOP containing 33
consecutive frames in the color Claire sequence.
(b} — () The ¥, C, and C; components of the first
frame, respectively.

©

Fig. 2 (a) - {c) The interframe differences ¥-Diffix, y.1),
Cy-Diffix, y, 1) and C-Diffix, y,1) for gach color
coordinate ‘between the first frame and reference

frame in Fig. 6 {(a), after normalizing to 255 for

ease of observation.
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Fig. 4 (a) — (c) The feature map representing the fractal
n i dimension of the interframe difference for each
g color coordinate in Fig. 1 (a) — (c), respectively,
after normalizing to 255 for ease of observation.

Difftx.y.1) Difference volume V

Diffix,y,mi2) .
Difftzy,m) THT
Fig. 3 The relationship between the frame dimension »,
interframe difference Diff(x, y, ) along each color
coordinate, the number of interframe difference m : 13-
in a group of pictures (GOP), and the dimension of ' ' -
the measuring cube a. A difference volume is TI
formed for each color coordinate. -
(@)
(®)
©
rl ) o
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Fig. 5 (a) — {c) The partitioning mask corresponding to the
feature map of the Claire sequence in Fig.3 (a) — (<),
respectively. (d) The final partitioning mask obtained
after grouping the three ¥-C,-C, masks in {a) — {c).

(©)

Fig. 6 (a) ~ (c) The decompressed ¥, C, and C, color
components of the first frame in the color Claire
sequence.

Fig. 7 The reference frame, also the 17" frame, in a GOP
consisting of 33 consecutive frames, for the test
sequence: (a) Claire, (b) Susie, {c) Train, and (d)
Football.
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Fig. 8 The PSNR of each color component for every frame
in the test sequence: (a) Claire, (b) Susie, (c) Train,
and (d) Football.
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