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ABSTRACT

In this paper, we propose a fast motion estimation
algorithm using pyramid hierarchy. Hierarchical
Minkowski inequality is adopted to reduce the complexity
of Mean Absolute Difference (MAD) computations. A
top-town procedure is developed to search motion vectors
hierarchically so that the total number of matching points
is reduced drastically. The spatial/temporal correlation is
also considered to further speed up the searching process.
Experimental results show that the proposed algorithm
can achieve high computation efficiency while
maintaining comparable PSNR performance.

1. INTRODUCTION

Motion estimation plays a very important role in motion
compensated coding algorithms. It’s also the most time
consuming operation in the codec system. The amount of
computation required for MAD-based full search for
motion estimation can take up to 70-80 % of the
computing power of the whole encoding system [3]. Many
research works on block-based motion estimation
algorithms were conducted to reduce the computational
cost in three ways: 1) fast search by reduction of the
number of candidate blocks for matching [1-2]; 2) fast
algorithm by reduction of the computational complexity of
the matching criteria [3-6]; 3) fast algorithm by block
motion field subsampling.

The mean absolute difference (MAD) is the most widely
used matching criteria, the MAD of two N x N blocks X
and Y is defined as

N N
MAD(X,¥) =D >|X(i, )=Y (i, ) (1)
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The Successive Elimination Algorithm (SEA) proposed in
[1] adopted the well-known Minkowski inequality concept
shown below

I(XI +3) =y + y,)| SI(XI "yl)l ‘*‘I(xz -)'z)‘ )

to derive the following inequality:
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Then, based on Equation (3), a fast search algorithm was
developed in [1] which led to about three times faster than
the Full-Search Algorithm (FSA). The Block Sum
Pyramid Algorithm (BSPA) in [2] made extension of
Equation (3) to a multiresolutional pyramid form. In the
BSPA, the pyramid hierarchies for the candidate blocks of
the previous frame and the template block of the current
frame are firstly constructed. In each block sum pyramid
hierarchy, as shown in Fig. 1, each pixel in the m-th level
is the sum of 2 x 2 neighboring pixels in the (m-1)-th level,
that is

X", 5) =
X2 =12/ - D+ X7 2= 127)+ X 202/~ D+ X7N2i2)) (4)

For an N X N block (N = 2*), The m-th level MAD is
defined as:

M=

MAD"(X,7)= Y Y

=l =l
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Then we can obtain the following multiresolutional
Minkowski inequality [2].

MAD“(X,Y)ZMAD’(X,Y)Z--AZ MAD’"(X,Y)zMAD'(X,Y) 6)
and

MAD(X,Y) = MAD(X.Y) (T)

Fig. 1. Block Sum Pyramid Hierarchy for a 8 x 8
block
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The pyramidal structure of the BSPA makes it more
efficient in computation than the SEA, and both methods
achieve the same performance with the full search
algorithm (FSA). The BSPA is summarized as follows.

1. Select the motion vector of the corresponding
block in the previous frame as the initial guess,
and the MAD corresponding to the motion vector
is chosen as the current MAD.

2. Construct the block sum pyramids for each
candidate block in the search area of the previous
frame.

3. Construct the block sum pyramid for the template
block.

4. For a candidate block, compare its hierarchical
MAD™ values in (5) with the current MAD and
check the following.

A. If the calculated MAD™ is larger than the
current MAD, eliminate this candidate and
got to Step 5.

B. If the calculated MAD" is less than the
current MAD, set m = m -1 and repeat Step
4 until down to the bottom level. Replace
the current MAD with the calculated MAD
at the lowest level (m = 0) and select this
candidate block as the current match.

5. Repeat Step 4 for other candidate blocks until all
the candidate blocks are compared.

2. THE PROPOSED FAST MOTION
ESTIMATION ALGORITHMS

2.1 Hierarchical Motion Estimation Using Block
Sum Pyramid

As mentioned above, the methods described in [1-2] just
focused on reducing the cost of block-matching distortion
computation. Though the computation cost can be
effectively reduced using these two methods, they are still
time consuming when the search area becomes large. In
ITU-T H.263 standard the search area is a 32 X 32 window
(normal mode) or a 64 x 64 window (unrestricted motion
vector mode), which leads to up to 1024 and 4096 motion
vector candidates respectively. The extra computation and
memory costs to compute and store the block sum
pyramids are also remarkable for large search area.
Hierarchical search algorithms can drastically reduce the
number of the searching candidates so as to reduce the
aforementioned costs while maintaining comparable
matching quality. In fact, the intrinsic multiresolution
nature of the block sum pyramid algorithm makes it easy
to be performed in a hierarchical manner.

In this paper, we propose an algorithm which takes
advantage of both the high efficiency of matching criteria
computation in BSPA and small number of matching
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candidates in hierarchical search algorithms. The proposed
algorithm is described as follows,

1.  Construct the block sum pyramids for each non-
overlapping block in the search area of the
previous frame.

2. Construct the block sum pyramid for the template
block.

3. At the top level (m = M), search the block with
minimum absolute difference, that is
X, =ag .-.;“33 MADY(T, X, )
where R is the predefined search pattern at
Level M. Then compute MAD®(T.X; ) and use it
as the current MAD refernce: MAD yrrent-

4. Search the best matching block with minimum
MAD value within the reduced search grid R”
using the Steps 4-5 of BSPA described in Sec. 1.

5. Set m-= m-1, shrink the search area and reduce
the step size (2™) then repeat Step 4. The size of
the search area could be a function of the
minimum MAD value obtained from the upper
level. The simplest case is to halve both the
horizontal and the vertical sizes used in the upper
level.

6. Repeat Step 5 until it goes down to the bottom
level.

2.2 Hierarchical Fast Search Based on the
Spatial/Temporal Correlation

The study in [3] showed that there might often exist high
spatial/temporal correlation for the motion vector values
of adjacent blocks since they might belong to the same
moving object and have similar motion behavior.
Therefore it often makes sense to predict the motion
vector value of the template block from the motion
information of its spatially or temporally adjacent blocks.
As shown in Fig. 2, we take into consideration the
correlation between the motion of the template block and
its spatiatly/temporally adjacent blocks to further speed up
the searching process, and the Step 3 in the searching
procedure mentioned in Sec. 2.1 is modified as follows.

3. Compute the MAD values with motion vectors
corresponding to the adjacent blocks of the
template block in the current frame and the
previous frame. Then choose the motion vector
with minimum MAD value as the initial guess
and its associated MAD is set to be MAD uren
A. If MADyren is less than a predetermined

threshold MADy,, the search process
terminates and the motion vector obtained
above is chosen as the best match.

B. If MAD¢yqen is larger than MADy,,, but less
than the other threshold MADy,, some
existing fast algorithms well suited for small
area search (e.g., BBGDS algorithm in [6])



could be combined with the block sum
pyramid algorithm so as to form a very
efficient search algorithm to search the best
match.

C. If MAD.yrem is larger than MADy,, the
hierarchical procedure described in Steps 4-
6 in Sec. 2.1 is used to search the best match.

Frame n Frame n-1
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Fig. 2. The adjacent blocks with spatial/temporal
correlation to the template block.

2.3 Complexity Analysis

The computational complexity analysis for the proposed
algorithm is divided into two parts: 1) the cost for
constructing the hierarchical block sum pyramids; 2) the
cost for hierarchical matching. Assuming the image size is
W X H, it requires 3y g to construct the block sum

4m
pyramids for all non-overlapping candidate blocks at the
m-th level. With block size of 16 x 16, the number of
levels is 4, the total number of addition operations is

' -
ZinszszH (8)
4m 48

mal

which is much less than the number: 4(2W-1)(H-1)
required for the BSPA [2]. For each template block, this
computation overhead will cost only about 1.5 cadidate
matching operations.

For N x N template block size, and L x L search area, The
total number of matching cadidates required for the
algorithm described in Sec. 2.1 depends on the search
pattern defined for each level. If the search pattern used in
the three step search (TSS) algorithm is adopted, only
( L —1)  x log, N candidates will be matched for each

template block which is much less than L? matching
operarions performed in FSA, SEA, and BSPA. The
number of search candidates can be further reduced by
adopting the spatial/temporal correlation stated in Sec.
2.2. The memory cost required for the proposed algorithm
to store the block sum pyramids is also much less than the
BSPA since only a reduced set of block sum pyramids are
computed and stored.
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Fig. 3. Comparison of PSNR performance of various
algorithms.

3. SIMULATION RESULTS

The PSNR performance comparison of our proposed
algorithm with FSA, TSS, BBGDS, and BSPA is shown in
Fig. 3. If the matching pattern used in TSS is adopted, the
PSNR performance of our proposed algorithm in Sec. 2.1
is actually the same with TSS. Our method, however,
achieve 2 to 5 times faster speed than the TSS depending
on the motion statistics of the test image sequences. The
modified algorithm proposed in Sec. 2.2 can achieve
comparable PSNR performance for both slow and fast
motion conditions compared to other methods, and the
computing power required is pretty low. Table 1 shows the
average PSNR performance for the three sequences:
Salesman, Miss, and Football.

TABLE I Performance evaluation of various algorithms

Salesman Miss Footbail
Algorithm { DFD |PSNR| DFD |PSNR| DFD | PSNR
FSA 2.70 135.86| 1.78 {39.75| 6.19 | 28.57
TSS 2.89 |35.09 | 1.93 {3924 | 7.55 | 26.41
BSPA 270 {3586 1.78 | 39.75| 6.19 | 28.57
BBGDS | 2.75 | 35.63 | 1.94 |39.33 | 7.00 | 26.89
prc;g;esed 2.79 | 3549 | 1.94 | 3931 6.57 |27.64




1998 Intemational Computer Symposium
Workshop on Image Processing and Character Recognition
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

4, CONCLUSIONS

In this paper, we propose a fast motion estimation
algorithm using hierarchical search based on pyramid
hierarchy. Hierarchical Minkowski inequality is applied to
reduce the complexity of Mean Absolute Difference
(MAD) computations. A top-town procedure is developed
to hierarchically search motion vectors from coarse to fine
so that the total number of matching points is reduced
drastically, which also reduces the computation and the
memory costs for the construction of block sum pyramids.
The spatial and temporal correlation is also taken into
consideration to further speed up the searching process.

The experimental results show that the proposed algorithm
can not only achieve higher computation efficiency but
also provide comparable PSNR quality. The complexity
analysis is also made to verify the computing power
required for the proposed algorithm.
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