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ABSTRACT

In this paper, we design a self-stabilizing algorithm which
finds a 2-center for a distributed system with a tree
topology. Our algorithm is based on the algorithm in
[14,15]. The latter algorithm enables us to find the center
(or centers) for the tree. If we sever the tree at the center
(or centers), we obtain two subtrees. One of the major
works in this paper is to show that if we pick a center from
each subtree, the two picked centers will constitute a 2-
center for the original tree. With this in mind, we design
our algorithm, so that it is equipped with the ability of
*“ sensing ” the two subtrees and then finding out a center
in each of them.

Keywords: Distributed systems, self-stabilizing algorithms,
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1. INTRODUCTION

The notion of self-stabilization in distributed system first
appeared in the classic paper by E.-W. Dijkstra [3]. Ac-
cording to him, a distributed system is self-stabilizing if
regardless of any initial. state, the system can adjust itself
automaticaily to eventually reach a legitimate state in a
finite number of steps and then remain so thereafter until it
is incurred a subsequent transient failure.

In this paper, we propose a self-stabilizing distributed
system with a tree topology. The goal of our system is to
identify a 2-center for the tree system. Therefore, we
define the legitimate state to be those states in which a 2-
center for the system can be identified. The algorithm in
our system utilizes heavily the center-finding algorithm in
Karaata et al. [15]. As in [15], our system also assumes the
existence of a central demon.

The rest of this paper is arranged as follows. In Section 2,
some relevant information about Karaata’s algorithm is
presented. In Section 3.1, the theoretical foundation of our
system is established. In Section 3.2, the algorithm of our
system is proposed. Section 3.3 explains our algorithm.
Finally in Section 3.4, some words about correctness
conclude this exposition.

2. KARAATA’S ALGORITHM

Since our algorithm is based on Karaata’s algorithm which
finds the center (or centers) of a tree, some useful infor-
mation about Karaata's algorithm will be presented here

for later reference.

We note first that the underlying topology of Karaata’s
system is a tree; the vertices of the tree represent proces-
sors; the system assumes the existence of a central demon
who can randomly select one among all the privileged
processors to make a move; the central demon need not be
fair in any sense.

Next, we define the concept of a center of a tree. Let T =
(V, E) be a tree. For i, j €V, let d(i, j) denote the distance
between i and j, i.e., the length of the unique simple path
in T which connects 7 and j. Let e(i) = max {d(ij) | j€V}
denote the eccentricity of a vertex i, i.e., the distance
between i and a farthest vertex from i in T. A center of T is
a vertex with the minimum eccentricity.

The following proposition states a well-known property
regarding centers of trees. The proof of this can be found
in theorem 2.1 of [1].

Proposition 1 A tree has a single center or two adjacent
centers (cf. Figure 1 and Figure 2).

e(s).—.s e(9)=4

e(3)=4 e(7)=6
e(10)=6
Figure 1 Eccentricities of vertices in a

tree. The only center of the tree is marked
by double circles.

Figure 2 Eccentricities of vertices in a
tree. Here, the tree has two centers, which
are marked by double circles.
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In order to describe the algorithm, we first define some
notations: A(f) is a local variable of the vertex i, called the
h-value of vertex-i. N(i) = {j€V'| {i, j} €E } denotes the
set of neighbors of vertex i. N(i) = { h(j) | jEN(G) }
denotes the multi-set of h-values of the neighbors of i.
N; () = N,(i) - { max(N,(D)) } denotes all of N,(}) with
one maximum h-value removed. For example, if N,(i)

={3,4,4}, then N, ()={3,4}.

To facilitate the description of this algorithm, we introduce
the following condition on the A-value of vertex i, called
the height condition: we say that vertex i satisfies the

height condition if

(1) iisaleafandh(i)=0or

(2) iisnotaleafand 4(5) = 1+ max N, (i)
The following is the Karaata’s algorithm:
[(iisaleal) A h()) =0 — A(i):=0

(iisnotaleaf) A h() # 1 + max N, (i)
= h()=1+maxN; (D]

When all the vertices in 7T satisfy the height condition, we
say that the system is in legitimate state, and the center (or
centers) of T is the only vertex whose A-value is greater
than or equal to the A-values of all neighboring vertices (cf.
Figure 3 and Figure 4). It is clear that the purpose of
Karaata’s algorithm is to ensure that each vertex satisfies

the height condition.

h(B)=0 h(8)=0

h(2)=1

h(3)=2
@ h(10)=0

Figure 3 A legitimate state with only one
center. Every vertex in the tree satisfies the
height- condition.

h(1)=0 h(7)=0

h(8)=0 h(9)=0

A(1)=0 h(2)=1

h(3)=2
a h(7)=0

Figure 4 A legitimate state with two centers.
Every vertex in the tree satisfies the height-
condition.

A(5)=1

In [15], the convergence property of the algorithm is
proved. The closure property of the algorithm is trivial,
because one can easily see that when the system reaches a
legitimate state, every processor in the system satisfies its

height condition and will not be privileged any more. Thus, -

the whole system is in deadlock and will stay in the legiti-
mate state.

3. OUR ALGORITHM

As mentioned previously, our goal is to design a self-
stabilizing distributed system with a tree topology which
can identify a 2-center of itself. So, the underlying topol-
ogy of our system is a tree; the vertices represent proces-
sors; our system also assumes the existence of a central
demon who can select one among all the privileged
processors to make a move; but, unlike Karaata’s system,
our central demon is fair, i.e., under such a central demon,
there will not exist any infinite sequence of moves in our
system in which certain processor only moves finitely
many times.

3.1 Theoretical Foundation

We begin this subsection with some notations and termi-
nology. Let T = (¥, E) be a tree. A subset of ¥ which con-
sists of 2 vertices will be called a 2-set in T If X is a 2-set
in Tand v is a vertex in 7, then the distance between X and
v, d(X,v)=mind(x,v) and eccentricity of X, e(X) =
max a(x,v). A 2-center of Tis a 2-set in T with the mini-
mum eccentricity. For example, let X={2, S}, Figure 5
shows the distance between X and all nodes in 7, and we
know the eccentricity of X, e(X)=2. In Figure 6, X, ={3, 5}
is a 2-center of T because it has the minimum eccentricity
among all the 2-sets in 7.

HX1)=1 dX2)=0
dX3)=1 dX4)=1
dX5)=0 HX6)=1
HXT)=2 KXB)=2
&X9)=2 KX 10)=1
o eX)=2

Figure 5 The eccentricity of a 2-set X.

{1,2) e(x)=5
{1,3) e(X,)=4
{

X=(3.5) e(X)=2
X.=(3.6) e(X,)=2

eX)=2<e(X) foralli
;. X={3, 5} is a 2-center of T

Figure 6 A 2-center of T.
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First we need a lemma about centers of trees. One can
easily see that this lemma is a stronger version of previous
proposition 1.

Lemma 1 Let L be a longest simple path of T.
Then (1) if the length of L is 2/, then T has a unique center
C, namely, the midpoint of L, and e(C) = /;
(2) if the length of L is 2/+1, then T has 2 centers C,
and C,, namely, the two midpoints of L, and
e(C))=e(CH=I+1.

According to the number of centers and the degree of the
center (or centers), we have the following five cases to
consider:

(1) when T has one center C and deg(C) =2

(2) when T has one center C and deg(C)=3

(3) when T has two centers C,, C,and deg(C,)= deg(C,)=
2

(4) when T has two centers C,, C, and one of the centers
has the degree greater than or equal to 3

(5) when T has two centers C,, C, and deg(C,)=3,
deg(C)=3

In each of the above five cases, we partition the tree T into
two subtrees, T, and T,

(1) When T has one center C and deg(C)=2

o
The path aCb represents a longestsimple path of 7.

Figure 7
(2) When T has one center C and deg(C)23 -

! /
TZ
(a—* O
o
The path aCb represents a longest simple path of T'.

Figure 8
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(3) When T has two centers C,, C, and deg(C,)=deg(C,)=
2

L

T
@ S
c, c

1

The path aC,C,b represents a longest simple path of T..

Figure 9

(4) When T has two centers C,, C, and one of the centers
has the degree greater than or equal to 3

The path aC,C\b represents a longest simple path of 7.

Figure 10

(5) When T has two centers C,, C, and deg(C,)= 3, deg(C,)
23

The path aC,C,b represents a longest simple path of T.

Figure 11

The main theorem of this paper claims that in all the
above five cases, if B, is a center of T, and B, is a center of_
T,, then {B,, B,} is a 2-center of the original tree T.

There are 17 cases to prove:
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1. Thas only one center C, deg(C)=2, and T, as well as T,
has only one center.

2. T has only one center C, deg(C)=2, and one of T, and
T, has two centers, while the other has only one center.

3. Thas only one center C, deg(C)=2, and T, as well as T,
has two centers.

4. T has only one center C, deg(C)=3, and T, as well as
T, has only one center.

5. T has only one center C, deg(C)=3, and T, has only
one center, while T, has two centers.

6. T has only one center C, deg(C)=3, and 7, has two
centers, while 7, has only one center.

7. T has only one center C, deg(C)=3, and T, as well as
7, has two centers.

8. T has two centers C,, C,, deg(C,)= deg(C,)= 2, and T,
as well as T, has only one center

9. T has two centers C,, C,, deg(C))= deg(C,)= 2, and
one of 7| and T, has two centers, while the other has
only one center.

10. T has two centers C,, C,, deg(C))= deg(C,)= 2, and T,
as well as 7, has two centers.

11.7 has two centers C,, C,, one of C, and C, with the
degree is greater than or equal to 3, and T, as well as 7,
has only one center.

12.7 has two centers C,, C,, one of C, and C, with the
degree is greater than or equal to 3, and 7, has only one
center, while 7, has two centers.

13.7 has two centers C,, C,, one of C, and C, with the
degree is greater than or equal to 3, and 7, has two
centers, while T, has only one center.

14.7 has two centers C,, C,, one of C, and C, with the
degree is greater than or equal to 3, and 7, as well as T,
has two centers.

15. T has two centers C,, C,, deg(C))23, deg(C,)=3, and
T, as well as T, has only one center.

16.T has two centers C,, C,, deg(C\)= 3, deg(C,)=3, and
one of T, and T, has two centers, while the other has
only one center,

17.T has two centers C,, C,, deg(C\)2 3, deg(C,)=3, and
T, as well as T, has two centers.

Based on the above theoretical foundation, our algorithm
is therefore designed to search for the center (or centers) of
T first and then search for the centers B, and B, of the
subtrees 7, and T, respectively, because we then get a 2-
center {B,, B,} of T.

3.2 The Algorithm

In order to describe our algorithm, we introduce three local
variables of each processor i as follows: 4,(/) and h,(i) are
local variables of vertex i with nonnegative integer values,
and a(i) is a local variable of vertex i, which indicates the
identity of one of /s neighbors or is set to be o, depend-
ing on situations. In addition, we will use the following
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notations. We define N, (i) as follows:

{h(NJjeN@Aj#a()} if(hn(i)ZmaxNh ®

Adeg(i)23)

Ny, () =1 ()1 J € NG - {h (K)}) U {0} if (A, (i) < max N, (1))

ATk e N(@)s.t.i=a(k)

{h (D] e N otherwise

Definitions of N, () and N; () and N » (i) are analogous
to those of N,(i) and N; (j) in Karaata’s algorithm in sec-
tion 2. Height-conditions on 4,-value and height-condition
on hy-value are defined analogously to the height-condi-
tion on A-value in section 2.

The following four predicates will be used in our algo-
rithm to set priorities.

Pl=deg(d=1Ah()=0

P2=deg(D22Ah(H)=1+ max N, )

P3= deg(D=3 A h,(l)gmaxNhI D AaG)=
mazx{j €N@() = max N, (0}

PA=[h,()<max Nhl OV =2 max Nh, 6))
ANdeg(i) =2)]Aa(i)= oo

Now, our algorithm is ready.

R1: deg(i) = 1 Ah(D#0 — hy(i):=0

R2:deg(NZ2 A R(D=1+ max N, 6]
- h@H=1+ max N, )

R3: (P1V P2)Adeg(i)=3 A h(zmax N, (i)

A a(i) = max{j € N(D|h(j) = max N, ()}

= a(i) = max{j ENWIA () = max N, ()}
Ra: (P1Vv P2YA[I() <maxNhl 0]

\% (h,(i)gmaxNh (D) A deg(i) = 2)] A a(i) =

—a(i) :=c0

R5:(P1V PYA(P3V PA) A [deg(i) = 1
Vv (h(DZ max N, (DA deg(i) =2)1 A h()#0
— h(7)=0

R6: (P1V P2YA(P3V PHA [(h,(i)gmaxNh‘ 03]
Adeg(iY23)V (deg()Z2 A k(i) <max N, )
Ah(i)y=1+ max N, 0]

= (i) :=1+maxN, (i)

3.3 Description and Explanation

Each processor in the system is equipped with all the
above 6 rules. Note first that R1 and R2 are exactly the
Karaata’s algorithm on A,-value, the goal of which is to



identify the center (or centers) of the tree 7. If there is no
obstacle which prevents the system from continually
applying R1 and R2 to processors, the above goal will be
eventually accomplished, i.e., the system will eventually,
in a finite number of steps, reach a state in which all proc-
essors of the system satisfy the height-conditions on A,-
value. When this happen, we shall say that the system has
reached GOAL ONE. Then, the center (or centers) can be
identified because it is the only processor (or processors)
in the system which has its 4,-value greater than or equal
to those of its neighbors; and thereafter, rules R1 and R2
will not be enabled any more and h,-values of all proces-
sors will stay static. Since in each processor, due to the
device of our algorithm, the rules R1 and R2 have the first
priority of being enabled, and since the central demon in
our system is a fair one, rules Rl and R2 can be
continually applied to processors in the system until they
eventually cause the system to reach GOAL ONE, in a
finite number of steps. We should reiterate here that the
role of the fair demon is to prevent the system, when it has
not reached GOAL ONE yet, from continuously executing
rules other than R1 and R2, while not executing R1 and R2
at all, and thus producing an obstacle for the system to
reach GOAL ONE.

From the above discussion, we see that the priority of R1
and R2 together with the fair demon ensure that the system
will reach GOAL ONE in a finite number of steps. So
from now on, we may assume that the h,-values of all the
processors in the systems satisfy the height-conditions and
stay static. The center (or centers) can then be identified
by examining h,-values and the tree 7 can be suitably di-
vided into two subtrees 7, and 7,. We then apply Karaata’s
algorithm, using h,-values, on both subtrees, in order to
find centers in them. RS and R6 serve for this purpose
while R3 and R4 serve for solving some technical difficul-
ties which will be discussed later.

There are five cases (as mentioned previously) to discuss.
Here we explain in details for case 1 only. For other cases,
the explanations are similar.

Case 1 (when T has only one center C and deg(C) = 2 (cf.
Figure7) )

First, T is divided at the center C into two subtrees 7, and

T,, in an obvious way. The key point in this case is that the
center C should be treated as a leaf node in both subtrees
T, and T,. For this reason, when we apply Karaata’s
algorithm, using h,-values, on T, and T, in order to find
centers in 7, and T,, there will be no conflict between
dealing with C in T, and dealing with C in T, because on
both occasions, we need to do the same thing—setting the
hy-value of C'to be zero. R4, RS and R6, but not R3, apply
in this case. One can easily see that the system will
converge, in a finite number of steps, to a legitimate state,
i.e., (1) all processors will satisfy the height-conditions on
h,-value and h,-value except that the center C has its own
h,-value equal to zero, and (2) the a-values of all nodes
will become oo, Then no processor in the system will be
privileged any more and the whole system is in deadlock
and stay in the legitimate state. At this time, centers in
both subtrees T, and 7, can be identified, because they are
the only nodes in T whose A,-values are greater than or
equal to the h,-values of their neighboring vertices. Once
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centers in both subtrees are identified, a 2-center of the
original tree T is also identified, according to our main
theorem.

3.4 Correctness

To show our algorithm is self-stabilizing, we need to show
(1) the convergence property, i.e., regardless of the initial
state and regardless of the privilege selected each time for
the next move, our system is guaranteed to find itself in a
legitimate state after a finite number of moves, and (2) the
closure property, ie., once the system arrives at a
legitimate state, it will stay in legitimate states unless a
subsequent transient error occurs. However, since all this

- can be seen easily from the description and explanation in

subsection 3.3, there is really nothing more to say.
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