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Abstract-Few studies focused on the practical 
performance evaluation of OVSF multicode-
allocation system in WCDMA. This paper proposes a 
model for evaluating the performance. From the 
model, we derive the expressions of call blocking 
probability and bandwidth utilization, both of which 
are two important performance measures in the 
system. Simulation results present that the measures 
seem to work. Subsequently, we apply the measures 
to solve a utilization optimization problem in 
consideration of network planning. As a 
consequence, the proposed model can approximately 
evaluate a multicode-allocation system, which 
should be useful for WCDMA networks. 
 
 
1. Introduction 
 

Orthogonal variable spreading factor (OVSF) 
code transmission in Wideband-CDMA (WCDMA) 
supports a variety of wideband services from low to 
high data rates [1,2]. Both the forward and reverse 
links in WCDMA can apply only one OVSF code, 
single code, or multiple OVSF codes in parallel, 
multicode, to match the requested data rate by a user 
[2-9]. The OVSF codes are limited resources so that 
operators need to utilize them adequately. Call 
blocking probability (CBP) and bandwidth 
utilization (BU) are two important performance 
measures in the OVSF code-allocation systems, 
which represent the quality of service for subscribers 
and the profit of an operator, respectively. A code-
allocation system can be defined as a 3G cell (there 
is one or few cells in a Node-B, the 3G base station). 

In this paper we propose the queueing model 
Mφ(x)/M/c/c to evaluate the performance of an OVSF 
multicode-allocation system. Single code-allocation 
system can be viewed as the multicode-allocation 
system with only one RAKE receiver (RAKE 
combiner). However, the model has just a linear 
number of states corresponding to the number of rate 
resources, which can be realized to solve its 
equilibrium equations. Finally, we apply the 
performance measures to solve a BU optimization 

problem, which can be considered in WCDMA 
network planning. 
 
2. OVSF multicode-allocation system 
 

In WCDMA, one spreading operation is the 
channelization that transforms each data symbol into 
a number of chips. The number of chips per data 
symbol is called spreading factor. The channelization 
codes are OVSF codes that preserve the 
orthogonality between channels of different rates. As 
shown in Fig. 1, a code tree recursively generates the 
OVSF codes based on a modified Walsh-Hadamard 
transformation [2]. k

SFchC ,  represent the OVSF codes, 

where SF is the spreading factor of a code, k is the 
code number, and 1 ≤ k ≤ SF = 2n. The maximum 
spreading factor SFmax usually equals the system 
capacity. Without loss of generality, the data rates 
described later are normalized by the basic data rate 
Rb that represents an OVSF code with SFmax. 
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Fig. 1.  Code tree for generation of the OVSF 

codes. 

Generally, a request rate Ri for call i can be 

expressed in a polynomial as ∑
=

=
n

j

j
ji rR

0

2* , where 

rj∈{0,1}, n = log2(SFmax), 1 ≤ Ri ≤ SFmax, and Ri is 
the value of a multiplication of Rb. Then a user 
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equipment (UE) equipped with π RAKE receivers 

can convey only a multicode rate Ri with π≤∑
=

n

j
jr

0
. 

If a rate Ri with π>∑
=

n

j
jr

0  
is requested, then an 

approximate multicode allocation has to be 
performed. For example, the call i can be allocated 
with an approximate and slightly higher multicode 
rate limited in π codes, which can be expressed as 
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When π = 1, the approximate multicode rate forms 
an approximate single-code rate. 

Before a code allocation, a cell has to check its 
available system capacity. In the code-limited test, 
the system capacity is equal to SFmax⋅Rb in the cell. In 
fact, the cell may run out of the codes because the 
number of OVSF codes is limited. Then the new 
incoming calls in this moment will be blocked 
(rejected). CBP denotes the blocked probability of 
incoming call requests in a cell, regarded as the 
blocked calls divided by total calls during a long 
period of time. BU represents the utilized rate of 
total bandwidth in a cell, which can be defined by 

),()( max
1

max SFT
SF

SF
T total

N

i i

i
duration ⋅⋅∑

=

 

where N is the number of the successful calls during 
the total observing time Ttotal, and SFi is the 
spreading factor of the i-th successful call with the 
duration i

durationT . 
 

3. Modeling 
 
3.1. Mφ(X)/M/c/c 
 

In general, the number of OVSF codes with the 
maximum spreading factor c = SFmax is the system 
capacity in a cell, i.e., the cell has totally cRb rate 
resources. The c basic-rate codes can be explained as 
parallel multiple servers to serve c channels 
simultaneously. Therefore, an OVSF multicode-
allocation system can be seen as a multi-channel 
queue, having c servers in parallel, with batch arrival. 
A new call requesting kRb, which will be allocated 
by an approximate multicode with φ(k)Rb, can be 
seen as a group arrival with the size φ(k), where φ(k) 
= φ(k, π). In the other aspect, a call served with 
φ(k)Rb can be viewed as φ(k) basic-rate codes 
released simultaneously. Assume that the customers 
arrive in groups following a Poisson process with the 
mean group arrival rate λ, and the service times (call 
holding times) are independently exponentially 
distributed with the parameter µ. Then the multicode 

system can be modeled on the batch-arrival model 
Mφ(X)/M/c/c, which is a subset of MX/M/c/c [10-12]. 

Fig. 2 depicts the state-transition-rate diagram of 
the model. Let the system support the variable rate 
ranging from 1 to φ(n). The arriving group size 
requested has a distribution P(X = k) = xk, where 1 ≤ 
k ≤ n. The average arriving group size 
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)()()( φφ , where n is the 

maximum value that a call can request and results in 
the highest data rate φ(n) allocated. Let k

k )(φλ be the 
batch arrival rate with the request group size of 
Poisson user stream = k, where λλφ k

k
k x=)( , 

∑
=

=
n

k
kx

1

1, 1 ≤ k ≤ n ≤ φ(n) ≤ c, and k, n ∈ N. In Fig. 

2 the dash lines denote other possible batch arrivals 
k

k )(φλ . The model is equivalent to that on the single-

code allocation system if π = 1. 
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Fig. 2.  State-transition-rate diagram for 

Mφ(X)/M/c/c on an OVSF multicode-allocation 
system. 

 
3.2. Equilibrium probabilities 
 

To obtain the steady-state probability Pm for the 
model, we conduct its equilibrium equations as 
follows.
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where 11 −≤≤ cm  and φ-1(m) = φ-1(m, π) is the 
maximum h so that φ(h, π) ≤ m. 
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1

)( kc

n

k

k
kc PPc φφλµ −

=
∑= , which can be used for 

verification. 
However, a recursive program cannot solve the 

equilibrium equations because of overabundant 
recursive levels for large c. Hence we use a 
computer-assist iterative procedure to solve the 
equations in the following. 

Let 1*
0 =P ; then )(*

0
*

1 µλPP = . 
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According to the normalizing condition 1
0

=∑
=

c

i
iP , 

we finally have the equilibrium probabilities of all 
states: 

∑
=
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c

i
imm PPP

0

** , where cm ≤≤0 . 

 

4. Performance evaluation 
 
4.1. Measures 
 

Here two measures of the Mφ(X)/M/c/c model, the 
CBP and BU, are evaluated for two cases in which 
the arriving group size requested has a discrete 
uniform distribution (DUNI) and a geometric 
distribution (GEOM). First, if a new call finds that 
the available capacity in the corresponding system 
cannot satisfy its rate requirement, it will be fully 
blocked. In other words, this is a batch-arrival batch-
loss system. Thus the CBP in the system can be 
written as 
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where 1 ≤ k ≤ n ≤ φ(n) ≤ c, c = SFmax, and π ≥ 1. 
The average number of customers in the system is 

∑
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i
is iPL

0
. It is equal to the mean number of busy 

servers in the system. 
Observing the system for a long period of time T, 

we have the average BU written below. 
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of all possible successful multicode users in the 
period T, where 1/µ is the mean call holding time. 
Through the numerical analysis we can verify that 

cLs /=Ψ . 
Moreover, the average system waiting time can 

be shown as 
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which follows Little’s rule. [13] 
 

4.2. Batch arrival with discrete uniform 
distribution 
 

In comparison between theoretical and 
simulation results, the CBP and BU were calculated 
with µ = 0.00125 and λ ranging from 0.00625 to 
0.075. To gain the good degree of correctness in the 
simulation, we adopted such small λ and µ. In this 
subsection, we consider that the group size requested 
is distributed with DUNI, where the maximum group 
size requested equals n, the maximum group size 
allocated is φ(n), and the average allocated group 
size is g  (the normalized mean). Then the system 
has the traffic intensity µλρ cg /=  and the offered 
load µλ /g . 

Fig. 3 indicates that both the CBP and the BU 
increases as ρ grows up, where n = 16, c = 128, π = 
4, and g  = 8.5. In addition, the figure shows that the 
theoretical results are close to those of the simulation. 
As a consequence, the proposed model seems to 
work for evaluating the multicode performance. 
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Fig. 3.  Comparison between theoritical and 

simulation results in consideration of CBP and 
BU. 

Similarly, Table 1 presents another approximate 
result between the theoretical analysis and the 
simulation, where n = 16, c = 32, π = 2, and g  = 9. 

µλρ cg /=
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Table 1. Comparison between theoretical and 
simulation results using DUNI arrival-group 

distribution. 
 CBP BU 
ρ theoretical simulation theoretical simulation

1.4 0.3753109 0.4196958 0.6526834 0.6455787
2.8 0.5410689 0.5867507 0.7580674 0.7690922
4.2 0.6222220 0.6666620 0.8038209 0.8213842
5.6 0.6726803 0.7150725 0.8312586 0.8500467
7.0 0.7079357 0.7466269 0.8500972 0.8685577
8.4 0.7343755 0.7715199 0.8640941 0.8817360
9.8 0.7551810 0.7898847 0.8750512 0.8921705
11.3 0.7721299 0.8051404 0.8839487 0.9007946
12.7 0.7862991 0.8173375 0.8913694 0.9068861
14.1 0.7983831 0.8268297 0.8976847 0.9123287
15.5 0.8088525 0.8360114 0.9031449 0.9169757
16.9 0.8180397 0.8442116 0.9079262 0.9208874
 

4.3. Batch arrival with geometric distribution 
 

In fact, one can apply any countable distributions, 
e.g., constant, discrete uniform, and geometric 
distributions, for mapping the behavior of the 
arriving group size. In this subsection we consider 
that the group size requested is distributed with 
GEOM, λ varies from 0.00625 to 0.075, and µ = 
0.00125. 

Table 2 lists the normalized probability of GEOM 
Pk ranging from P1 to P16 because of n = 16, the 
multicode mapping from the request group size k to 
the allocated (served) group size φ(k), and the 
different values of g  with accordance to various π.

 
Table 2. The normalized probability of GEOM 
Pk and the multicode mapping from k to φ(k). 

k 
GEOM 

Pk 
π=1 
φ(k) φ(k)*Pk 

π=2 
φ(k) φ(k)*Pk 

π=3 
φ(k) φ(k)*Pk

1 0.18899 1 0.18899 1 0.18899 1 0.18899
2 0.15475 2 0.30949 2 0.30949 2 0.30949
3 0.12663 4 0.50652 3 0.37989 3 0.37989
4 0.10372 4 0.41488 4 0.41488 4 0.41488
5 0.08486 8 0.67892 5 0.42432 5 0.42432
6 0.06949 8 0.55592 6 0.41694 6 0.41694
7 0.05698 8 0.45581 8 0.45581 7 0.39883
8 0.04659 8 0.37271 8 0.37271 8 0.37271
9 0.03812 16 0.61000 9 0.34312 9 0.34312

10 0.03127 16 0.50039 10 0.31274 10 0.31274
11 0.02558 16 0.40935 12 0.30702 11 0.28143
12 0.02094 16 0.33506 12 0.25129 12 0.25129
13 0.01713 16 0.27407 16 0.27407 13 0.22268
14 0.01404 16 0.22464 16 0.22464 14 0.19656
15 0.01149 16 0.18384 16 0.18384 16 0.18384
16 0.00941 16 0.15058 16 0.15058 16 0.15058
Σ 4.83682 g  6.17116 g  5.01034 g  4.84831

Table 3 presents another approximate result 
between the theoretical analysis and the simulation 

using GEOM arrival-group distribution, where n = 
16, c = 64, π = 3, and g  = 4.84831. The result shows 
that the theoretical analysis has good approximate 
values as that the simulation does. 

Table 3. Comparison between theoretical and 
simulation results using GEOM arrival-group 

distribution. 
 CBP BU 
ρ theoretical simulation theoretical simulation

0.38 0.0019395 0.0073788 0.3771463 0.3651531
0.76 0.0549930 0.0814978 0.6747268 0.6394210
1.14 0.1571313 0.1903232 0.8072016 0.7763178
1.52 0.2474997 0.2835579 0.8628169 0.8415415
1.89 0.3186507 0.3567943 0.8916074 0.8786045
2.27 0.3751914 0.4134495 0.9092223 0.9006256
2.65 0.4212449 0.4595864 0.9212304 0.9155875
3.03 0.4596228 0.4969547 0.9300201 0.9259404
3.41 0.4922173 0.5286403 0.9367791 0.9341334
3.79 0.5203355 0.5555008 0.9421667 0.9404891
4.17 0.5449080 0.5793255 0.9465797 0.9455824
4.55 0.5666164 0.5984197 0.9502728 0.9495795

Accordingly, given c = 256, π = 3, and g  = 
4.84831, Table 4 compares the other theoretical 
measures with the simulation, including the 
theoretical BU Ψ, the theoretical BU Ls/c, the 
average number of busy servers Ls, and the average 
system delay Ws. 

Table 4. Comparison of some measures 
between theoretical and simulation results 

using GEOM arrival-group distribution 

ρ Ψ Ls/c
Simu. 
BU 

 
Ls 

Simu. 
Ls 

1/µ
Ws

Simu.
Ws

0.0947 0.0947 0.0947 0.0929 24.2 23.8 800 800.2
0.1894 0.1894 0.1894 0.1846 48.5 47.2 800 797.9
0.2841 0.2841 0.2841 0.2766 72.7 70.8 800 799.2
0.3788 0.3788 0.3788 0.3675 97.0 94.0 800 799.6
0.4735 0.4735 0.4735 0.4578 121.2 117.1 800 799.8
0.5682 0.5681 0.5681 0.5472 145.4 140.0 800 799.6
0.6629 0.6618 0.6618 0.6337 169.4 162.1 800 798.5
0.7575 0.7495 0.7495 0.7114 191.9 182.0 800 797.7
0.8522 0.8210 0.8210 0.7791 210.2 199.3 800 798.5
0.9469 0.8708 0.8708 0.8294 222.9 212.2 800 798.3
1.0416 0.9028 0.9028 0.8645 231.1 221.2 800 799.3
1.1363 0.9231 0.9231 0.8930 236.3 228.5 800 799.1

 
 
5. An application 
 

In this section, we examine an application with 
the performance measures -- an optimization 
problem that finds the optimal number of basic-rate 
codes in a cell for maximizing the BU with a given 
CBP constraint. The optimization problem can be 
described in the following. 
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Given λ, µ, and a CBP constraint CPc, determine 
the optimal value of c so as to 
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To verify the monotonicity of the CBP and BU in 
a system, we traced them by numerical analysis, as 
shown in Fig. 4, where the group size requested is 
distributed with DUNI, g  = 8.5625, n = 16, π = 3, λ 
= 0.00625, µ = 0.00125, and the offered load is 

µλ /g  = 42.8125. Under the constant offered load, 
the higher c is, the lower the CBP becomes. 
Nevertheless, the BU may not have the monotonicity 
under certain offered load such as 42.8125. As a 
result, solving the optimization problem means that 
first determine c for maximizing the CBP restricted 
by CPc, then search for possible larger c so that the 
BU is maximized. 
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Fig. 4.  The presentation of the CBP and BU in 
a system as the number of servers c grows up 

(offered load = 42.8125). 

Table 5 presents each optimal c in various offered 
load and the corresponding BU optimized, where n = 
16, Cpc = 3%, µ = 0.00125, λ ranges from 0.00625 to 
0.05, π varies from 1 to 3 ( g  = 6.17, 5.01, and 4.85, 
respectively), and the group size requested is 
distributed with GEOM. The case of the optimal c 
plus one reduces the BU. On the other hand, the 
CBP exceeds the constraint CPc in the case of the 
optimal c minus one, while the BU decreases in the 
case of the optimal c plus one. This explains that the 
values of c presented in the table are the optimal 
ones. 

In OVSF code-allocation systems, the optimal c 
for maximizing BU can be considered for setting 
about c basic-rate codes in the corresponding cell. 
That is, the cell should be assigned the 

corresponding frequency bandwidth for supporting 
the c codes. 

Table 5. The optimal values of c  for maximizing 
BU with CBP ≤ 3% (Cpc = 3%) in various 

offered load. 
offer
load π

Opt.
c

CBP
[c-1]

CBP 
[c] 

BU 
[c-1] 

BU 
[c] 

BU
[c+1]

31 1 58 0.0327 0.0299 0.5030 0.4975 0.4920
62 1 92 0.0317 0.0297 0.6327 0.6285 0.6244

123 1 156 0.0311 0.0298 0.7448 0.7421 0.7395
185 1 218 0.0309 0.0298 0.7989 0.7970 0.7951
247 1 279 0.0307 0.0299 0.8320 0.8305 0.8290

25 2 47 0.0327 0.0293 0.5054 0.4985 0.4917
50 2 75 0.0308 0.0284 0.6327 0.6276 0.6223

100 2 127 0.0306 0.0290 0.7450 0.7416 0.7383
150 2 177 0.0310 0.0297 0.8000 0.7976 0.7952
200 2 227 0.0304 0.0294 0.8320 0.8302 0.8283

24 3 46 0.0303 0.0268 0.5045 0.4972 0.4899
49 3 72 0.0322 0.0296 0.6384 0.6329 0.6274
97 3 123 0.0306 0.0289 0.7467 0.7432 0.7397

145 3 172 0.0304 0.0291 0.8000 0.7975 0.7949
194 3 220 0.0305 0.0294 0.8330 0.8311 0.8291

 
6. Concluding remarks 
 

We have proposed a batch-arrival model for 
evaluating the CBP and BU in an OVSF multicode-
allocation system, two important performance 
measures. The simulation results agree with the 
predictions derived from the theoretical model. 
Furthermore, we applied the measures to solve the 
BU optimization problem. The proposed model, 
however, can approximately evaluate the system, 
which should be useful for WCDMA networks. 
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