
The Improvement of ACSU of Viterbi Decoder for a Long Constraint
Length with Soft-decision

M.H. Jing, Y.H. Chen, T.K. Truong IEEE Fellow and P.H. Huang

Department of Information Engineering
 I-Shou University

 Kaohsiung, Taiwan, R.O.C
mhjing@isu.edu.tw

Abstract-The Viterbi algorithm is a method based
on the maximum-likelihood principle to decode
convolutional codes. This decoder is considered as
an optimal method. In this decoder, there are two
ways to enhance the error-correct capability, such as
the use of soft-decision and the increasing of
constraint length. However, both ways will also
increase the system complexity. It has found that an
Add-Compare-Select Unit (ACSU) in the decoder is
the most complex module using soft-decision. The
increasing rate in area of an ACSU module is also
proportional to the constraint length. Therefore, the
area reduction of ACSU is the most effective strategy
to reducing the size of a Viterbi decoder. This system
is aiming to reduce the size of the critical module
using soft-decision with constraint length, Q=8. In
this paper, a new architecture that is free from the
absolute value comparison is proposed to reduce the
hardware complexity from original ACSUs. So, the
proposed ACSU can effectively reduce the hardware
and the cost of a Viterbi decoder with larger
constraint length.

Keywords: Convolutional code, Viterbi decoder,
Add-Compare-Select Unit, VLSI, Soft-decision.

1. Introduction

In modern communication systems, the
convolutional code is widely used in wireless
applications, such as cellular phone and satellite
communication. Those decoders are usually
implemented by a Viterbi algorithm. This Viterbi
algorithm is proposed by [1] and then is considered
as a maximum-likelihood decoding algorithm by
Forney [2-3]. Since, the quality of communication
has increasing requirement on noise immunization;
the ways to enhance the error-correct capability of
the convolutional code has two, such as increasing
the constraint length and using soft-decision in
decoder. However, both of these two ways will drive
this Viterbi decoder even more complex.

The architecture of a Viterbi decoder has three
modules, such as Branch Metric Unit (BMU),
Add-Compare-Select Unit (ACSU), and Survivor
Memory Unit (SMU). Among them, the ACSU is the
most complex than other two modules and the
increasing rate of the area of ACSU is proportioned
to the constraint length. For instance, 8 sets of
ACSUs are needed for the application of GSM
system with the constraint length 5, and 128 ACSUs
are needed for CDMA system with constraint length
9. Moreover, the data-width of ACSU is increasing
by using soft-decision. Therefore, reducing the area
of ACSU is the most effective strategy to design a
Viterbi decoder to be less complex. In this paper, a
new architecture of a modified Maged ACSU is
proposed and it has further reduction from the
designs.

The Viterbi algorithm is introduced in Section 2.
In Section 3, the path metric normalization and the
proposed ACSU are described. The comparison
result is presented in Section 4. Finally, the
conclusion is given in Section 5.

2. The Viterbi decoder

2.1. Background

The Viterbi algorithm based on a maximum-
likelihood decoding method for convolutional code
is used to find out the one having the minimum
hamming distance in the decoding path. A decoding
example of Viterbi algorithm is shown in Figure 1
which is a (2, 1), K=3 convolutional code. This
convolutional encoder has four states in trellis
diagram and the generator sequences are

 and . In Figure 1, each
branch has a label in the form of , where

)1,0,1()0(=g)1,1,1()1(=g
)1()0(/ yyx x

is the input of state transition and are the
corresponding

)1()0(yy
 pair of output. If here is no noise in

this example, the hamming distance of survivor path
is zero.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

434

Figure 1. The example of a Viterbi algorithm

Based on the trellis diagram, the differences of all
branch metrics with each received input are
calculated firstly. The path metrics are accumula-
tively summed by such differences from all branch
metrics to get the most possible path. The path with
minimum summation means that this one has
maximum-likelihood to the original or source state.
The path link with such lowest difference is selected
as the survivor path. The survivor paths are then
updated step by step. Finally, the information is
traced out along the survivor path in backwards.
Therefore, the Viterbi decoder can be divided into
three main processing units as shown in Figure 2,
such as the BMU, ACSU, and SMU.

Figure 2. The architecture of Viterbi decoder

2.2. Path metric normalization

In soft-decision, the path metrics are accumulated
by adding their differences. Therefore, the path
metrics increase progressively during decoding
process. The size of the path metrics is proportional
to the decoding length of the Viterbi decoder. To
solve the large size of the path metrics, the method of
normalization is used [5]. The Fixed shift is used to
prevent the values of path metrics exceed a
maximum value so that the fixed bit-width of branch
metric can be used for any decoding length and the
size of the computing module is also reduced.

2.3. The Conventional ACSU

The architecture of conventional ACSU is using
the butterfly diagram as shown in Figure 3. The
algorithm of conventional ACSU is,

),(),(
1

1
),(

1
),(

1

:

,
1
0

qi
t

j
t

pi
t

i
t

qi
t

j
t

pi
t

i
tp

t

bmpmbmpmcwhere

cwhenbmpm
cwhenbmpm

pm

+>+
⎩
⎨
⎧

=+
=+

=+ (1)

.:

,
1
0

),(),(
2

2
),(

2
),(

1

pi
t

j
t

qi
t

i
t

pi
t

j
t

qi
t

i
tq

t

bmpmbmpmcwhere

cwhenbmpm
cwhenbmpm

pm

+>+
⎩
⎨
⎧

=+
=+

=+
(2)

In here, the and are Boolean value generated
by checking the conditions of state transition

1c 2c

Figure 3. General butterfly diagram of (2, 1)
convolutional code

According to [6], the parameters includes n , K ,
and , where is the number of output bits of
each set of code from the encoder,

Q n
K is the

constraint length of the convolutional code, and
is the parameter of demodulating signal. When

Q

2=Q , the Viterbi decoder has to decode by using
hard-decision. The others, such as or 8, are
the type of soft-decision. Some important parameters
are stated here.

4=Q

The maximum branch metric is

).1(max −= Qnλ (3)

The bit-width of branch metric is
.1)(log2 += Qbmbits (4)

The maximum dynamic range of path metric is

).1(maxmax −=∆ Kλ (5)

The bit-width of path metric is

⎡ ⎤.)(log maxmax2 λ+∆=bitspm (6)

For instance, a convolutional code wth

 has the parameters as
shown in Table 1. According to those descriptions,
the bit-width of path metric and branch metric is 6
and 4, respectively. The means that Viterbi
decoder uses soft-decision and the architecture of the
conventional ACSU is shown in Figure 4. The

8,3),1,2(== QK

8=Q

p
td 1+

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

435

and are the results of comparison which are
stored in SMU. In Figure 4, four 6-4 bits (6 bits and
4 bits) adders and two 6-bits (6 bits and 6 bits)
comparators are needed.

q
td 1+

Table 1. The parameters of 8,3),1,2(== QK

convolutional code

Maximum branch metric 14
Bit-width of branch metric 4
Maximum dynamic range of path metric 28
Bit-width of path metric 6

Figure 4. The conventional ACSU for
 convolutional code 8,3),1,2(== QK

3. The Design of ACSUs

The ACSU can be implemented by using three
different methods, such as conventional, rearranged,
and Maged’s ACSU [4]. Initially, the conventional
ACSU is implemented by a butterfly diagram as
shown in Figure 4. Using this diagram, it compares
the summations of path metrics to select the survived
path with lowest value. The advantage of this method
is easy to implement, but the disadvantage is the
need of more components. The rearranged ACSU is
using a modified butterfly diagram. Their
comparisons are on the differences of metrics to
select the survived path with smaller number of
adders. The Maged’s ACSU uses just one absolution
value comparator to compare the differences so that
it uses less components than previous ones.

3.1 The rearranged ACSU

From Eq (1) and (2), is moved from left

hand side to the right side and is moved in
reverse direction. We get,

),(pi
tbm

j
tpm

.:

,
1
0

),(),(
1

1
),(

1
),(

1

pi
t

qi
t

j
t

i
t

qi
t

j
t

pi
t

i
tp

t

bmbmpmpmcwhere

cwhenbmpm
cwhenbmpm

pm

−>−
⎩
⎨
⎧

=+
=+

=+
(7)

With the same movement for and ,
we get,

),(qi
tbm j

tpm

.:

,
1
0

),(),(
2

2
),(

2
),(

1

qi
t

pi
t

j
t

i
t

pi
t

j
t

qi
t

i
tq

t

bmbmpmpmcwhere

cwhenbmpm
cwhenbmpm

pm

−>−
⎩
⎨
⎧

=+
=+

=+
(8)

According to Eq. (7) and (8), the path metrics are
firstly subtracted, and then compared by the

 and in the branch metrics
supplied by the BMU. The associate path metric and
branch metric are chosen by the compared result, and
the new path metric is generated by adding the
chosen path metric and branch metric. This
architecture is called rearranged ACSU and shown as
Figure 5.

pq
tbm −∆ qp

tbm −∆

Figure 5. The rearranged ACSU for decoding
8,3),1,2(== QK convolutional code

3.2 The Maged’s ACSU

The algorithm of Maged’s ACSU is,

.||||:

,,1
,1
,0
,0

,1
,1
,0
,0

),(

),(

),(

),(

1

),(

),(

),(

),(

1

pq
t

ji
t

ji
t

qi
t

j
t

ji
t

pi
t

i
t

pq
t

qi
t

j
t

pq
t

pi
t

i
t

q
t

ji
t

qi
t

j
t

ji
t

pi
t

i
t

pq
t

pi
t

i
t

pq
t

qi
t

j
t

p
t

bmpmcwhere

positiveispmcwhenbmpm
negativeispmcwhenbmpm
positiveisbmcwhenbmpm
negativeisbmcwhenbmpm

pm

positiveispmcwhenbmpm
negativeispmcwhenbmpm
positiveisbmcwhenbmpm
negativeisbmcwhenbmpm

pm

−−

−

−

−

−

+

−

−

−

−

+

∆>∆

⎪
⎪
⎩

⎪
⎪
⎨

⎧

∆=+
∆=+
∆=+
∆=+

=

⎪
⎪
⎩

⎪
⎪
⎨

⎧

∆=+
∆=+
∆=+
∆=+

=
(9)

(10)

According to this algorithm, the path metrics are
firstly subtracted, and then the comparator of
absolute value can be used to simplify the
architecture of previous one as shown in Figure 6.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

436

Figure 6. The Maged’s ACSU for decoding
 convolutional code 8,3),1,2(== QK

In Figure 6, the value of is transformed
from 2’s complement to sign-magnitude by a
Multiplexer in BMU. The and
have the same magnitude, but with different signs
(). The Maged’s ACSU needs
two 6-4 bits (6 bits and 4 bits) adders, one 6-bits (6
bits and 6 bits) subtracter, and one 7-5 bits (7 bits
and 5 bits) absolute-value comparator. The choice of
path metrics and branch metrics are summarized on
Table 2.

pq
tbm −∆

pq
tbm −∆ qp

tbm −∆

qp
t

pq
t bmbm −− ∆−=∆

Table 2. The choice of path metric and branch

metric for Maged’s ACSU

||

||
qp

t

ji
t

bm

pm
−

−

∆>

∆
ji

tpm −∆
positiv

e

pq
tbm −∆

positi
ve

p
tpm 1+

q
tpm 1+

0 0 0),(qi
t

j
t bmpm +),(qi

t
i
t bmpm +

0 0 1),(pi
t

i
t bmpm +

),(pi
t

j
t bmpm +

0 1 0),(qi
t

j
t bmpm +),(qi

t
i
t bmpm +

0 1 1),(pi
t

i
t bmpm +

),(pi
t

j
t bmpm +

1 0 0),(pi
t

i
t bmpm +),(qi

t
i
t bmpm +

1 0 1),(pi
t

i
t bmpm +

),(qi
t

i
t bmpm +

1 1 0),(qi
t

j
t bmpm +),(pi

t
j

t bmpm +
1 1 1),(qi

t
j

t bmpm +
),(pi

t
j

t bmpm +

3.2 The proposed ACSU

In Maged’s ACSU, the difference of path metric
may be positive or negative. Therefore, a comparator
for absolute value is needed to check

 so that an absolute value

comparator is needed. On the other hand, if the
format of and is sign-magnitude,

the absolute value comparator is not necessary.
When the format of and are

sign-magnitude, it is only to compare the magnitude
part of and , the result of

 can be easily generated

without using the absolute value comparator listed in
Table 3. Referring to Maged’s ACSU, this proposed
ACSU uses different component and method to
implement the ACSUs. In order to transform the
format of difference of path metrics from 2’s
complement to sign-magnitude, the path metrics are
firstly compared, and then exchanged if necessary.
Because of the value of a bigger path metric
subtracts smaller one, the result of subtraction is
always positive. The magnitude of difference of path
metric and branch metric are compared by a simple
comparator. The associate path metric and branch
metric are chosen by the results of compare and sign
of difference of path metric and branch metric, and
the new path metric is generated by the summation
of the chosen path metric and branch metric. The
architecture of proposed ACSU with soft-decision is
then shown in Figure 7.

|||| pq
t

ji
t bmpm −− ∆>∆

ji
tpm −∆ pq

tbm −∆

ji
tpm −∆ pq

tbm −∆

ji
tpm −∆ pq

tbm −∆

|||| pq
t

ji
t bmpm −− ∆>∆

Table 3. The operations for checks of

 using sing- magnitude form. |||| pq
t

ji
t bmpm −− ∆>∆

signspm ji
t '−∆

signsbm pq

t '−∆

Checking
||| pq

t
ji

t bmpm −− ∆>∆
operation

Positive Positive
Negative Negative
Positive Negative

Negative Positive

Direct compare
the magnitude
of and

ji
tpm −∆

pq
tbm −∆

Figure 7. The proposed ACSU for decoding

 convolutional code 8,3),1,2(== QK

4. The Implementation and Result

As mentioned in section 3, the complexities of
ACSU are affected by the bit-width of path metric
and branch metric. According to Eq. (7), Eq. (8), Eq.
(9), and Eq. (10), the data-width of branch metric is
affected by Q, and the data-width of path metric is
affected by n, K, and Q. The number of ACSU is
affected by K. The synthesis results of different
ACSUs and the data-width of bm and pm in
difference K and same Q are listed in Table 4. In this

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

437

References proposed design, the data-width of all parameters is
reduced to a fixed number by a shift operation, firstly.
In this system, only two simple comparators are
applied so that the complexity of ACSU has been
reduced. In the implementation, this design uses
VHDL by using design tool Synopsys with the
0.18-um UMC standard cell library. The complexity
of the proposed ACSU is presented in Table 4.

[1] Viterbi, A.J., “Error bounds for convolutional codes

and an asymptotically optimum decoding algorithm,”
IEEE Transactions on Information Theory, IT-13,
pp.260-269, April, 1967.

[2] Forney, G. D., “The Viterbi Algorithm,” Proc. IEEE,
Vol. 61, pp.268-278, March, 1973.

[3] Forney, G. D., “Convolutional Codes II: Maximum

Likelihood Decoding,” Information and Control, Vol.
25, pp.222-266, July, 1974.

5. The Conclusion

According to the result on Table 4, the proposed
ACSU is the smallest one. This proposed ACSU has
average reduction for 10% of original ACSU as
shown in Figure 8. Therefore, the proposed ACSU
can effectively reduce the complexity and also
decrease the cost. As a result, the designer has more
freedom to design a Viterbi decoder for a highly
reliable communication using a larger constraint
length with soft-decision.

[4] Ghoneima, M., Sharaf, K., Ragai, H.F., El-Halim Zekry,
“Low power units for the Viterbi decoder,” the 43rd
IEEE Midwest Symposium on Circuits and
Systems, Vol. 1 pp.412-415, August, 2000

[5] Shung, C.B., Siegel, P.H., Ungerboeck, G., Thapar,
H.K., “VLSI architectures for metric normalization in
the Viterbi algorithm,” IEEE International Conference
on Communications, Vol.4, pp.1723-1728, April, 1990

 [6] Black, P.J., Meng, T.H., “A 140-Mbs, 32-state, radix-4
Viterbi decoder,” IEEE Journal of Solid-State
Circuits, Issue: 12, Vol. 27, pp.1877–1885, Dec. 1992

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

3 4 5 6 7 8 9

K

tr
an
si
st
or
 c
ou
nt

Conventional

Rearranged

Maged's[4]

Proposed

Figure 8. The complexity of ACSUs in (2, 1), Q=8
convolutional code

Table 4 The synthesis result of different ACSUs for Q = 8 in (2, 1) convolutional code

bm pm Conventional Rearranged Maged’s[4] Proposed
Q K

(bit-width)

Number of
ACSU

(transistor count)

3 4 6 2 1710 1598 1600 1558
4 4 6 4 3420 3196 3199 3116
5 4 7 8 7712 7304 7195 6913
6 4 7 16 15424 14608 14389 13825
7 4 7 32 30848 29216 28781 27650
8 4 7 64 61696 58432 57559 55299

8

9 4 7 128 123392 116864 115119 110598

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

438

