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Abstract-The Viterbi algorithm is a method based 
on the maximum-likelihood principle to decode 
convolutional codes. This decoder is considered as 
an optimal method. In this decoder, there are two 
ways to enhance the error-correct capability, such as 
the use of soft-decision and the increasing of 
constraint length. However, both ways will also 
increase the system complexity. It has found that an 
Add-Compare-Select Unit (ACSU) in the decoder is 
the most complex module using soft-decision. The 
increasing rate in area of an ACSU module is also 
proportional to the constraint length. Therefore, the 
area reduction of ACSU is the most effective strategy 
to reducing the size of a Viterbi decoder. This system 
is aiming to reduce the size of the critical module 
using soft-decision with constraint length, Q=8. In 
this paper, a new architecture that is free from the 
absolute value comparison is proposed to reduce the 
hardware complexity from original ACSUs. So, the 
proposed ACSU can effectively reduce the hardware 
and the cost of a Viterbi decoder with larger 
constraint length. 
 
Keywords: Convolutional code, Viterbi decoder, 
Add-Compare-Select Unit, VLSI, Soft-decision. 
 
1. Introduction 
 

In modern communication systems, the 
convolutional code is widely used in wireless 
applications, such as cellular phone and satellite 
communication. Those decoders are usually 
implemented by a Viterbi algorithm. This Viterbi 
algorithm is proposed by [1] and then is considered 
as a maximum-likelihood decoding algorithm by 
Forney [2-3]. Since, the quality of communication 
has increasing requirement on noise immunization; 
the ways to enhance the error-correct capability of 
the convolutional code has two, such as increasing 
the constraint length and using soft-decision in 
decoder. However, both of these two ways will drive 
this Viterbi decoder even more complex. 

The architecture of a Viterbi decoder has three 
modules, such as Branch Metric Unit (BMU), 
Add-Compare-Select Unit (ACSU), and Survivor 
Memory Unit (SMU). Among them, the ACSU is the 
most complex than other two modules and the 
increasing rate of the area of ACSU is proportioned 
to the constraint length. For instance, 8 sets of 
ACSUs are needed for the application of GSM 
system with the constraint length 5, and 128 ACSUs 
are needed for CDMA system with constraint length 
9. Moreover, the data-width of ACSU is increasing 
by using soft-decision. Therefore, reducing the area 
of ACSU is the most effective strategy to design a 
Viterbi decoder to be less complex. In this paper, a 
new architecture of a modified Maged ACSU is 
proposed and it has further reduction from the 
designs. 

The Viterbi algorithm is introduced in Section 2. 
In Section 3, the path metric normalization and the 
proposed ACSU are described. The comparison 
result is presented in Section 4. Finally, the 
conclusion is given in Section 5. 
 
2. The Viterbi decoder 
 
2.1. Background 
 
The Viterbi algorithm based on a maximum- 
likelihood decoding method for convolutional code 
is used to find out the one having the minimum 
hamming distance in the decoding path. A decoding 
example of Viterbi algorithm is shown in Figure 1 
which is a (2, 1), K=3 convolutional code. This 
convolutional encoder has four states in trellis 
diagram and the generator sequences are 

 and . In Figure 1, each 
branch has a label in the form of , where 

)1,0,1()0( =g )1,1,1()1( =g
)1()0(/ yyx x  

is the input of state transition and  are the 
corresponding

)1()0( yy
 pair of output. If here is no noise in 

this example, the hamming distance of survivor path 
is zero. 
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Figure 1. The example of a Viterbi algorithm 
 
Based on the trellis diagram, the differences of all 
branch metrics with each received input are 
calculated firstly. The path metrics are accumula- 
tively summed by such differences from all branch 
metrics to get the most possible path. The path with 
minimum summation means that this one has 
maximum-likelihood to the original or source state. 
The path link with such lowest difference is selected 
as the survivor path. The survivor paths are then 
updated step by step. Finally, the information is 
traced out along the survivor path in backwards. 
Therefore, the Viterbi decoder can be divided into 
three main processing units as shown in Figure 2, 
such as the BMU, ACSU, and SMU. 
 

 
 

Figure 2. The architecture of Viterbi decoder 
 
2.2. Path metric normalization 
 

In soft-decision, the path metrics are accumulated 
by adding their differences. Therefore, the path 
metrics increase progressively during decoding 
process. The size of the path metrics is proportional 
to the decoding length of the Viterbi decoder. To 
solve the large size of the path metrics, the method of 
normalization is used [5]. The Fixed shift is used to 
prevent the values of path metrics exceed a 
maximum value so that the fixed bit-width of branch 
metric can be used for any decoding length and the 
size of the computing module is also reduced. 
 
2.3. The Conventional ACSU 
 

The architecture of conventional ACSU is using 
the butterfly diagram as shown in Figure 3. The 
algorithm of conventional ACSU is, 
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In here, the and  are Boolean value generated 
by checking the conditions of state transition 

1c 2c

 

 
 

Figure 3. General butterfly diagram of (2, 1) 
convolutional code 

 
According to [6], the parameters includes n , K , 
and , where  is the number of output bits of 
each set of code from the encoder, 

Q n
K  is the 

constraint length of the convolutional code, and  
is the parameter of demodulating signal. When 

Q

2=Q , the Viterbi decoder has to decode by using 
hard-decision. The others, such as  or 8, are 
the type of soft-decision. Some important parameters 
are stated here. 

4=Q

 
The maximum branch metric is 

).1(max −= Qnλ  (3)

The bit-width of branch metric is 
.1)(log2 += Qbmbits  (4)

The maximum dynamic range of path metric is 

).1(maxmax −=∆ Kλ  (5)

The bit-width of path metric is 

⎡ ⎤.)(log maxmax2 λ+∆=bitspm  (6)

 
For instance, a convolutional code wth 

 has the parameters as 
shown in Table 1. According to those descriptions, 
the bit-width of path metric and branch metric is 6 
and 4, respectively. The  means that Viterbi 
decoder uses soft-decision and the architecture of the 
conventional ACSU is shown in Figure 4. The  

8,3),1,2( == QK

8=Q

p
td 1+
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and  are the results of comparison which are 
stored in SMU. In Figure 4, four 6-4 bits (6 bits and 
4 bits) adders and two 6-bits (6 bits and 6 bits) 
comparators are needed. 

q
td 1+

 
Table 1. The parameters of 8,3),1,2( == QK  

convolutional code 
 

Maximum branch metric 14 
Bit-width of branch metric 4 
Maximum dynamic range of path metric 28 
Bit-width of path metric 6 
 

 
 

Figure 4. The conventional ACSU for 
 convolutional code 8,3),1,2( == QK

 
3. The Design of ACSUs 
 

The ACSU can be implemented by using three 
different methods, such as conventional, rearranged, 
and Maged’s ACSU [4]. Initially, the conventional 
ACSU is implemented by a butterfly diagram as 
shown in Figure 4. Using this diagram, it compares 
the summations of path metrics to select the survived 
path with lowest value. The advantage of this method 
is easy to implement, but the disadvantage is the 
need of more components. The rearranged ACSU is 
using a modified butterfly diagram. Their 
comparisons are on the differences of metrics to 
select the survived path with smaller number of 
adders. The Maged’s ACSU uses just one absolution 
value comparator to compare the differences so that 
it uses less components than previous ones. 

 
3.1 The rearranged ACSU 
 

From Eq (1) and (2),  is moved from left 

hand side to the right side and  is moved in 
reverse direction. We get, 
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With the same movement for  and , 
we get, 
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According to Eq. (7) and (8), the path metrics are 
firstly subtracted, and then compared by the 

 and  in the branch metrics 
supplied by the BMU. The associate path metric and 
branch metric are chosen by the compared result, and 
the new path metric is generated by adding the 
chosen path metric and branch metric. This 
architecture is called rearranged ACSU and shown as 
Figure 5. 

pq
tbm −∆ qp

tbm −∆

 

 
 

Figure 5. The rearranged ACSU for decoding 
8,3),1,2( == QK  convolutional code 

 
3.2 The Maged’s ACSU 
 

The algorithm of Maged’s ACSU is, 
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(10)
 

 
According to this algorithm, the path metrics are 
firstly subtracted, and then the comparator of 
absolute value can be used to simplify the 
architecture of previous one as shown in Figure 6. 
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Figure 6. The Maged’s ACSU for decoding 
 convolutional code 8,3),1,2( == QK

 
In Figure 6, the value of  is transformed 
from 2’s complement to sign-magnitude by a 
Multiplexer in BMU. The  and  
have the same magnitude, but with different signs 
( ). The Maged’s ACSU needs 
two 6-4 bits (6 bits and 4 bits) adders, one 6-bits (6 
bits and 6 bits) subtracter, and one 7-5 bits (7 bits 
and 5 bits) absolute-value comparator. The choice of 
path metrics and branch metrics are summarized on 
Table 2. 
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Table 2. The choice of path metric and branch 

metric for Maged’s ACSU 
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3.2 The proposed ACSU 
 

In Maged’s ACSU, the difference of path metric 
may be positive or negative. Therefore, a comparator 
for absolute value is needed to check 

 so that an absolute value 

comparator is needed. On the other hand, if the 
format of  and  is sign-magnitude, 

the absolute value comparator is not necessary. 
When the format of  and  are 

sign-magnitude, it is only to compare the magnitude 
part of  and , the result of 

 can be easily generated 

without using the absolute value comparator listed in 
Table 3. Referring to Maged’s ACSU, this proposed 
ACSU uses different component and method to 
implement the ACSUs. In order to transform the 
format of difference of path metrics from 2’s 
complement to sign-magnitude, the path metrics are 
firstly compared, and then exchanged if necessary. 
Because of the value of a bigger path metric 
subtracts smaller one, the result of subtraction is 
always positive. The magnitude of difference of path 
metric and branch metric are compared by a simple 
comparator. The associate path metric and branch 
metric are chosen by the results of compare and sign 
of difference of path metric and branch metric, and 
the new path metric is generated by the summation 
of the chosen path metric and branch metric. The 
architecture of proposed ACSU with soft-decision is 
then shown in Figure 7. 
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Table 3. The operations for checks of 
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Figure 7. The proposed ACSU for decoding 

 convolutional code 8,3),1,2( == QK
 
4. The Implementation and Result 
 

As mentioned in section 3, the complexities of 
ACSU are affected by the bit-width of path metric 
and branch metric. According to Eq. (7), Eq. (8), Eq. 
(9), and Eq. (10), the data-width of branch metric is 
affected by Q, and the data-width of path metric is 
affected by n, K, and Q. The number of ACSU is 
affected by K. The synthesis results of different 
ACSUs and the data-width of bm and pm in 
difference K and same Q are listed in Table 4. In this 
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References proposed design, the data-width of all parameters is 
reduced to a fixed number by a shift operation, firstly. 
In this system, only two simple comparators are 
applied so that the complexity of ACSU has been 
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VHDL by using design tool Synopsys with the 
0.18-um UMC standard cell library. The complexity 
of the proposed ACSU is presented in Table 4. 
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Table 4 The synthesis result of different ACSUs for Q = 8 in (2, 1) convolutional code 

 

bm  pm Conventional Rearranged Maged’s[4] Proposed
Q K 

(bit-width)

Number of 
ACSU 

(transistor count) 

3 4 6 2 1710 1598 1600 1558 
4 4 6 4 3420 3196 3199 3116 
5 4 7 8 7712 7304 7195 6913 
6 4 7 16 15424 14608 14389 13825 
7 4 7 32 30848 29216 28781 27650 
8 4 7 64 61696 58432 57559 55299 

8 

9 4 7 128 123392 116864 115119 110598 
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