
An Efficient Variable Partitioning and Scheduling Algorithm for DSP with
Multiple Memory Modules
Yi-Hsuan Lee and Cheng Chen

Department of Computer Science and Information Engineering
1001 Ta Hsueh Road, Hsinchu, Taiwan, 30050, Republic of China

Tel: (8863) 5712121 EXT: 54734, Fax: (8863) 5724176
E-mail: {yslee, cchen}@csie.nctu.edu.tw

Abstract

Multiple on-chip memory modules are attractive

to many DSP applications. This architectural feature

supports higher memory bandwidth by executing

multiple data memory accesses in parallel. However,

the performance gain in this architecture strongly

depends on the variable partitioning and scheduling

method. In this paper, we propose an efficient

rotation scheduling with parallelization (RSP), which

is extended from our previous studies. RSP includes a

simple mechanism to partition variables, and uses

rotation scheduling and unimodular transformations

to generate effective results. We also design an

analytic model to analysis preliminary performances.

Based on our analyses, RSP can obtain quite effective

results compared with related methods.

1 Introduction

Most scientific and digital signal processing (DSP)

applications, such as image processing and weather

forecasting, are iterative and usually represented by

uniform nested loops [1]. Digital signal processor is a

special-purpose microprocessor, which is designed to

achieve high performance on DSP applications.

Unlike general-purpose CPU, the DSP is designed on

Harvard architecture, and often includes independent

function units which can operate in parallel [2].

The growing gap of speed between CPU and

memory becomes one of the most critical problems

for high-performance systems design. Thus, multiple

on-chip memory modules are attractive to many DSP

applications [3-4]. Since data are partitioned to

separate memory banks and accessed simultaneously,

this architecture offers higher memory bandwidth and

performance potentially. However, its performance

gain strongly depends on variable partitioning and

scheduling techniques [4].

The variable partitioning and scheduling problem

is proven to be NP-complete. Rotation scheduling

with variable repartitioning (RSVR) is an effective

heuristic [4], and we propose two algorithms before

[5]. In this paper, we design rotation scheduling with

parallelization (RSP) by integrating unimodular

transformations technique. An analytic model and

DSP applications are used to evaluate preliminary

performances. From our analyses, RSP is quite

effective compared with related methods.

The remainder of this paper is organized as

follows. Section 2 describes the problem modeling

and related work. Design issues and principles of RSP

are introduced in Section 3. Section 4 contains the

analytic model and preliminary analyses. Finally, we

give some conclusions in Section 5.

2 Fundamental Background

2.1 Modeling the Given Program [4-5]

Multi-dimensional data flow graph (MDFG)

defined below is widely used to represent uniform

nested loop in previous researches. Nodes in the

MDFG can be both ALU operations and memory

operations. Figure 1(a)(b) shows an nested loop and

its MDFG.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1320

mailto:@csie.nctu.edu.tw

Definition A multi-dimensional data flow graph

(MDFG) G = (V, E, X, d, t) is a node-weighted and

edge-weighted direct graph, where V is the set of

computation nodes, E is the edge set of precedence

relations, X(e) represents the variable accessed by an

edge e, d(e) is the delays between nodes, and t(v) is

the computation time of node v.

A MDFG is realizable if there exists a schedule

vector s such that s•d ≥ 0, where d are loop-carried

dependencies [6]. An iteration is equivalent to

execute each node in V exactly once. The period

during which all nodes in an iteration are executed

without resource constraints is called a cycle period.

Cycle period is the maximum computational time

among paths that have no delay, which will dominate

the entire execution time of a nested loop.

2.2 Retiming Technique [7]

Retiming is a technique that redistributes nodes in

consecutive iterations to enhance the performance.

The retiming vector r(u), a function from V ot Zn,

represents the offset between the original iteration

and that after retiming. A MDFG Gr = (V, E, X, dr, t)

is created after applying r such that each iteration still

has one execution of each node. Delay vectors will be

changed accordingly to preserve dependencies.

A prologue is the instruction set that must be

executed to provide data for the iterative process. An

epilogue is the complementary set that will be

executed to complete the process. Usually, the time

required for prologue and epilogue are negligible.

2.3 Unimodular Transformations Technique [8]

Loop transformation is one of basic techniques

for parallel compiler design. It changes the execution

sequence of iterations to achieve higher degree of

parallelism. Unimodular transformations technique

unifies loop permutation, skewing, and reversal, and

models them as elementary matrix transformations.

All combinations of these loop transformations can

simply be represented as products of the elementary

transformation matrices.

2.4 Related Work

Since retiming is useful for generating compact

schedules, many scheduling algorithms are designed

based on it. In order to solve the variable partitioning

and scheduling problem, Rotation scheduling with

variable repartitioning (RSVR) [4], modified from

rotation scheduling by considering multiple memory

modules while constructing a schedule, is proposed.

RSVR uses variable independence graph (VIG) to

partition variables initially. When the schedule length

cannot be improved in a rotation phase, it will try to

repartition variables to shorten the schedule length.

We have proposed rotation scheduling with

unfolding (RSF) and rotation scheduling with tiling

(RST) for the same problem before [5]. RSF and RST

use simpler variable partitioning mechanisms, and

Figure 1. (a) Nested loop, (b) corresponding MDFG, (c) parallelized MDFG.

1

3

0

4

6

8 7

11 12

2

5

9 10

(1, 0)
B C

D

D

A

A A

B C

(1, 2)

(0, 1) ALU operation

memory operation

for i = 1 to m
for j = 1 to n

D[i, j] = B[i-1, j] × C[i-1, j-2] ;
A[i, j] = D[i, j] × 0.5 ;
B[i, j] = A[i, j] + 1 ;
C[i, j] = A[i, j-1] + 2 ;

 end
end

(a)

(b)

1

3

0

4

6

8 7

11 12

2

5

9 10

(1, 1)
B C

D

D

A

A A

B C

(3, 1)

(1, 0)

(c)

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1321

don’t need to repartition variables during rotation

phases. From our analyses, RSF and RST are as

effective as RSVR, sometimes even outperform it.

Besides, they are much efficient than RSVR, because

they avoid time consuming steps in RSVR such as

VIG construction and variable repartition.

3 Rotation Scheduling with Parallelization

3.1 Motivation

Although RSF and RST are quite effective, they

still can be further improved. In order to fit their

variable partitioning mechanisms, we apply unfolding

and tiling techniques in RSF and RST. That is, their

enlarged iterations are composed of original iterations.

However, if critical paths of those original iterations

are cascaded after unfolding or tiling, RSF and RST

will obtain very poor results. Therefore, we propose

rotation scheduling with parallelization (RSP), which

applies unimodular transformations technique to

parallelize the inner loop before unfolding. After loop

parallelizing, original iterations within an unfolded

iteration are independent. Since this feature leads RSP

to avoid the drawback of RSF and RST, we believe it

can achieve reasonable scheduling results.

In Section 3.2 and 3.3, we will describe variable

partitioning mechanism and loop parallelization

algorithm in detail. Scheduling steps of RSP will be

listed in Section 3.4. Since nested loop used in DSP

applications are usually with depth two, we use the

two-dimensional MDFG to design and analysis RSP.

However, RSP and the analytic model can be easily

extended to cover MDFG with higher dimensions.

3.2 Variable Partitioning Mechanism

Notice that a variable in MDFG indicates an array

not a single variable. Similar as RSF and RST, we

partition array components based on loop indices in

RSP. For DSP with 2~4 memory modules, we design

particular mechanisms as follows.

2 memory modules (k ∈ N, k ≥ 1)

Module 1: [m, 2k – 1]

Module 2: [m, 2k]

3 memory modules (k ∈ N, k ≥ 0)

Module 1: [m, 3k + (m mod 3)]

Module 2: [m, 3k + (m mod 3) + 1]

Module 3: [m, 3k + (m mod 3) – 1]

4 memory modules (k ∈ N, k ≥ 1)

Module 1: [m, 2k – 1] if (m mod 4) = 1

 [m, 2k] if (m mod 4) = 3

Module 2: [m, 2k] if (m mod 4) = 1

 [m, 2k – 1] if (m mod 4) = 3

Module 3: [m, 2k – 1] if (m mod 4) = 0

 [m, 2k] if (m mod 4) = 2

Module 4: [m, 2k] if (m mod 4) = 0

 [m, 2k – 1] if (m mod 4) = 2

Figure 2. Loop parallelization algorithm.

Input: MDFG G = (V, E, X, d, t)
Output: MDFG G’ = (V, E, X, d’, t)

1. T =








10
01 ; G’ = G;

2. while (∃ (a, 0) and (b, 0) in d’, for a, b > 0)

 T = T ×








11
01 ; ∀ d’(e) ∈ d, d’(e) = T × d’(e);

3. if (∃ (a, 0) in d’, for a > 0)
(a) if (∃ (b, -c) in d’, for b, c > 0)

 T = T ×
  








+ 1)1(

01
bc

;

(b) T = T ×








01
10 ; ∀ d’(e) ∈ d, d’(e) = T × d’(e);

4. Return G’ = (V, E, X, d’, t)

Figure 3. The scheduling steps of RSP.

Input: MDFG G = (V, E, X, d, t), N
Output: schedule S
1. Allocate variables to N memory modules
2. Gp = parallelize G that the inner loop is

parallelizable
3. GN = unfold GP with factor N
4. Select the schedule vector s = (1, 0)
5. S = schedule GN using list scheduling
6. S’ = compact S using rotation scheduling
7. Return S’

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1322

3.3 Loop Parallelization Algorithm

Unimodular transformations technique unifies

three loop transformations, but it doesn’t explain how

to use them. For a nested loop with depth two, we

have designed a simple algorithm to parallelize the

inner loop as listed in Figure 2 [9]. In RSP we will

directly apply this algorithm, and Figure 1(c) contains

the parallelized MDFG GP of Figure 1(a).

3.4 RSP Algorithm

After introducing above two mechanisms, Figure

3 contains scheduling steps of RSP. With the similar

reason of RSF and RST, GP must be unfolded with

factor N before applying rotation scheduling, where

N is the number of memory modules. Moreover, due

to the parallelized inner loop, we can always select

(1, 0) as the schedule vector. The unfolded graph GN

and final schedule are shown in Figure 4.

4 Performance Studies

4.1 Preliminary Performance Analysis

In this subsection, we design an analytic model to

analysis RSP. At first we define variables used in our

analytic model. Given a nested loop with depth two,

and its loop bounds of outer and inner loops are m

and n respectively. w is the skew factor used to

parallelize the inner loop, and two kinds of changed

iteration space will be produced after parallelization

[9]. A retimed nested loop contains prologue,

repetitive patterns, and epilogue phases, where we use

variables prologue, length and epilogue to represent

their execution lengths. list is the execution length of

a repetitive pattern produced by list scheduling, which

is usually greater than length. Retiming depth, d, is

the number of iterations been moved into prologue

and epilogue. Besides, if an iteration of RSP contains

less than N original iterations, its execution length is

defined as half (k, N).

Assume temporary variables (A, B, C, D, E, F, G, H)

equals to (mw – w – n, A mod w, n mod w, m – 1
mod N, m mod N, ( wn – 1) mod N,  wn mod

N,  wn mod N).

F1: list × dwN (d – 1)

F2: (prologue + epilogue) × (wm + w + n – 2wNd)
F3: (prologue + epilogue) × (2w  wn – 2wNd + 2w +

B  wA + 2C + (w – B)  wA)

F4: length × w( Nm)1(− – d)(m – Nd – N + 1 + D)

F5: length × (w + n – mw)( Nm – d)

F6: length × w( wNwn)(− – d)( wn – Nd – N + 1

+ F)
F7: length × (2w + B  wA)( wNn – d)

F8: length × (2C + (w – B)  wA)(  Nwn – d)

F9: 2w  Nm)1(− ×),(1

1
NihalfN

i∑ −

=

Figure 4. (a) Parallelized MDFG, (b) schedule result.

 Mul Add M1 M2 M3
0 28 10 3 16 1
1 36 4 17 29
2 5 12 25 30
3 18 6 0 38
4 31 7 19 13
5 2 9 14 20 32
6 15 22 11 27 33
7 35 21 24 8
8 23 26 34 37

1

3

0

4

6

8 7

11 12

2

5

9 10

B C

D

D

A

A A

B C

(3, 0)

(1, 0)

14

16

13

17

17

21 20

24 25

15

18

22 23

B C

D

D

A

A A

B C

(3, 0)

(1, 0)

27

29

26

30

32

34 33

37 38

28

31

35 36

(1, 1)
B C

D

D

A

A A

B C

(3, 1)

(1, 0)

(1, 0) (1, 0)

(a)
(b)

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1323

F10: 2w ×),(
1

NihalfD

i∑ =

F11: (w + n – mw) × half (E, N)

F12: 2w  wNwn)(− ×),(1

1
NihalfN

i∑ −

=

F13: 2w ×),(
1

NihalfF

i∑ =

F14: (2w + B  wA) × half (G, N)

F15: (2C + (w – B)  wA) × half (H, N)

The execution time of RSP =

 F1 + F2 + F4 + F5 + F9 + F10 + F11

 if wm + 1 ≤ w + n

 F1 + F3 + F6 + F7 + F8 + F12 + F13 + F14 + F15

 if wm + 1 > w + n

4.2 Experimental Results

Finally, we select some DSP applications to

compare RSVR, RSF, RST, and RSP. Suppose both

ALU and memory operations take one time unit to

execute, Table 1 list our scheduling results.

Notice that in our three algorithms an iteration

contains N original iterations, so the actual execution

time of an iteration equals to the value in Table

divided by N. From these results, lengths obtained by

all algorithms are similar, but RSP can obviously get

smaller d. The reason is that an iteration in RSP is

composed of N independent original iterations, and its

memory operations will be evenly allocated. Hence,

the schedule generated by list scheduling will be

already quite compact, which can decrease times

applying retiming technique and retiming depth.

Figure 5 shows the execution time calculated by

above formulas. Except RSVR and RSP, for each

application we only sketch the results of RSF or RST

depending on which result is better. In this figure, the

execution time of RSP is similar to others, sometimes

even outperforms them. Thus, like RSVR, RSF, and

RST, RSP is also an effective and efficient algorithm.

5 Concluding Remarks

In this paper, we have proposed RSP to schedule

nested loops for DSP systems with multiple memory

modules. It contains a simple variable partitioning

mechanism, and applies unimodular transformation,

unfolding, and rotation scheduling techniques to

schedule both ALU and memory operations. We also

use an analytic module and DSP applications to

evaluate RSP. Based on evaluating results, RSP is

actually an efficient and effective algorithm compared

with RSVR, RSF, and RST.

Reference

[1] V. K. Madisetti, VLSI Digital Signal Processors:

An Introduction to Rapid Prototyping and

Design Synthesis, Butterworth-Heinemnn, 1995.

[2] J. Eyre and J. Bier, “The Evolution of DSP

Processors”, IEEE Signal Processing Magazine,

Vol. 17, Issue 2, pp. 43-51, March 2000.

[3] R. Leupers and D. Kotte, “Variable Partitioning

for Dual Memory Bank DSPs”, Proc. of

International Conference on Acoustics, Speech,

and Signal Processing, Vol. 2, pp. 1121-1124,

May, 2001.

[4] Q. Zhuge, B. Xiao, and E. H. -M. Sha, “Variable

Partitioning and Scheduling of Multiple Memory

2 memory modules 3 memory modules 4 memory modules

RSVR RSF RST RSP RSVR RSF RST RSP RSVR RSF RST RSP
Wave Digital Filter 5,2 9, 1 9, 3 9, 1 5, 3 9, 1 10, 5 9, 1 3, 6 9, 2 10, 8 9, 1

Forward-substitution 6, 3 11, 3 11, 4 11, 1 4, 8 11, 5 11, 8 11, 2 4, 8 11, 9 12, 12 11, 2
IIR 2D 24, 1 40, 1 40, 1 40, 1 14, 1 40, 1 40, 1 40, 1 11, 1 40, 2 40, 3 40, 1
Filter 6, 2 10, 5 10, 3 10, 1 5, 3 11, 9 10, 6 10, 1 4, 3 11, 15 10, 7 10, 1

Discrete Fourier Transform 14, 1 28, 2 28, 0 28, 0 10, 1 28, 4 28, 1 28, 1 8, 3 29, 6 28, 1 28, 1
THCS 4, 2 8, 2 8, 0 8, 0 4, 2 8, 3 8, 1 8, 1 2, 4 8, 5 8, 1 8, 1

Table 1. Experimental results (2 multipliers and 2 adders) (length, d).

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1324

0

2

4

6

8

10

12

14

10x10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50
Number of iterations

Ex
ec

ut
io

n
tim

e
(1

00
0

cy
cl

es
)

WDF RSVR WDF RSF
WDF RSP forward RSVR
forward RSF forward RSP

0

2

4

6

8

10

12

14

16

10x10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50
Number of iterations

Ex
ec

ut
io

n
tim

e
(1

00
0

cy
cl

es
) Filter RSVR Filter RST

Filter RSP THCS RSVR
THCS RST THCS RSP

0

5

10

15

20

25

30

35

40

10x10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50
Number of iterations

Ex
ec

ut
io

n
tim

e
(1

00
0

cy
cl

es
)

IIR2D RSVR IIR2D RSF
IIR2D RSP DFT RSVR
DFT RST DFT RSP

Architectures for DSP”, Proc. of International

Parallel and Distributed Processing Symposium,

pp. 130-136, April 2002.

[5] Y. -H. Lee and C. Chen, “Efficient Variable

Partitioning and Scheduling Methods of Multiple

Memory Modules for DSP”, Proc. of 10th

Workshop on Compiler Techniques for High-

performance Computing, pp. 80-89, March 2004.

[6] L. Lamport, “The Parallel Execution of DO

Loops”, Comm. ACM SIGPLAN, Vol. 17, No. 2,

pp. 82-93, Feb. 1974.

[7] C. E. Leiserson and J. B. Saxe, “Retiming

Synchronous Circuitry”, Algorithmica, Vol. 6, No.

1, pp. 5-35, June 1991.

[8] M. E. Wolf and M. S. Lam, “A Loop Transforma-

tion Theory and an Algorithm to Maximize Para-

llelism”, IEEE Trans. on Parallel and Distributed

Systems, Vol. 2, No. 4, pp. 452-471, Oct. 1991.

[9] Y. -H. Lee and C. Chen, “A Two-level

Scheduling Method: An Effective Parallelizing

Technique for Uniform Nested Loops on a DSP

Multiprocessor”, accept and to appear to Journal

of Systems and Software.

Figure 5. Experimental results (2 multipliers, 2 adders, and 3 memory modules).

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1325

