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Abstract Power consumption, Performance, Decompression 
engine. 

In designing an embedded system, system 
performance and power consumption have to be 
taken carefully into consideration. In this paper, we 
use the locality of running programs to reduce the 
great number of memory access to save the power 
and maximize the performance in the embedded 
system design. We encode the frequently executed 
instructions as shorter code words and then pack 
continuous code words into a pseudo instruction. 
Once the decompression engine fetches one pseudo 
instruction, it can extract multiple instructions. 
Therefore, a number of memory access times can be 
efficiently reduced because of space locality. 
However, if the program size of applications 
increases, the number of the most frequently executed 
instructions grows up. This situation results in the 
degradation of system performance and power 
consumption. To solve this problem, we also propose 
a method of using multiple look-ahead tables to make 
most frequently executed instructions have shorter 
encoded code words to improve the performance and 
power. From our simulation results, our method with 
one reference table which contains the most 
frequently executed 512 instructions reduces the 
number of times memory is accessed by about 60% 
Moreover, when two reference tables that contain 256 
instructions in each table are used, the memory 
access ratio is 16.73% less than the ratio resulting 
from one 512-instruction reference table. According 
to the simulation results, our proposed methods 
based on the frequencies of executed instructions 
result in low power consumption and performance 
improvement. 

1. Introduction 

Embedded systems are more and more important 
today because they are used in many electronic 
productions such as mobile devices, medical 
instruments, consumer electronics, and so on. 
However, many embedded computing systems are 
sensitive to power, and performance. Designing an 
embedded system with optimal power and 
performance is important. 

In the design of embedded systems, because signal 
changes in the memory bus consume the most power, 
some researchers [1-2] have considered methods of 
reducing memory transmission or avoiding changes 
in memory signals to reduce power consumption. 
However, these methods always increase the use of 
memory space and degrade system performance. For 
instance, [2] reduces the number of times memory is 
accessed by 11% to 33% but increases the code size 
by 49% to 71%. 

In this paper, we address the problems associated 
with power consumption and performance in a 
cache-less embedded system by reducing the 
memory access times. Because the memory access 
times dominate the system performance and power 
consumption, we encode the most frequently 
executed instructions as shorter code words and then 
pack continuous encoded instructions (code words) 
into pseudo instructions. Once the decompression 
engine fetches one pseudo instruction, it can extract 
multiple instructions. Therefore, a number of 
memory access times can be efficiently reduced 
because of space locality.  Keywords: Embedded system, Code compress, 

After encoding and wrapping the most frequently 
executed into pseudo instructions, the addresses of 
the instructions address in the memory change from 
the original ones. In such a design, a LAT data 
structure is necessary to converse the old address to 
the new one. It causes the double number of memory 
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access if the LAT is located in the memory. To solve 
this problem, we proposed multiple pseudo 
instructions instead of one pseudo instruction; that is, 
each pseudo instructions contains the original 
encoded instructions and the latter continuous 
encoded instructions. Therefore, the behavior of 
memory access does not need the address conversion 
by the LAT. 

However, if the program size of applications 
increases, the number of the most frequently 
executed instructions grows up. This situation results 
in the degradation of system performance and power 
consumption. To solve this problem, we also propose 
a method of using multiple look-ahead tables to make 
most frequently executed instructions have shorter 
encoded code words to improve the performance and 
power. Because embedded systems are designed for a 
specific purpose, the application of an embedded 
system is clear and definite. We split the static codes 
(object codes) into two parts: the most frequently 
executed instructions and the infrequently executed 
instructions. According to the locality of executed 
programs, we compress the most frequently executed 
static object codes to improve performance and 
reduce power consumption. As a result, our method 
result in low power consumption and improved 
performance for embedded systems. 

This paper is organized as follows. Section 2 
reviews previous related works. Section 3 illustrates 
the compression and decompression methods for 
frequently and infrequently executed codes. Section 4 
shows the experimental results. In Section 5, we 
conclude this work. 

2.  Relate Works 

There have been many recent publications on code 
compression [1-8]. Generally speaking, one kind 
method for compressing codes provides a 
post-compilation compression scheme and an 
external hardware decompression unit between the 
processor and memory. This approach is described as 
follows. The source code is compiled and 
compressed to a smaller sized object code. The 
compressed object code is then put in memory. When 
a processor executes the object code, the 
decompression engine located between the CPU and 
the memory fetches and decompresses the 
compressed instruction from the memory. As a result, 
the processor can execute the original instructions 
normally. [3-8] uses this technique to compress entire 
object codes to get a good compression ratio. For 
example, [4] and [7] use the Huffman code encoded 
method in MIPS processor. [3] and [5] use 
dictionary-based compression methods to get about a 
62% compression ratio. Moreover, [7] uses the 
operand factorization method to obtain an advanced 
compression ratio, but there is a serious penalty in 
performance as a result. Briefly, the disadvantage of 
these methods is a significant loss in performance. 

In terms of power consumption, the 
memory-processor interface is the primary consumer 
of power [1]. For this reason, several articles have 
been presented on the memory-processor interface to 
suggest ways for the interface to consume less power. 
The main idea behind these methods is to minimize 
bus switching or bus transmissions to save power. 
The ARM7 Thumb core [9] uses 16-bit instruction 
rather than 32-bit regular instruction to reduce 
memory bandwidth. However, if this approach is 
used, the architecture of the core processor and the 
compiler must be modified.  

In contrast, Yoshida et al. [1] and Benini [2] et al. 
proposed an alternative approach to reduce 
instruction memory bandwidth. Yoshida encoded N 
instructions to a length of log2N. Therefore, every 
one of the N instructions is replaced by an encoded 
instruction of length log2N. When the program is 
executed, the memory bandwidth is changed from 32 
bits to log2N. Rather than using the N instructions, 
Benini used the most executed 256 instructions to 
reduce memory transmissions. Although these 
techniques reduce the memory interface power, the 
memory space increases. For example, Benini [2] 
saved the number of times memory is accessed by 
11% to 33% but code size for the on-chip version is 
increased by 49% to 71%. 

In this paper, present an integrated solution to the 
problems mentioned above by proposing a design for 
embedded systems, which require use low power, and 
have improved performance. 

3. Proposed Architecture and Design in 
an Embedded System 

In this section, we present our design which 
considers the issues of power and performance in a 
cache-less embedded system. In our design, the 
locality property of the running program is used to 
optimize performance and power. We compress the 
object codes that belong to the frequently executed 
instructions to improve performance and reduce 
power consumption. We describe our design in 
Section 3.1 and Section 3.2. 

3.1 Code Compression for Memory Access 
Reduction 

Because the number of times memory is accessed has 
the greatest effect on the system performance and the 
memory bus switching has the greatest effect on 
power consumption, the frequency of accessing 
memory in a cache-less embedded system has the 
greatest effect on system performance and power 
consumption. Thus, how to reduce the number of 
times memory is accessed for the most frequently 
executed instructions are the main subjects discussed 
in this section. 

The basic ways to solve this problem are: 1) 
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obtaining multiple instructions in one 32-bit width 
memory access by encoding the most frequently 
executed instructions and keeping these multiple 
instructions in the decompression engine for 
successive execution, 2) packing several encoded 
instructions into a special pseudo instruction. The 
decoded multiple instructions, which are kept in the 
decompressed engine for one-time memory access, 
are very likely executed at one time because of the 
space locality property. As a result, the number of 
times memory is accessed can be greatly reduced. 

 

 

In the following, we describe the encoding method 
that gets multiple instructions from accessing 
memory once. First, we run the application to gather 
the most frequently executed instructions off-line. 
From the number of the most frequently executed 
instructions, we encode the instructions into code 
words of a fixed length. For example, if the most 
frequently executed instructions are 4, 8, 16 … or 
1024, the encoded instruction is 2, 3, 4 … or 10 bits 
in length. After these instructions are encoded, the 
continuous encoded instructions are wrapped into a 
pseudo instruction where the pseudo instruction is 
not used in the embedded processor’s instruction set; 
for example; the unused instruction in the ARM 
processor is shown in Figure 1. However, the total 
length of the continuous encoded instructions 
wrapped in a pseudo instruction is smaller than 32-M 
bits, where M bits are used to recognize the pseudo 
instruction; for example; the pseudo instruction in the 
ARM process in Figure 1 costs 5 bits. As a result, the 
length of the encoded instructions is , where 
the N is the number of the most frequently executed 
instructions.  

⎡ ⎤NLog 2

After encoding and wrapping the most frequently 
executed into pseudo instructions, the addresses of 
the instructions address in the memory change from 
the original ones. In such a design, a LAT data 
structure is necessary to converse the old address to 
the new one. It causes the double number of memory 
access if the LAT is located in the memory. To solve 
this problem, we proposed to use multiple pseudo 
instructions instead of one pseudo instruction; that is, 
if n continuous instructions which belongs to the 
most frequently executed instructions want to be 
wrapped into pseudo instructions and one pseudo 
instruction can wrap k instructions, we wrap the first 
k encoded instructions of n instructions into the first 
pseudo instruction. And then, we wrap the second to 
the (k+1)-th encoded instructions into the second 
pseudo instruction. Therefore, in the I-th pseudo 
instructions, it contains the k encoded instructions 
from the I-th to (I+k-1)-th encoded instructions if the 

I+k-1 is bigger than n. When I is bigger than n-k (not 
includes n-k), the pseudo instruction contains the last 
n-I, where the n-I is less than k. Finally, the n-th 
pseudo instruction contains only one encoded 
instruction. As a result, the un-encoded instructions 
which do not belong to the most frequently executed 
instructions can keep the original address. In addition, 
the first encoded instruction of a pseudo can be 
decoded to the instruction which is located in the 
current address originally. The memory maps of the 
sample code fragment after compression are shown 
in Fig. 2(a)–(b). 

 07 6 5 4 3 2 18927 26 2524 23 22 2120 19 18 17 16 15 14 13 12 11 103130 29 28
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Figure 1. Unused instructions in the ARM
instruction set. 

 

Figure 2. Uncompressed and encoded 
instructions in memory. 
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Figure 3. The proposed embedded system 

architecture with one reference table. 

When the pseudo instruction is fetched, the (32 – 
M) bits can be decoded to obtain multiple 
instructions; that is, ⎣ ⎦NLogM 2/)32( −  instructions 
can be decoded at most from one access to the 
memory. To prevent accessing the memory more than 
necessary when data is being decoded, we place the 
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reference table, which contains the original form of 
the most frequently executed instructions, in the 
decompression engine. Because the number of the 
most frequently executed instructions is very small, 
the extra space in the decompression engine is quite a 
small. For example, if the number of the most 
frequently executed instructions is 64 or 128 and the 
length of the original instructions is 32 bits, the extra 
space for the reference table in the decompression 
engine is 256 bytes or 512 bytes, respectively. Figure 
3 shows the architecture of our proposed embedded 
system. 

3.2 Multiple reference tables 

If the number of the most frequently executed 
instructions is too much, the length of the fixed 
encoded code words increases. Thus, the number of 
times memory is accessed in decoding 32-bit data 
becomes less, which influences performance and 
power consumption.  

To solve this problem, we propose a multiple 
reference table method which has the advantages of 
reducing the number of times memory is accessed. In 
our design, we propose extendable multiple reference 
tables in the decompression engine. When a number 
of instructions are selected, we divide these 
instructions into several groups. Each group has 
almost the same number of instructions. According to 
the number of instructions in a group, we use the 
fixed length encoding method mentioned above to 
encode these instructions. In addition, we must add 
some bits to identify which group these encoded 
instructions in a pseudo instruction belong to. 
Accordingly, we can decode adequate instructions by 
accessing the memory once to reduce the number of 
times memory is accessed even if the number of the 
most frequently executed instructions is large. 

Figure 4 shows the encoded instructions in a 
pseudo instruction and the system architecture of the 
decompression engine with multiple reference tables. 
Hence, this design may give rise to another problem; 
that is, the instructions in a basic block may be 
located in different reference tables. The problem 
reduces the benefit of reduced numbers of memory 
access. To solve this problem, we place the 
continuous instructions in a basic block into the same 
reference table; that is, one instruction could appear 
in several different reference tables for longer 
continuous encoded instructions if the instructions 
appear in different basic blocks.  

In the following, we give an example to analyze 
the memory access reduction ratio. We let X be the 
total number of the executed instructions and P be 
the ratio of the executed Load/Store instructions to all 
the executed instructions. A1 and A2 are ratios, 
respectively, of the most frequently executed 256 and 
512 instructions to the total number of executed 
instructions, where A2> A1. The remaining 
instructions that do not belong to the most frequently 

executed instructions are compressed by using the 
dictionary-based method, which requires that the 
memory be accessed three times to decompress one 
instruction. We list the least number of times memory 
is accessed (the ideal situation): 

1. When 256 instructions are encoded with one 
reference table, the number of times memory is 
accessed is: 
(A1*X)/3 + (1- A1)*X*3 + X*P 

2. When 512 instructions are encoded with one 
reference table, the number of times memory is 
accessed is: 
(A2*X)/2 + (1- A2) *X *3 + X*P 

3. When 512 instructions are encoded with two 
reference tables, the number of times memory 
is accessed is: 
(A2*X)/3 + (1- A2) *X *3 + X*P 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 1 1 1 0 0 0 0

For example, if the most frequently executed 512 
instructions take up 95% of the total executed 
instructions and the ratio of the Load/Store 
instructions is 30%, in the ideal situation, the ratio of 
memory access with two reference tables is 20.65% 
less than the methods using one reference table. 
However, the theoretical analysis is for the ideal  

Figure 4.  The pseudo instruction and the 
system architecture of the 
decompression engine with 
multiple reference tables. 

(a).Four encoded instructions in a pseudo
instruction where the bits 24, 25 and 26 identify
the index of the reference tables. 
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The programs in Mediabench g721decoder g721encoder pegwit_d pegwit_e sorts timing average
The memory access ratio of the method with one 

256 instructions reference table 
52.66% 53.67% 56.67% 58.00% 59.40% 52.50% 55.48%

The memory access ratio of the method with one 

512 instructions reference table 
61.10% 60.75% 64.49% 65.35% 67.53% 64.13% 63.89%

The memory access ratio of the method with two 

256 instructions reference tables 
48.62% 47.58% 54.23% 57.03% 60.73% 50.98% 53.20%

The memory access ratio of the method with two 

256 instructions reference tables to the method 

with one 512 instructions reference table 

79.58% 78.33% 84.09% 87.27% 89.93% 79.49% 83.12%

Table 1.  Comparisons and the improvements in memory access ratio with different number of the
reference tables and the number of the different instructions 

 
one-time memory access is too small to reduce the 
number of times memory is accessed. To solve this 
problem, we use multiple reference tables which 
have the advantages of adequate frequently executed 
instructions and small size encoded instructions. 

situation. In fact, in order to prevent empty slots in 
the pseudo instructions as much as possible, the total 
number of different instructions in these two 
reference tables is less than 512. Therefore, 
improvement will be influenced by these factors. In 
the next section, we will show our simulation results 
from reducing the number of times memory is 
accessed. 

In our simulation, we used two reference tables, 
with each table containing 256 instructions. For the 
instruction allocation strategy, we arranged the 
continuous instructions in a basic block into the same 
reference tables to maximize performance. In 
addition, we allowed an instruction to appear in both 
reference tables to reduce empty slots in a pseudo 
instruction as much as possible. As a result, the total 
number of different instructions in the two tables was 
less than 512 (about 470 instructions on average).  

4. Experimental Results 

In this section, we present our experimental results 
which show improvements in terms of the number of 
times memory is accessed for power saving and 
performance. With regards to the simulation 
environment and the benchmark, we used the ARM 
STD2.5 simulation tools running the Media Bench 
programs. 

 

 
We simulated the different numbers of the most 

frequently executed instructions to compute the 
reductions in the number of times memory was 
accessed to save power and improve performance via 
encoding the most frequently executed instructions. 
We placed the most 22, 23, 24 …29 frequently 
executed instructions with a lookup table in the 
decompression engine. Then these instructions in the 
object code were replaced with the encoded code 
words of a fixed length.  

 

 

 

 

From the simulation results shown in Figure 5, the 
number of times memory was accessed was reduced 
by more than 60% when the number of the most 
frequently executed instructions was 128 or 256. In 
addition, the number of times memory was accessed 
was about 60% to 70% less than the original memory 
access times when we encoded the most frequently 
executed 128, 256, or 512 instructions.  

 

 

 

 
Although our method improves performance and 

saves power substantially by reducing memory 
access frequency, the improved result depends on the 
number of the most frequently executed instructions 
and on how many encoded instructions can be 
wrapped in a pseudo instruction. If the object code 
size of the application is too large, the number of the 
most frequently executed instructions increases to 
occupy a greater part of the execution time. Thus, the 
number of instructions for decoding 32-bit data from  
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Figure 5. Memory access reduction after
packing several encoded
instructions into a pseudo
instruction. 
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In Table 1, we list our simulation results. When 
two 256 instructions reference tables were used, the 
memory access ratio was less by 10.69% on average 
than the method of using 512 instructions in one 
reference table. In other words, using the two 
reference tables with 256 instructions in each results 
in a memory access ratio that is 16.73% less than the 
memory access ratio resulting from using one 
reference table with 512 instructions. Table 1 shows 
the comparisons and the improvements in memory 
access ratio with different number of tables and 
different numbers instructions. Based on these results, 
our proposed methods can improve system 
performance and saves power while using almost the 
same low memory space as the one that compresses 
the entire object codes with one compressed method 
for various sizes of applications. 

5. Conclusion 

In this paper, we focused on the problems of 
developing a cache-less embedded system that 
considers power consumption and performance. 
Because the number of times memory is accessed 
affects power consumption and performance, we 
reduce the number of times memory is accessed to 
solve the power and performance problems. 

According to the space locality property, our 
proposed method can obtain multiple continuous 
instructions which can be kept in the decompression 
engine for one-time access to memory for a great part 
of the execution time to effectively reduce the 
number of times memory is accessed. From our 
simulation results, our proposed methods reduced the 
number of times memory was accessed 60~70% 
lower than that of the original memory access times. 

However, if the amount of the most frequently 
executed instructions is large for big size applications, 
the effect of reducing the number of times memory is 
accessed may result in a worse ratio than smaller size 
applications. To solve this problem, we proposed the 
multiple reference table method that has the 
advantages of adequate frequently executed 
instructions and small size encoded instructions. 
From our simulation results, using the two reference 
tables with 256 instructions in each results in a 
memory access ratio that is 16.73% less than the 
memory access ratio resulting from using one 
reference table with 512 instructions. As a result, our 
proposed methods based on the frequencies of 
executing instructions result in low power 
consumption and improved performance in 
embedded systems. 
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