
A Low Power-consuming Embedded System Design by Reducing
Memory Access Frequencies with Multiple Reference Tables and

Encoding the Most Executed Instructions1

Ching-Wen Chen2

Chih-Hung Chang

Chang-Jung Ku

Department of Computer
Science and Information

Engineering
Chaoyang University of

Technology, Taiwan
chingwen@mail.cyut.edu.tw

Department of Computer
Science and Information

Engineering
Chaoyang University of

Technology, Taiwan
s9227610@mail.cyut.edu.tw

Department of Computer
Science and Information

Engineering
Chaoyang University of

Technology, Taiwan
s9327608@mail.cyut.edu.tw

Abstract Power consumption, Performance, Decompression
engine.

In designing an embedded system, system
performance and power consumption have to be
taken carefully into consideration. In this paper, we
use the locality of running programs to reduce the
great number of memory access to save the power
and maximize the performance in the embedded
system design. We encode the frequently executed
instructions as shorter code words and then pack
continuous code words into a pseudo instruction.
Once the decompression engine fetches one pseudo
instruction, it can extract multiple instructions.
Therefore, a number of memory access times can be
efficiently reduced because of space locality.
However, if the program size of applications
increases, the number of the most frequently executed
instructions grows up. This situation results in the
degradation of system performance and power
consumption. To solve this problem, we also propose
a method of using multiple look-ahead tables to make
most frequently executed instructions have shorter
encoded code words to improve the performance and
power. From our simulation results, our method with
one reference table which contains the most
frequently executed 512 instructions reduces the
number of times memory is accessed by about 60%
Moreover, when two reference tables that contain 256
instructions in each table are used, the memory
access ratio is 16.73% less than the ratio resulting
from one 512-instruction reference table. According
to the simulation results, our proposed methods
based on the frequencies of executed instructions
result in low power consumption and performance
improvement.

1. Introduction

Embedded systems are more and more important
today because they are used in many electronic
productions such as mobile devices, medical
instruments, consumer electronics, and so on.
However, many embedded computing systems are
sensitive to power, and performance. Designing an
embedded system with optimal power and
performance is important.

In the design of embedded systems, because signal
changes in the memory bus consume the most power,
some researchers [1-2] have considered methods of
reducing memory transmission or avoiding changes
in memory signals to reduce power consumption.
However, these methods always increase the use of
memory space and degrade system performance. For
instance, [2] reduces the number of times memory is
accessed by 11% to 33% but increases the code size
by 49% to 71%.

In this paper, we address the problems associated
with power consumption and performance in a
cache-less embedded system by reducing the
memory access times. Because the memory access
times dominate the system performance and power
consumption, we encode the most frequently
executed instructions as shorter code words and then
pack continuous encoded instructions (code words)
into pseudo instructions. Once the decompression
engine fetches one pseudo instruction, it can extract
multiple instructions. Therefore, a number of
memory access times can be efficiently reduced
because of space locality. Keywords: Embedded system, Code compress,

After encoding and wrapping the most frequently
executed into pseudo instructions, the addresses of
the instructions address in the memory change from
the original ones. In such a design, a LAT data
structure is necessary to converse the old address to
the new one. It causes the double number of memory

1. This research was supported by the National Science

Council NSC- 92-2213-E-324-006-
2 Corresponding Author. Tel: +886-4-23323000 Ext. 4534

Fax: +886-4-23742375
Email: chingwen@mail.cyut.edu.tw (C.W. Chen)

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1257

access if the LAT is located in the memory. To solve
this problem, we proposed multiple pseudo
instructions instead of one pseudo instruction; that is,
each pseudo instructions contains the original
encoded instructions and the latter continuous
encoded instructions. Therefore, the behavior of
memory access does not need the address conversion
by the LAT.

However, if the program size of applications
increases, the number of the most frequently
executed instructions grows up. This situation results
in the degradation of system performance and power
consumption. To solve this problem, we also propose
a method of using multiple look-ahead tables to make
most frequently executed instructions have shorter
encoded code words to improve the performance and
power. Because embedded systems are designed for a
specific purpose, the application of an embedded
system is clear and definite. We split the static codes
(object codes) into two parts: the most frequently
executed instructions and the infrequently executed
instructions. According to the locality of executed
programs, we compress the most frequently executed
static object codes to improve performance and
reduce power consumption. As a result, our method
result in low power consumption and improved
performance for embedded systems.

This paper is organized as follows. Section 2
reviews previous related works. Section 3 illustrates
the compression and decompression methods for
frequently and infrequently executed codes. Section 4
shows the experimental results. In Section 5, we
conclude this work.

2. Relate Works

There have been many recent publications on code
compression [1-8]. Generally speaking, one kind
method for compressing codes provides a
post-compilation compression scheme and an
external hardware decompression unit between the
processor and memory. This approach is described as
follows. The source code is compiled and
compressed to a smaller sized object code. The
compressed object code is then put in memory. When
a processor executes the object code, the
decompression engine located between the CPU and
the memory fetches and decompresses the
compressed instruction from the memory. As a result,
the processor can execute the original instructions
normally. [3-8] uses this technique to compress entire
object codes to get a good compression ratio. For
example, [4] and [7] use the Huffman code encoded
method in MIPS processor. [3] and [5] use
dictionary-based compression methods to get about a
62% compression ratio. Moreover, [7] uses the
operand factorization method to obtain an advanced
compression ratio, but there is a serious penalty in
performance as a result. Briefly, the disadvantage of
these methods is a significant loss in performance.

In terms of power consumption, the
memory-processor interface is the primary consumer
of power [1]. For this reason, several articles have
been presented on the memory-processor interface to
suggest ways for the interface to consume less power.
The main idea behind these methods is to minimize
bus switching or bus transmissions to save power.
The ARM7 Thumb core [9] uses 16-bit instruction
rather than 32-bit regular instruction to reduce
memory bandwidth. However, if this approach is
used, the architecture of the core processor and the
compiler must be modified.

In contrast, Yoshida et al. [1] and Benini [2] et al.
proposed an alternative approach to reduce
instruction memory bandwidth. Yoshida encoded N
instructions to a length of log2N. Therefore, every
one of the N instructions is replaced by an encoded
instruction of length log2N. When the program is
executed, the memory bandwidth is changed from 32
bits to log2N. Rather than using the N instructions,
Benini used the most executed 256 instructions to
reduce memory transmissions. Although these
techniques reduce the memory interface power, the
memory space increases. For example, Benini [2]
saved the number of times memory is accessed by
11% to 33% but code size for the on-chip version is
increased by 49% to 71%.

In this paper, present an integrated solution to the
problems mentioned above by proposing a design for
embedded systems, which require use low power, and
have improved performance.

3. Proposed Architecture and Design in
an Embedded System

In this section, we present our design which
considers the issues of power and performance in a
cache-less embedded system. In our design, the
locality property of the running program is used to
optimize performance and power. We compress the
object codes that belong to the frequently executed
instructions to improve performance and reduce
power consumption. We describe our design in
Section 3.1 and Section 3.2.

3.1 Code Compression for Memory Access
Reduction

Because the number of times memory is accessed has
the greatest effect on the system performance and the
memory bus switching has the greatest effect on
power consumption, the frequency of accessing
memory in a cache-less embedded system has the
greatest effect on system performance and power
consumption. Thus, how to reduce the number of
times memory is accessed for the most frequently
executed instructions are the main subjects discussed
in this section.

The basic ways to solve this problem are: 1)

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1258

obtaining multiple instructions in one 32-bit width
memory access by encoding the most frequently
executed instructions and keeping these multiple
instructions in the decompression engine for
successive execution, 2) packing several encoded
instructions into a special pseudo instruction. The
decoded multiple instructions, which are kept in the
decompressed engine for one-time memory access,
are very likely executed at one time because of the
space locality property. As a result, the number of
times memory is accessed can be greatly reduced.

In the following, we describe the encoding method
that gets multiple instructions from accessing
memory once. First, we run the application to gather
the most frequently executed instructions off-line.
From the number of the most frequently executed
instructions, we encode the instructions into code
words of a fixed length. For example, if the most
frequently executed instructions are 4, 8, 16 … or
1024, the encoded instruction is 2, 3, 4 … or 10 bits
in length. After these instructions are encoded, the
continuous encoded instructions are wrapped into a
pseudo instruction where the pseudo instruction is
not used in the embedded processor’s instruction set;
for example; the unused instruction in the ARM
processor is shown in Figure 1. However, the total
length of the continuous encoded instructions
wrapped in a pseudo instruction is smaller than 32-M
bits, where M bits are used to recognize the pseudo
instruction; for example; the pseudo instruction in the
ARM process in Figure 1 costs 5 bits. As a result, the
length of the encoded instructions is , where
the N is the number of the most frequently executed
instructions.

⎡ ⎤NLog 2

After encoding and wrapping the most frequently
executed into pseudo instructions, the addresses of
the instructions address in the memory change from
the original ones. In such a design, a LAT data
structure is necessary to converse the old address to
the new one. It causes the double number of memory
access if the LAT is located in the memory. To solve
this problem, we proposed to use multiple pseudo
instructions instead of one pseudo instruction; that is,
if n continuous instructions which belongs to the
most frequently executed instructions want to be
wrapped into pseudo instructions and one pseudo
instruction can wrap k instructions, we wrap the first
k encoded instructions of n instructions into the first
pseudo instruction. And then, we wrap the second to
the (k+1)-th encoded instructions into the second
pseudo instruction. Therefore, in the I-th pseudo
instructions, it contains the k encoded instructions
from the I-th to (I+k-1)-th encoded instructions if the

I+k-1 is bigger than n. When I is bigger than n-k (not
includes n-k), the pseudo instruction contains the last
n-I, where the n-I is less than k. Finally, the n-th
pseudo instruction contains only one encoded
instruction. As a result, the un-encoded instructions
which do not belong to the most frequently executed
instructions can keep the original address. In addition,
the first encoded instruction of a pseudo can be
decoded to the instruction which is located in the
current address originally. The memory maps of the
sample code fragment after compression are shown
in Fig. 2(a)–(b).

 07 6 5 4 3 2 18927 26 2524 23 22 2120 19 18 17 16 15 14 13 12 11 103130 29 28

XX1 XXXXXX X X XX X X X X X X X X X X X X X X X01 1 1

The most frequently executed instructions.

abc
c

c
b

e f g
g

g
f

p
p
p

p
p
p

b
c

a

e
f
g

a. The most frequently
executed instructions

in memory

b. The encoded instructions
in memory

The uncompress instructions.

The pseudo instruction.
The encoded instruction.
Unused

p

MSB LSB MSB LSB

Figure 1. Unused instructions in the ARM
instruction set.

Figure 2. Uncompressed and encoded
instructions in memory.

Mircoprocessor
Core

R
egister 1

R
egister 2

R
egister 3

R
egister n

... Frequently
Used

Instruction
Table

Instruction
Memory

0 1

CPU

Figure 3. The proposed embedded system

architecture with one reference table.

When the pseudo instruction is fetched, the (32 –
M) bits can be decoded to obtain multiple
instructions; that is, ⎣ ⎦NLogM 2/)32(− instructions
can be decoded at most from one access to the
memory. To prevent accessing the memory more than
necessary when data is being decoded, we place the

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1259

reference table, which contains the original form of
the most frequently executed instructions, in the
decompression engine. Because the number of the
most frequently executed instructions is very small,
the extra space in the decompression engine is quite a
small. For example, if the number of the most
frequently executed instructions is 64 or 128 and the
length of the original instructions is 32 bits, the extra
space for the reference table in the decompression
engine is 256 bytes or 512 bytes, respectively. Figure
3 shows the architecture of our proposed embedded
system.

3.2 Multiple reference tables

If the number of the most frequently executed
instructions is too much, the length of the fixed
encoded code words increases. Thus, the number of
times memory is accessed in decoding 32-bit data
becomes less, which influences performance and
power consumption.

To solve this problem, we propose a multiple
reference table method which has the advantages of
reducing the number of times memory is accessed. In
our design, we propose extendable multiple reference
tables in the decompression engine. When a number
of instructions are selected, we divide these
instructions into several groups. Each group has
almost the same number of instructions. According to
the number of instructions in a group, we use the
fixed length encoding method mentioned above to
encode these instructions. In addition, we must add
some bits to identify which group these encoded
instructions in a pseudo instruction belong to.
Accordingly, we can decode adequate instructions by
accessing the memory once to reduce the number of
times memory is accessed even if the number of the
most frequently executed instructions is large.

Figure 4 shows the encoded instructions in a
pseudo instruction and the system architecture of the
decompression engine with multiple reference tables.
Hence, this design may give rise to another problem;
that is, the instructions in a basic block may be
located in different reference tables. The problem
reduces the benefit of reduced numbers of memory
access. To solve this problem, we place the
continuous instructions in a basic block into the same
reference table; that is, one instruction could appear
in several different reference tables for longer
continuous encoded instructions if the instructions
appear in different basic blocks.

In the following, we give an example to analyze
the memory access reduction ratio. We let X be the
total number of the executed instructions and P be
the ratio of the executed Load/Store instructions to all
the executed instructions. A1 and A2 are ratios,
respectively, of the most frequently executed 256 and
512 instructions to the total number of executed
instructions, where A2> A1. The remaining
instructions that do not belong to the most frequently

executed instructions are compressed by using the
dictionary-based method, which requires that the
memory be accessed three times to decompress one
instruction. We list the least number of times memory
is accessed (the ideal situation):

1. When 256 instructions are encoded with one
reference table, the number of times memory is
accessed is:
(A1*X)/3 + (1- A1)*X*3 + X*P

2. When 512 instructions are encoded with one
reference table, the number of times memory is
accessed is:
(A2*X)/2 + (1- A2) *X *3 + X*P

3. When 512 instructions are encoded with two
reference tables, the number of times memory
is accessed is:
(A2*X)/3 + (1- A2) *X *3 + X*P

1 1 1 1 0 0 0 0

For example, if the most frequently executed 512
instructions take up 95% of the total executed
instructions and the ratio of the Load/Store
instructions is 30%, in the ideal situation, the ratio of
memory access with two reference tables is 20.65%
less than the methods using one reference table.
However, the theoretical analysis is for the ideal

Figure 4. The pseudo instruction and the
system architecture of the
decompression engine with
multiple reference tables.

(a).Four encoded instructions in a pseudo
instruction where the bits 24, 25 and 26 identify
the index of the reference tables.

Mircoprocessor
Core

R
egister 1

R
egister 2

R
egister 3

R
egister n

...

Instruction
Memory

0
 1

CPU

R
egister 1

R
egister 2

R
egister 3

R
egister k

...

0~k

(b). The decompression engine with multiple
reference tables

1 1 1 1 0 1 1 1

07 6 5 4 3 2 18927 26 2524 23 22 2120 19 18 17 16 15 14 13 12 11 103130 29 28

07 6 5 4 3 2 18927 26 25 24 23 22 2120 19 18 17 16 15 14 13 12 11 1030 29 28

.

.

.
31

Encoded instructions

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1260

The programs in Mediabench g721decoder g721encoder pegwit_d pegwit_e sorts timing average
The memory access ratio of the method with one

256 instructions reference table
52.66% 53.67% 56.67% 58.00% 59.40% 52.50% 55.48%

The memory access ratio of the method with one

512 instructions reference table
61.10% 60.75% 64.49% 65.35% 67.53% 64.13% 63.89%

The memory access ratio of the method with two

256 instructions reference tables
48.62% 47.58% 54.23% 57.03% 60.73% 50.98% 53.20%

The memory access ratio of the method with two

256 instructions reference tables to the method

with one 512 instructions reference table

79.58% 78.33% 84.09% 87.27% 89.93% 79.49% 83.12%

Table 1. Comparisons and the improvements in memory access ratio with different number of the
reference tables and the number of the different instructions

one-time memory access is too small to reduce the
number of times memory is accessed. To solve this
problem, we use multiple reference tables which
have the advantages of adequate frequently executed
instructions and small size encoded instructions.

situation. In fact, in order to prevent empty slots in
the pseudo instructions as much as possible, the total
number of different instructions in these two
reference tables is less than 512. Therefore,
improvement will be influenced by these factors. In
the next section, we will show our simulation results
from reducing the number of times memory is
accessed.

In our simulation, we used two reference tables,
with each table containing 256 instructions. For the
instruction allocation strategy, we arranged the
continuous instructions in a basic block into the same
reference tables to maximize performance. In
addition, we allowed an instruction to appear in both
reference tables to reduce empty slots in a pseudo
instruction as much as possible. As a result, the total
number of different instructions in the two tables was
less than 512 (about 470 instructions on average).

4. Experimental Results

In this section, we present our experimental results
which show improvements in terms of the number of
times memory is accessed for power saving and
performance. With regards to the simulation
environment and the benchmark, we used the ARM
STD2.5 simulation tools running the Media Bench
programs.

We simulated the different numbers of the most

frequently executed instructions to compute the
reductions in the number of times memory was
accessed to save power and improve performance via
encoding the most frequently executed instructions.
We placed the most 22, 23, 24 …29 frequently
executed instructions with a lookup table in the
decompression engine. Then these instructions in the
object code were replaced with the encoded code
words of a fixed length.

From the simulation results shown in Figure 5, the
number of times memory was accessed was reduced
by more than 60% when the number of the most
frequently executed instructions was 128 or 256. In
addition, the number of times memory was accessed
was about 60% to 70% less than the original memory
access times when we encoded the most frequently
executed 128, 256, or 512 instructions.

Although our method improves performance and

saves power substantially by reducing memory
access frequency, the improved result depends on the
number of the most frequently executed instructions
and on how many encoded instructions can be
wrapped in a pseudo instruction. If the object code
size of the application is too large, the number of the
most frequently executed instructions increases to
occupy a greater part of the execution time. Thus, the
number of instructions for decoding 32-bit data from

40%

60%

80%

100%

4 8 16 32 64 128 256 512

Numbers of freq. used instructions

Pe
rc

en
ta

ge
 o

f m
em

or
y

ac
ce

ss
 ti

m
es g721decoder

g721encoder
pegwit_d
pegwit_e
sorts
timing

40%

60%

80%

100%

4 8 16 32 64 128 256 512

Number of freq. used instructions

Pe
rc

en
ta

ge
 o

f m
em

or
y

ac
ce

ss
 ti

m
es

Average

Figure 5. Memory access reduction after
packing several encoded
instructions into a pseudo
instruction.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1261

In Table 1, we list our simulation results. When
two 256 instructions reference tables were used, the
memory access ratio was less by 10.69% on average
than the method of using 512 instructions in one
reference table. In other words, using the two
reference tables with 256 instructions in each results
in a memory access ratio that is 16.73% less than the
memory access ratio resulting from using one
reference table with 512 instructions. Table 1 shows
the comparisons and the improvements in memory
access ratio with different number of tables and
different numbers instructions. Based on these results,
our proposed methods can improve system
performance and saves power while using almost the
same low memory space as the one that compresses
the entire object codes with one compressed method
for various sizes of applications.

5. Conclusion

In this paper, we focused on the problems of
developing a cache-less embedded system that
considers power consumption and performance.
Because the number of times memory is accessed
affects power consumption and performance, we
reduce the number of times memory is accessed to
solve the power and performance problems.

According to the space locality property, our
proposed method can obtain multiple continuous
instructions which can be kept in the decompression
engine for one-time access to memory for a great part
of the execution time to effectively reduce the
number of times memory is accessed. From our
simulation results, our proposed methods reduced the
number of times memory was accessed 60~70%
lower than that of the original memory access times.

However, if the amount of the most frequently
executed instructions is large for big size applications,
the effect of reducing the number of times memory is
accessed may result in a worse ratio than smaller size
applications. To solve this problem, we proposed the
multiple reference table method that has the
advantages of adequate frequently executed
instructions and small size encoded instructions.
From our simulation results, using the two reference
tables with 256 instructions in each results in a
memory access ratio that is 16.73% less than the
memory access ratio resulting from using one
reference table with 512 instructions. As a result, our
proposed methods based on the frequencies of
executing instructions result in low power
consumption and improved performance in
embedded systems.

Acknowledgments

This work was supported by the National Science
Council(NSC-92-2213-E-324-006-).

References

[1]. Y. Yoshida, B.Y. Song, H. Okuhata, T. Onoye
and I. Shirakawa, “An Object Code
Compression Approach to Embedded
Processors”, Proceedings International
Symposium on Low Power Electronics and
Design, 1997.

[2]. L. Benini, A. Macii, E. Macii and M. Poncino,
“Selective Instruction Compression for
Memory Energy Reduction in Embedded
Systems”, IEEE/ACM Proceedings of
International Symposium on Low Power
Electronics and Design (ISLPED’99), pp.
206-211, 1999.

[3]. C. Lefurgy, P. Bird, I. C. Chen and T.
Mudge, ”Improving Code Density Using
Compression Technique”, Proceedings of the
30th Annual International Symposium on
Microarchitecture, December 1997.

[4]. A. Wolfe and A. Chanin, ”Executing
Compressed Programs on an Embedded RISC
Architecture”, Proceedings of the 25th Annual
International Symposium on
Microarchitecture, December 1992.

[5]. S. Liao, S. Devadas, K. Keutzer, ”Code
Density Optimization for Embedded DSP
Processors Using Data Compression
Techniques”, Proceedings of the 15th
Conference on Advanced Research in VLSI,
March 1995.

[6]. S.J. Nam, I.C. Park and C.M. Kyung,
“Improving Dictionary-Based Code
Compression in VLIW Architecture”, IEICE
TRANS. Fundamentals, Vol. E82- A, No. 11
November 1999.

[7]. Kozuch, M., Wolfe, A., “Compression of
embedded system programs”, IEEE
International Conference on Computer Design:
VLSI in Computers and Processors, 1994.

[8]. J. Ernst, W. Evans, C. W. Fraser, S. Lucco,
and T.A. Proebsting, “Code compression”,
Proceedings of the ACM SIGPLAN’97
Conference on Programming Language
Design and Implementation (PLDI), June
1997.

[9]. Advance RISC Machines Ltd., “An
introduction to Thumb”, March 1995.

[10]. K. Kissell, “MIPS16: High –density MIPS for
the Embedded Market”, Technical report,
Silicon Graphics MIPS Group, 1997.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1262

