
An Efficient Protocol for Disseminating Data with
Multi-dimensional Index on Multiple Broadcasting Channels∗

Chuan-Ming Liu†, Kun-Feng Lin†, Susanne E. Hambrusch‡, and Chien-Hung Liu†
†Comp. Sci. and Info. Eng., National Taipei University of Tech., Taipei, Taiwan

‡Department of Computer Sciences, Purdue University, West Lafayette, IN 47907, USA

†{cmliu,s2598019,cliu}@ntut.edu.tw, ‡seh@cs.purdue.edu

Abstract- In this paper we consider scheduling the
broadcast of data with a multi-dimensional index tree
on multiple channels. Poorly designed multi-channel
broadcast schedule and client query algorithms can
result in an increase in the latency (time elapsed
from requesting to receiving data) compared to a sin-
gle channel environment. We provide an algorithm
for scheduling the broadcast and the resulting sched-
ule has an optimal cycle length and can reduce the
latency by a factor of 1

c
for a simple query where c

is the number of channels. We also provide an effi-
cient protocol for the range-like query which results
in a partial traversal of the index tree. We finally
conclude this paper with our simulation work.

keywords: broadcasting, multi-dimensional index
trees, query process, multiple channels, latency.

1 Introduction

The continuous broadcast of data together with an
index structure is an effective way of disseminat-
ing data in a wireless, mobile environment. Such
a client-server model is a server-push and client-pull
model. In the broadcasting system, each periodic
broadcast constitutes a broadcast cycle. The avail-
ability of an index allows a reduction in the tun-
ing time (the amount of time spent listening to the
broadcast) and thus leads to lower power consump-
tion for a client. In this paper we consider schedul-
ing the broadcast of data with a multi-dimensional
index tree, such as R∗-tree [2], in multiple channel
environments where a mobile client can tune into
any specified channel at one time instance.

Poorly designed multiple channel broadcast
schedules and client query algorithms can result in
an increase in the latency (time elapsed from request-
ing to receiving data) compared to a single channel
environment. Suppose there are c channels. For a
given n-node multi-dimensional index tree, we pro-
vide a client-server protocol where the cycle length
of the generated broadcast is optimized and the la-
tency and tuning time for a client to execute query
are minimized. We point out that, if there are c
channels, the latency for any query should not be
more than c cycles; otherwise, using one channel to
broadcast is better enough. We also compare our
protocol with the one in a one-channel environment
by simulation.

∗Work supported by the National Science Council un-
der the grant numbers NSC-92-2213-E-027-010.

2 Related Work

Most of the previous work has focused on the prob-
lem of minimizing the latency in the model where
the server broadcasts only the data. The resulting
broadcast schedule is generated by considering the
given data access frequencies [1, 11]. [9] and [10]
provide broadcast schedules for supporting range
queries on one dimensional data.

Broadcasting data with index was first formalized
in [5]. The problem is how to mix the data with in-
dex in order to reduce the latency and tuning time.
Different index techniques such as hashing and dis-
tributed index were studied in [5, 7, 8]. When each
data item has different access frequency, [3] proposes
a method to construct an index tree based on the
data access frequency to minimize the average tun-
ing time. Protocols for scheduling the broadcast of a
multi-dimensional index tree and supporting range-
link queries in one channel can be found in [4].

Broadcasting data in multiple channels has been
studied in [4, 7, 8, 11]. Different strategies for al-
locating data over multiple channels by clustering
or partitioning dependent data are discussed in [11].
[7] and [8] both consider broadcasting index trees on
multiple channels for non-uniform data. The pro-
posed schedule in [8] lacks of flexibility and requires
a number of channels equal to the height of the in-
dex tree. The schedule in [7] is only applicable to a
problem of small size. When the size of broadcast
data is large, they provide heuristics to schedule the
broadcast. In our work, we consider broadcasting
a multi-dimensional index tree in a multiple chan-
nel environment for uniform data. The generated
broadcasting schedule fully supports the range-like
queries and the resulting latency is shorter than the
broadcasting in one channel.

3 Problems

Suppose that the number of channels used for broad-
casting is c > 1. In the broadcast channels, we as-
sume that each packet in the channels corresponds to
each node in the index tree. Therefore, each packet
will carry its corresponding node’s information in-
cluding the children list of that node. For each child
in the child list, we also store the child’s position and
channel assigned as well as the index of that child.
Therefore, by examining an internal node, we can
decide which children should be received. We refer
examining a node as exploring a node.

The execution of a query we consider on a multi-

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

87

dimensional index tree results in not only a sin-
gle path traversal from the root to a leaf (one-path
search) but also partially traversing the index tree
(multi-path search). Multi-path search is more gen-
eral than one-path search and more practical for real
world applications. We assume that all the clients
have enough memory to execute their own queries.

We observe that, in order to have less latency, the
broadcast schedule on multiple channels should sat-
isfy the following properties, ancestor property and
switch property. We say that the generated broad-
cast schedule satisfies the ancestor property if when
a node v is broadcast for the first time in a cycle, the
parent of v has been broadcast earlier in the same
cycle. Let u and v be two nodes, with u being the
parent of v. Assume u and v are assigned to channels
cu and cv, respectively. A switch occurs between u
and v when cu is not equal to cv. We say a broad-
cast schedule satisfies the switch property if for each
switch between u and v we have cu < cv. The switch
property ensures that any root-to-leaf path in a tree
experiences at most c − 1 switches, if there are c
channels. This leads to a fewer number of switches
between channels; thus, reduces the power consump-
tion. Our schedule is indeed optimal for some kinds
of queries.

We assumes that each node in the tree is broad-
cast only once in a cycle. In a multiple channel en-
vironment, a mobile client can only select one chan-
nel to tune into at each time instance; hence, con-
flicts arise when a mobile client needs to access nodes
placed in the same position at some time instance.
We refer to such a conflict as read-conflict. The read-
conflicts will impact the performance of the query
processing. For more details about the read-conflict,
please refer to [4]. Since it is not easy to control such
conflicts, our server broadcast schedule does not con-
sider the read-conflicts too much in this paper. Our
schedule will have the ancestor property and switch
property as well as minimizes the cycle length. On
the client side, we provide a query processing corre-
sponding to the broadcast schedule which minimizes
the latency.

4 Broadcasting Protocol

This section introduces our data disseminating pro-
tocol which consists of the broadcast scheduling on
the server side and the query processing on the client
side. We start our discussion with the broadcast
scheduling.

4.1 Server scheduling

This section presents our algorithm for scheduling
the broadcast for an n-node multi-dimensional index
tree on c channels, c > 1. We assume that the degree
of the index tree must have the following property:
whenever the algorithm considers a subtree rooted
at r′ on c′ channels, node r′ must have at least c′

children. Thus, initially, the root r must have at
least c children. Furthermore, the schedule can be
generated in O(n) time.

We refer to the algorithm generating the broad-
cast schedule as Algorithm c-MinCycle shown in Fig-
ure 1. The first step (a) arranges the children of ev-
ery node of input tree T by non-increasing sizes (i.e.,

the number of nodes in subtree) of their correspond-
ing subtrees, (b) assigns the root r to position 1, and
(c) sets the capacity of each channel (i.e., the num-
ber of nodes still to be assigned). The second step
corresponds to a call to Algorithm AssignChannels
and it is the heart of Algorithm c-MinCycle: every
node is assigned to a channel, but not to a posi-
tion in the channel. The channel assignments made
result in selected nodes being marked as filler-nodes
or root-nodes. Filler-nodes guarantee that the gener-
ated schedule satisfies the ancestor property. Root-
nodes terminate the assignment process: When a
node u is marked as a root-node, the nodes in the
subtree rooted at u are (i) assigned to the same chan-
nel with node u and (ii) they do not get marked. The
distribution of filler- and root-nodes is such that for
a root-node u, all nodes on the path from the root
r to u’s parent are filler-nodes. The third step of
Algorithm c-MinCycle assigns every node to a posi-
tion in the assigned channel. Filler- and root-nodes
are used to determine the positions of nodes within
their assigned channel.

We now turn to Algorithm AssignChannels whose
description is given in Figure 2. AssignChannels
is invoked with four parameters: (1)a filler-node u
which is the root of a subtree T ′, (2)an integer β
representing the number of channels used, (3) a pa-
rameter offset, and (4) a list L containing β target
channel capacities.

Algorithm c-MinCycle
Input: n-node tree T with root r
Output: a c-channel broadcast schedule with cycle
length dn−1

c
e+ 1

(1) (a) arrange the children of every node by
non-increasing subtree sizes

(b) assign root r to channel 1 and mark r as a
filler-node

(c) set the capacity of each channel
(2) AssignChannels(r, c, 0, L)
(3) for channel i, 1 ≤ i ≤ c, do

(a) starting with position 2, contiguously
place the filler-nodes assigned to
channel i in order of increasing levels;

(b) consider the root-nodes assigned to
channel i by increasing level in T ;
root-nodes on the same level are
considered from right to left;
starting with the next position in
channel i, place the nodes in the sub-
trees rooted at each root-nodes in pre-
order in consecutive channel locations

End c-MinCycle

Figure 1: Generating a c-channel broadcast sched-
ule of minimum cycle length satisfying the ancestor
and switch properties.

The nodes from tree T ′ - excluding node u, which
is already assigned - are assigned to channels off-
set+1, . . . , offset+β. Alternatively, we will say node
u is associated with channels offset+1, . . . , offset+β.
Every channel is assigned the number specified in its
corresponding target capacity. Suppose the chan-
nels associated with node u are channels 1, · · · , β,

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

88

Algorithm AssignChannels(u, β, offset, L)
(0) let v1, . . . , vl be the children of u with β ≤ l

set i = l; k = β
(1) Root-Oriented Step:
while (k ≤ i and i 6= 0) do
(1.1) if si < tk then

assign vi as a root-node in channel offset+k;
tk = tk − si

else if si = tk then
assign vi as a root-node in channel offset+k;
tk = 0; k = k − 1

else /* invoke a 2-channel problem on vi */
assign vi as a filler-node in channel
offset+k − 1;
make a list L′ = ((si − 1)− tk, tk); k = k − 1;
AssignChannels(vi, 2, offset+k − 2, L′);
tk = 0; tk−1 = tk−1 − (si − tk); k = k − 1

(1.2) i = i− 1
endwhile
(2) if i = 0 then /* all children have been handled*/

return
(3) Filler-Oriented Step:
(3.1) mark v1, · · · , vi as filler-nodes for channels

offset+1, · · ·, offset+i
and target channel capacities update

(3.2) r0 = 1
(3.3) for j = 1 to i do

• determine rj such that∑rj−1

m=rj−1
tm < (sj − 1) and∑rj

m=rj−1
tm ≥ (sj − 1)

• if rj = rj−1 then
assign all children of vj as root-nodes to
channel offset+rj ;
trj = trj − (sj − 1)

• if rj > rj−1 then

trj = trj − (sj −
∑rj−1

m=rj−1
tm − 1);

t′rj
= (sj −

∑rj−1

m=rj−1
tm − 1);

make a list L′ of target capacities:
L′ = (trj−1 , . . . , trj);
AssignChannels(vj , rj − rj−1 + 1,
offset+rj−1 − 1, L′);
trj = trj − t′rj

;

endfor
End AssignChannels

Figure 2: Assigning the nodes in the subtree rooted
at node u to β channels.

β > 1. Let tk be the target capacity of channel k,
1 ≤ k ≤ β. Let v1, · · · , vl be the children of node u.
We have β ≤ l. This holds for all calls to Assign-
Channels since (i) initially every non-leaf node has
at least β children and (ii) removing children from
future calls results in a corresponding reduction in
the number of channels to be filled.

Algorithm AssignChannels starts assigning nodes
to channels in the Root-Oriented Step and then in
the Filler-Oriented Step. The Root-Oriented Step
considers the children of u from right to left. This
corresponds to starting with the subtree of small-
est size. One iteration assigns either one subtree
rooted at a child of node u to one channel or it
partitions one subtree among two channels. The
Root-Oriented Step operates as long as the number
of children of u not assigned to a channel is larger or
equal to the number of channels still to be assigned
nodes. This is the condition enforcing the ancestor
property of the generated schedule. In figure 3, the
Root-Oriented Step processes nodes a6, a5, a4, and
a3 and the root-nodes are a6, a5, and a3. Node a4

is a filler-node.

c16c15c14c3c2c1 c6c5c4 c9c8c7 c12c11c10 c13

r

a
1

a
2 a

5
a

4
a

3

b10

b11

b12

b9

b8

b7b2 b5b4b3 b6b1

a
6

b14b13

a
6

a
5

c11

b3rChannel 1

Channel 2

Channel 3

Channel 4

Position 1 2 3 4 5 6 7 8 9 10

b10 c15

a1

b5
a2

a4 b9

b1b2

b4
c6c7

a
3 b6

c12

b13 b14 b11 c16 b12

b7 b8
c14 c13

c8 c9 c10

c4 c5 c1 c2 c3

Figure 3: An index tree of size 37 to be scheduled
on four broadcast channels with optimal cycle length
10; filler-nodes (bold lines) are a1, a2, a4, b3, b5, and
b9.

When the number of children of u, i, which have
not been processed is less than the number of chan-
nels, k, which need nodes to fill in, the algorithm
switches to the Filler-Oriented Step. Note that
this does not happen when the Root-Oriented Step
terminates when all of the children have been ex-
plored (since channel assignments are complete).
The Filler-Oriented Step assigns nodes v1, · · · , vi to
channels 1, · · ·, k−1, respectively, and marks them as
filler-nodes (done in Step (3.1)). The remaining chil-
dren of u are then considered from left to right. As-
sume we are currently at child vj , 1 ≤ j ≤ i. Entries
rj (resp. rj−1) represents the largest (resp. small-
est) channel index being assigned a node in the sub-
tree tooted at vj . We refer to Step (3.3) for the exact
computation of these indices. Then, when rj = rj−1,
all children of node vj are made root-nodes for chan-
nel rj . Note that node vj remains labeled a filler-
node. It is not a root-node, since it is not assigned to
channel rj , but to a smaller indexed channel. When
rj > rj−1, we invoke a channel broadcast problem

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

89

on vj using rj − rj−1 + 1 < k channels, as detailed
in Step (3.3) of Algorithm AssignChannels. In the
figure 3, the Filler-Oriented Step processes nodes a1

and a2 and assigns these two nodes as filler-nodes.
To show that Algorithm c-MinCycle satisfies the

ancestor property, we first state a number of prop-
erties following from the way nodes are assigned to
channels and channel positions.

Property 1 If a filler-node u is assigned to channel
k and a descendant of u is assigned to channel k′,
then k ≤ k′.

For the following properties assume u is a filler-node
associated with channels γ + 1, · · · , γ + β, β > 1.

Property 2 The subtree rooted at u contains no
filler-node assigned to channel γ + β.

Property 3 Let u′ and u′′ be two filler-node chil-
dren of u with u′ to the left of u′′. Assume γ′ +
1, · · · , γ′+β′ are the channels associated with u′ and
γ′′ + 1, · · · , γ′′ + β′′ are the channels associated with
u′′, where β′ and β′′ > 1. Then, γ + 1 ≤ γ′ + 1 <
γ′ + β′ ≤ γ′′ + 1 < γ′′ + β′′ ≤ γ + β.

Property 4 Let u′ be a filler-node associated with
channels γ′ + 1, · · · , γ′ + β′. Assume u′ is on level
i, i ≥ 2. Then, for any channel k with γ′ + 1 ≤
k < γ′+β′, u′ or a right sibling of u′ is a filler-node
assigned to channel k. In addition, level i of tree T
contains exactly one filler-node assigned to channel
k.

The following two lemmas show that the broad-
cast schedule generated by Algorithm c-MinCycle
satisfies the ancestor property. We first use the
above properties to show that the ancestor property
is satisfied for the filler-nodes. Then, we argue that
the ancestor property holds for remaining nodes by
first showing that all nodes assigned to channel c
satisfy the ancestor property. The argument used
for channel c is then applied to the remaining chan-
nels. Due to the space limit, we omit the detail of
the proofs. Following these two lemmas, we conclude
this section with a theorem.

Lemma 1 Let P be any path from the root r to
some filler-node u with P = < p1 = r, · · · , pe = u >.
Then, pos(pi) = i, 1 ≤ i ≤ e.

Lemma 2 Let v be a node assigned to position
pos(v) in channel c. If u is v’s parent, then pos(u) <
pos(v).

Theorem 3 The schedule generated by Algorithm
c-MinCycle satisfies the ancestor and the switch
property. The schedule can be generated in O(n)
time.

Proof: The switch property follows from Prop-
erty 1. From Lemma 2 we know that the ancestor
property holds for all nodes assigned to channel c.
Remove from the generated schedule and from the
tree all nodes assigned to channel c. Then, mark
every filler-node assigned to channel c− 1 as a root-
node for channel c−1 and apply the argument given
in Lemma 2. A repeated application of this process
shows that the ancestor property holds for all nodes

in all channels. Hence, the generated schedule satis-
fies the ancestor property. The O(n) time for gener-
ating the schedule follows immediately from known
algorithms for tree computations and tree traversals.
2

4.2 Client processing

This section discusses the query processing on the
client side. We assume that the query processing
starts at beginning of a broadcast cycle. For one-
path search, the query processing is straightforward.
Having the broadcast scheduled satisfy the ancestor
property and achieve the minimum cycle length, one-
path search can always be done in O(n

c
) time in a

c-channel environment.
For a multi-path search, after exploring an inter-

nal node, one can have each child’s position and
channel number assigned to it and know which
child(ren) should be explored later. We therefore
must store the information of these relevant chil-
dren. We discuss two different methods for multi-
path search on the client side.

4.2.1 Method 1: Using a stack (SM)

The first method for multi-path search is straightfor-
ward and we use it to compare our method discussed
in the following subsection. This simple method uses
a stack to store the children information the client
has received. Due to the FILO property of a stack,
we need to push the child assigned to a large channel
number first. If there is a tie, we push the child hav-
ing large position first. After pushing all the relevant
children into the stack, the one popped out from the
stack is the next node to be explored. However, this
methods may still result in a long latency. This will
be explained later in Section 5.

4.2.2 Method 2: Two dictionary struc-
tures (TDSM)

In a multiple channel environment, nodes to be ex-
plored may have the same position but be on dif-
ferent channels. The client uses a p-element to hold
the nodes to be explored which have the same po-
sition. Therefore, a p-element consists of a position
and a set of channel indices. It maintains two dic-
tionary structures, Tact and Tnext, which are built
on p-elements with p-element’s position as the key.

The client uses Tact to determine the next node
to explore. It first uses the operation Extract-Min
on Tact to get the p-element, e, having the closest
(smallest) position. It then decides the next node to
explore by selecting the smallest channel index from
the channel index set of e. If the channel index set of
e is not empty after removing the smallest channel
index, the client inserts e into Tnext for the query
processing to extract e in the next cycle.

Consider a client has determined the next node
to explore from Tact, say node u. If u is a pro-
ductive node, let v1, · · · , vl be the children of u to
be explored. Nodes v1, · · · , vl are then inserted into
Tact. When inserting a node vi, i = 1, · · · , l, into
Tact, the client first checks whether the position of
vi is already in Tact. If it finds a p-element having
the position of vi as the key in Tact, it inserts the

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

90

channel index of vi into the channel index set. Oth-
erwise, the client creates a p-element from node vi

and inserts this p-element into Tact.
After the exploration of a productive node u, the

next node to be explored can be found in Tact as
discussed above since Tact is not empty. After the
exploration of an unproductive node, one of the fol-
lowing situations may occur.

(1) Tact is not empty. The next node to be explored
can be found in Tact as discussed above.

(2) Tact is empty but Tnext is not empty. When
this happens, the query processing moves to
the next broadcast cycle. Tnext contains all the
information used in the following cycle. The
client exchanges Tact and Tnext and continues
the query processing.

(3) Tact and Tnext both are empty. The query pro-
cessing stops since there is no more node to be
explored.

One way to implement Tact and Tnext is using
a binary search tree. The operations on them in-
clude Extract-Min, Search, Insert, and Delete. Since
the maximum number of p-elements in Tact or Tnext

is dn−1
c
e + 1, each operation on Tact or Tnext can

be done in O(logdn−1
c
e) time. Moreover, one can

maintain the channel index set of a p-element by
a heap. It will takes O(log c) time to obtain the
smallest channel index from the channel index set.
Therefore, the client needs O(log n) time to find the
next node to explore in Tact.

A partial traversal of the index tree results in
traversing many paths which start at the root and
end at internal nodes or leaves. We consider two
kinds of paths in a partial traversal of the index
tree. One is the path ending at a root-node and
the other is the path ending at a filler-node. Be-
cause the nodes in the subtree rooted at a root-node
are arranged in preorder in the same channel, two
(or more) different paths having a common ancestor
which is a root-node can be traversed in the same
cycle. We hence consider the paths ending at root-
nodes. On the other hand, a search path may end at
a filler-node u. In such a case, none of u’s children is
relevant to the query. We refer to a query process-
ing as an m-search if the query processing results in
a partial traversal which has m paths ending at a
root-node and a filler-node as discussed.

In the rest of this section, we discuss the perfor-
mance of the query processing in terms of number of
cycles. We will show that a multi-dimensional query
resulting in an m-search can be executed within at
most min{m, c} broadcast cycles. We first claim the
following lemma.

Lemma 4 Any multi-dimensional query can be ex-
ecuted within c broadcast cycles.

Proof: Due to the space constraint, please refer to
[6] for more details.

2

The performance for an m-search is better when
m < c. Consider a path ending at a root-node v.
The nodes on the path from the root to v and in
the subtree rooted at v can be traversed in one cy-
cle by the ancestor property. The result also holds
for the path ending at a filler-node. Therefore, at
lease one path can be traversed in one cycle. Hence,

1 2 3 4 5 6
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

4 one−path

la
te

nc
y

(#
 o

f n
od

es
)

number of channels

Figure 4: The average latency for a one-path search
on an R*-tree of size 105,721 and having 100,000
leaves as well as degree 10.

a multi-dimensional query resulting in an m-search
with m < c can be executed within at most m cycles.
We therefore have the following theorem:

Theorem 5 A multi-dimensional query resulting
in an m-search can be executed within at most
min{m, c} broadcast cycles, where c is the number
of channels.

5 Experimental Results

In this section, we provide our simulation work. The
multi-dimensional index tree considered here is an
R*-tree. We point out that our protocol can be ap-
plied to any kind of multi-dimensional index tree,
not only R- or R*-trees. We also assume that the
clients always have enough memory to hold all the
information during the execution of query. The
power efficiency can be achieved using the index. We
therefore focus on the latency in single- and multi-
channel environments.

We consider synthetic data of rectangles for the
time being. All the rectangles are generated using
a uniform distribution with the unit square. For
random rectangles, the centers of the rectangles are
generated uniformly in the unit square and the sides
of the rectangles are generated with a uniform dis-
tribution between 10−5 to 10−2. Having the rect-
angle data set, we can build an R*-tree where the
data are stored in the leaves. In our experiments, we
consider the R*-trees which have 10,000 or 100,000
leaves, respectively. For each R*-tree, we generate
the broadcast schedule on c channels where c is from
2 to 6. For the 1-channel broadcast protocol, we re-
fer to [4] and compare the performance on latency
with our multi-channel broadcast protocol. We use
the number of nodes (packets) as our measurement.
To measure the latency, we run 100(1000) different
queries on the R*-tree with 10,000 (100,000) leaves
and then take the average. We first show the result
of one-path search and then the result of multi-path
search. All the experiments show similar trends.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

91

1 2 3 4 5 6
8000

8500

9000

9500

10000

10500

1 2 3 4 5 6
1

2

3

4

5
x 10

4 multi−path simulation

of channels

la
te

nc
y

(#
 o

f p
ac

ke
ts

)

SM

TDSM

Figure 5: The average latency for a multi-path
search using SM and TDSM respectively on an R*-
tree of size 11,025 and having 10,000 leaves as well
as degree 6.

Figure 4 shows the average latency for a one-
path search on an R*-tree of size 105,721 and having
100,000 leaves. The degree of the R*-tree is at least
10. In the plot, the average latency decreases as
the number of channels increases. Furthermore, the
average latency is reduced with a factor of 1

c
.

We now discuss the average latency for a multi-
path search using SM and TDSM respectively on
an R*-tree. Although our multi-channel broadcast
schedule satisfies the ancestor and switch properties
as well as achieves the minimum cycle length, the re-
sulting average latency for SM is not as good as the
one in a 1-channel environment as shown in fig. 5.
Using a stack will skip some nodes closer to the cur-
rent explored node. This leads to finish the execu-
tion of query in more than c cycles. On the other
hand, TDSM makes the result better. In all our ex-
periments, TDSM has a better latency compared to
a 1-channel environment.

6 Conclusions

We consider to generate the schedule by directly
mapping the index tree into channels without con-
sidering the read-conflicts. Our schedule consists of
two steps, channel assignment and node placement.
For the channel assignment, the procedure focuses
on which channel a node should belong. The node
placement will place the node into the right position
in the assigned channel to keep ancestor property. In
order to make the algorithm easy to keep the ances-
tor and switch properties, the index tree should be
rearranged by the subtree sizes. We show that our
schedule satisfies the ancestor and switch properties
by counting.

Besides, we provide the corresponding algorithms
for executing query on the client side to integrate
the broadcasting schedule and query process into a
proper protocol. Having the protocol, we implement
it and compare the performance with the protocols
in a one channel environment in terms of latency.

Our protocol not only achieves the optimum latency
for a one-path search but also leads to a shorter la-
tency for a multi-path search.

REFERENCES

[1] S. Acharya, M. Franklin, and S. Zdonik. Bal-
ancing push and pull for data broadcasts. In
Proceedings of the 1997 ACM SIGMOD Inter-
national Conference on Management of Data,
pages 183–194, May 1997.

[2] N. Beckmann, H. Kriegel, R. Schneider, and
B. Seeger. The R*-tree: An efficient and ro-
bust access method for points and rectangles.
In Proceedings of ACM SIGMOD Conference
on Management of Data, pages 322–331, May
23-25 1990.

[3] M.-S. Chen, P.S. Yu, and K.-L. Wu. Indexed
sequential data broadcasting in wireless mobile
computing. In Proceedings of the 17th Inter-
national Conference on Distributed Computing
Systems. IEEE Computer Society Press, May
1997.

[4] S. Hambrusch, C.-M. Liu, W. Aref, and S. Pra-
hakar. Query processing in broadcasted spa-
tial index trees. In Advances in Spatial and
Temporal Databases - 7th International Sympo-
sium (SSTD 2001), Lecture Notes in Computer
Science 2121, pages 502–521. Springer-Verlag,
July 2001.

[5] T. Imieliński, S. Viswanathan, and B. R. Badri-
nath. Data on air: Organization and access.
IEEE Transactions on Knowledge and Data
Engineering, 9(3):353–372, May/June 1997.

[6] C.-M. Liu. Broadcasting and blocking large data
sets with an index tree. PhD thesis, Purdue
University, 2002.

[7] S.-C. Lo and A.L.P. Chen. Optimal index
and data allocation in multiple broadcast chan-
nels. In Proceedings of 2000 IEEE International
Conference on Data Engineering, pages 293–
304, February 2000.

[8] N. Shivakumar and S. Venkatasubramanian.
Efficient indexing for broadcast based wireless
systems. Mobile Networks and Applications,
1(4):433–446, May/June 1996.

[9] K.-L. Tan and J. X. Yu. Generating broad-
cast programs that support range queries. IEEE
Transactions on Knowledge and Data Engineer-
ing, 10(4):668–672, July/August 1998.

[10] K.L. Tan, J. X. Yu, and P.K. Eng. Support-
ing range queries in a wireless environment with
nonuniform broadcast. Data Knowledge Engi-
neering, 29(2):201–221, 1999.

[11] W.G. Yee, S. B. Navathe, E. Omiecinski, and
C. Jermaine. Efficient data allocation over
multiple channels as broadcast servers. IEEE
Transactions on Computers, 51(10):1231–1236,
2002.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

92

