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Abstract- In this paper, we have improved a 

QoS routing problem. We give an approach to 

minimize the congested link utilization while to 

satisfy individual connection’s packet delay. We use 

a Lagrangean Relaxation based approach 

augmented with an efficient primal heuristic 

algorithm, called Lagrangean Relaxation Heuristic 

(LRH). With the aid of generated Lagrangean 

multipliers and lower bound indexes, the primal 

heuristic algorithm of LRH achieves a near-optimal 

upper-bound solution. A performance study 

delineated that the performance trade-off between 

accuracy and convergence speed can be 

manipulated via adjusting the Unimproved Count 

(UC) parameter in the algorithm. We have drawn 

comparisons of accuracy and computation time 

between LRH and the Linear Programming 

Relaxation (LPR)-based method, under three 

networks named NSFNET, PACBELL, and GTE 

and three random networks. Experimental results 

demonstrated that the LRH is superior to the other 

approach, namely the LPR method, in both accuracy 

and computational time complexity, particularly for 

larger size networks 

Keywords: QoS, Routing Problem, Lagrangean 

Relaxation, LRH, LPR 

1. Introduction 
To ensure reliable and high-quality network 

services, routing and capacity assignment policies 

should be carefully designed. Traditional quasi-static 

routing algorithms attempt to optimize a certain 

aggregate measure, e.g. to minimize the average end-

to-end packet delay [1, 2]. However, this kind of 

performance measures may not be consistent with 

the service objectives and may result in fairness 

problems. 

The routing problem in virtual circuit networks 

has been a traditional research topic in computer 

networks and has attracted even more attention since 

the emergence of the Asynchronous Transfer Mode 

(ATM) technology. However, most previous 

researches on virtual circuit routing considers the 

objective function of minimizing the average end-to-

end packet delay [1, 3, 4], which address a system-

optimization perspective without taking individual 

users into account. And also these researches do not 

consider the later connections, that is these current 

established connections may cause big load for 

connections that request to establish virtual circuits 

later. Cheng and Lin[5] took a user-optimization 

approach and considered a fairness issue by 

minimizing the maximum individual end-to-end 

packet delay in virtual network, but they didn’t 

consider the system’s perspective. In this paper, we 

attempt to jointly consider both system and user 

perspectives, and keep maximum tolerance to the 

later connections.  

2. Problem Model and Formulation 
We will describe our problem, and model it in this 

section. Furthermore, we also formulate our problem 

into non-linear integer programming form.  

Problem Description 
We construct the network into load balance model subject 

to end-to-end packet delay constraints for each individual user. 

This model has two advantages. 

1. This model can reduce packets delay implicitly. 

2. This model reserves the maximum flexibility to the later 

connections. 

The problem has also been shown to be NP-complete 

which means no polynomial time algorithm for it unless P=NP. 

For the sake of obtaining sub-optimal solutions, Lagrangean 

relaxation is applied to the formulation to decompose the 

problem into several tractable subproblems in next section. 

The candidate path set does not need to be prepared in 

advance and the best paths are generated while solving the 

subproblems in our approach. A heuristic algorithm based on 

the solving procedure of the Lagrangean relaxation will be 

developed to obtain a primal feasible solution in the next two 

sections. 

Network Model and Definition 
A virtual circuit communications network is modeled as a 

graph where the processors are represented by nodes and the 

communication channels are represented by arcs. Let 

{1, 2, 3, ..........., N}V =  be the set of nodes in the graph 

and let L denote the set of communication links in the network. 

Let W be the set of origin-destination (O-D) pairs 

(commodities) in the network. For each O-D pair w W∈ , 

the arrival of new traffic is modeled as a Poisson process with 

rate wr  (packet/sec). To reduce the problem’s complexity, we 

assume that each O-D pair w, the overall traffic is transmitted 

over one path in the set wP . For each link l L∈ , the 

capacity is lC  packets/sec. 

 For each O-D pair w W∈ , let px  be 1 when wp P∈  

is used to transmit packets for O-D pair w and 0 otherwise. In 
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a virtual circuit network, all of the packets in a session are 

transmitted over exactly one path from the origin to the 

destination. Thus 1
w

p

p P

x
∈

=∑ . For each path p and link 

l L∈ , let plδ  denote the indicator function which is 1 if 

link l is on path p and 0 otherwise. Then, the aggregate flow 

over link l, denote as lg , is 

w

p w pl

p P w W

x r δ
∈ ∈

∑ ∑ . 

In the network, there is a buffer for each outbound link. 

Using Kleinrock’s independence assumption [6], the arrival of 

packets to each buffer is a Poisson process where the rate is 

the aggregate flow over the outbound link. It is assumed that 

the transmission time for each packet is exponential 

distributed with mean 
1

lC
−

. Thus, each buffer is modeled as 

an M/M/1 queue, as considered in [3, 7, 8]. 

Problem Formulation 
The following notations are used in the formulation. 

Input values: 
F

N  : the set of nodes in the network. 

L  : the set of communication links in the 

communication network. 

W  : the set of source-destination (SD) pairs. 

Wn  : the set of SD pairs where node n is the source node. 

rw  :(packets/sec.):the arrival rate of new traffic of each O-

D pair w W∈ ,which is modeled of Poisson 

process for illustration purpose. 

Cl : (packets/sec.),the capacity of each link l L∈ . 

Pw  : a given set of of simple directed paths from the origin 

to the  

destination of O-D pair w W∈ . 

gl : the aggregate flow over link l, which is equal to 

w

p w pl

p P w W

x r δ
∈ ∈

∑ ∑
. 

δpl : 1 if path p uses link l; 0 otherwise. 

Dw : the maximum allowable end to end delay for O-D 

pair w W∈ . 

Decision variables: 

α  :percentage of capacity usage on maximum 

congested link. 

xp : 1 if path p is selected, 0 otherwise.  

The formulation is modeled as the following integer 

linear programming problem. 

Problem P  

 

Subject to: 

 
The objective function is to minimize the largest 

utilization on the most congested link.  

For the purpose of applying Lagrangean relaxation 

method, we transform the above problem formulation into 

an equivalent formulation PII. In PII, two auxiliary 

variables are introduced: wly  is defined as 

w

p pl

p P

x δ
∈

∑  

and  fl denotes the estimate of the aggregate flow. 

Decision variables: 
α  :percentage of capacity usage on maximum 

congested link. 

xp : 1 if path p is selected, 0 otherwise.  

ywl : 1 if source-destination pair w uses link l, 0 

otherwise. 

Problem PII  
Subject to: 

 
Redundant constraints associated with these auxiliary 

variables (3) ,(4),(7) and (9) are added.  

Lagrangian relaxation is a general solution strategy for 

solving mathematical programs that permits us to 

decompose original problems into several subproblems 

such that we can exploit their special embedded structures.  

We use Lagrangean relaxation to the heterogeneous 

Minmax end to end delay problem and decompose the 

original problem into several subproblems in next section. 

3.Lagrangean relaxation and problem 

decomposition 
We first dualize Constraints (1), (2), (3) and (4) to 

Problem PII to obtain the following Lagrangean 

relaxation problem. 

Problem (Dual_P): 

( ) min{[1 ] [ ( )]

                         ( ) [ ( ) ]}   ( )
w

wl
dual l l w w

l L w W l L l l

w l p pl w l l l l l l

w W l L p P l L

y
Z v c s D

c f

t x y u g f v f

ρ α

δ

∈ ∈ ∈

∈ ∈ ∈ ∈

= − + − +
−

− + − + − ∗

∑ ∑ ∑

∑ ∑ ∑ ∑

subject to constraints (5), (6), (7), (8), and (9) . 

 
Reorganizes formulation (*), dual (P) becomes => 

( )= min{[1 ] [ ( ) ]

        +[ ( ( ) ) ]}

w

dual l l wl l w p pl

l L w W l L p P

w wl

w W
wl wl l l l w w

l L w W w Wl l

Z v c t u r x

s y

t y v u f s D
c f

ρ α δ
∈ ∈ ∈ ∈

∈
−

∈ ∈ ∈

− + +

− + −
−

∑ ∑∑ ∑

∑
∑ ∑ ∑

 

subject to Constraints (5), (6), (7), (8), and (9) and 

vectorρ= (s,t,u,v) is the non-negative Lagrangean 

multiplier. 

min   α

min   α
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Problem (Dual_P) can be decomposed into following 

three independent subproblems (S1, S2 and S3) by 

separating the decision variables α, x, y. Therefore, we 

have Zdual=ZS1+ ZS2 +ZS3 ∑
∈

−
Ww

wwDs , where  

ZS1(v)= α







− ∑

∈ Ll

ll cv1 min   

subject to Constraint (8), 

ZS2(t,u)= 
min  [ ( ) ]

w

wl l w p pl

w W l L p P

t u r x δ
∈ ∈ ∈

+∑∑∑
 

subject to Constraints (5) and (6) , and 

ZS3(s,t,u,v)= min{ ( ( ) )}
w wl

w W
wl wl l l l

l L w Wl l

s y

t y v u f
c f

∈
−

∈ ∈

− +
−

∑
∑ ∑  

subject to Constraints (7) and (9). 

Solving Subproblem 1 
Subproblem S1 is a problem for decision variable α. 

Variableαis set to 1 if the corresponding cost ∑
∈

−
Ll

ll cv1  is 

negative; otherwiseαis set to 0. Subproblem 1 runs on O(L) 

computation time. 

 
Solving Subproblem 2 

Subproblem S2 is a problem for decision variable x. It 

consists of |Wn|  independent problems. Each one is an 

edge-disjoint-path problem rooted at the given source node 

and destined to all destination nodes for the SD pairs with 

non-zero traffic demand. To solve the problem, one can 

view the input network as a graph. This graph contains (L) 

arcs and (N) nodes. We set each arc l have Cl capacity (it 

means that the transmission time for each packet is 

exponentially distributed with mean Cl) and non-negative 

arc weight, (twl+ulrw) . In such graph, the subproblem is a 

minimum cost flow problem to send minimum cost flow 

from the source node to all its destination nodes with 

specified traffic demands. We use traditional minimum 

cost flow algorithm such as successive shortest path 

algorithm [9] to solve the problem. 

  
Solving Subproblem 3 

Subproblem S3 is a problem for decision variable y. It 

consists of |L| independent problems.  

For each link l L∈ : 

               min[ ( ) ]
w wl

w W
wl wl l l l

w Wl l

s y

t y v u f
c f

∈

∈

− + −
−

∑
∑   

subject to (5) and (8).  

 For different values of fl, the value of ywl for minimum 

objective function, denoted as *
( )wl ly f  may be different. As 

an example, consider the case that fl =0. The objective 

function is minimized by assigned *
(0)wly  to 1 if 

( ) 0w
wl

l

s
t

c
− ≤

 and to 0 otherwise. We define a set of break 

points of fl as those points where 
( ) 0w

wl

l l

s
t

C f
− =

−

 for each 

w. These break points are sorted and denoted as 
1 2
, ,..............

n

l l lf f f . Note that there are at most |W| 

break points. We observe that when 
1i i

l l lf f f
+

≤ ≤  the 

value, the value of *
( )wl ly f  remains constant for all 

w W∈ . Within the above internal, 
*
( )wl ly f  is 1 if 

( ) 0w
wl

l l

s
t

c f
− ≤

−

 and is 0 otherwise. Therefore, within an 

interval, 1
[ , )

i i

l lf f
+ , the objective is only a function of fl, 

and the minimum point within the interval can be found 

analytically. By examining at most |W| +1 intervals, we 

can find the global minimum point by comparing those 

local minimum points. 

  When examining an interval, we first determine 
*
( )

i

wl ly f  within the interval for each w. We denote 

*
( )

i

w wl l

w W

s y f
∈

∑  as al and *
( )

i

wl wl l

w W

t y f
∈

∑  as bl. Note that al 

and bl are non-negative. Within the interval, the objective 

function can then be expressed as: 

3_ ( )l
sub l l l l l

l l

a
Z b v u f

C f
= − + −

−

. A typical curve of the 

objective function vs. fl within the interval 1i i

l l lf f f
+

≤ ≤  

is shown in Figue 1. The curve of the objective function vs. 

fl is shown in Fig. 2. The local minimum point is either at 

the boundary point, 
i

lf  or 1i

lf
+ , or at point 

*
 ,(( ) 0)l

l l l l

l l

a
f C u v

u v
= − ≠

−

.

 
Subgradient Optimization Procedure 

From the weak Lagrangian duality theorem, Zdual(ρρρρ) is 

a lower bound of the Problem (P) for any non-negative 

Lagrangean multiplier vector ρρρρ = (s, t, u ,v) ≥ 0. Naturally, 

one wants to determine the largest lower bound by  

The subgradient method can be applied to solve (11). 

The solution to Problem (Dual_P) at iteration k of the 

subgradient optimization procedure is given below. In 

subgradient solution procedure, the Lagrangian multiplier 

vector ρρρρ is updated by 

where b is a subgradient of Zdual(ρρρρ) with vector size 

|W+LW+L+L|. The step size kθ  is determined by 

_
0

max ( )          (11)lower bound dualZ Z
ρ

ρ
≥

=

2

( ( ))k dual
k

k

UB Z

b

λ ρ
θ

−
=

1k k k kbρ ρ θ+ = +

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

340



 

 

UB is an upper bound obtained from a heuristic solution 

described in the next section and λk is a constant in a range 

from 0 to 2. 

The details of this procedure see below: 

 

 
Summary of Lagrangean Relaxation Method 

The algorithms are described below: LRM denotes 

the Lagrangean relaxation method. 

 

4. Lagrangean-based Heuristic 

Algorithm 
Since the Lagrangean relaxation is obtained by the 

relaxation of some constraints from the problem 

formulation, the solution to the dual problem might 

be infeasible for the original primal problem 

resulting from dissatisfaction of those relaxed 

constraints. However, such solution can still be used 

as a base to develop efficient heuristic algorithms to 

seek feasible solutions and obtain upper bounds for 

the original problem. In practice, in each iteration of 

the subgradient solving procedure, the solution of 

Lagrangean relaxation is used to obtain a lower 

bound of the primal problem. In addition, we verify 

the feasibility of the solution in the constraints of 

primal problem. If the solution is feasible, it is used 

to calculate an upper bound of the primal problem 

(Actually it is an optimal solution.). If the solution is 

not feasible, the following heuristic is applied to find 

a feasible solution. 

Proposed Lagrangean-based Heuristic Algorithm  
Based on the solution obtained from solving Lagrangean 

relaxation in each iteration. The traffic demand is then 

routed onto the network with cost assigned as the same as 

they assigned in the Lagrangean relaxation. Traffic 

demands are then routed onto the network for each SD pair 

sequentially (from short delay required connections to long 

delay required ones) by applying Dijkstra’s shortest path 

algorithm. The capacity of those arcs used by the above 

accepted paths are updated by subtracting the flow of this 

connection from the capacity of this link. If the utilization 

of a link will become greater than the best known lower 

bound (LB)×|Cl| when a further virtual circuit setups on it, 

the weight of this arc is replaced by multiply a constant 

term on its weight as a penalty for avoiding further setup 

paths on this link. The process continues until all of the 

traffic demands are satisfied or the network cannot 

accommodate the traffic request. A feasible solution is 

obtained in the former case. 

Evaluation of the Feasible Schedule 

From the weak Lagrangian duality theorem, Zdual(ρρρρ) is a 

lower bound of the Problem (P) for any non-negative 

Lagrangean multiplier vector ρρρρ = (s, t, u ,v) ≥ 0. Naturally, 

one wants to determine the largest lower bound by       

 

 

 

5. Experimental Results 

Performance Comparisons 

We first carried out numerical computation of the 

lower and upper bound values of α , the maximum 

aggregate arrival rates of a link divided by the capacity 

of each link, 
lC , using our LRM-based method and a 

Linear Programming Relaxation (LPR)-based method. 

In the computation, we considered three widely used 

networks. They are: NSFNET with 14 nodes and 42 

links; PACBELL with 15 nodes and 42 links; and GTE 

with 11 nodes and 46 links.  

In the LRM-based heuristic algorithm, we adopted a 

penalty term of 2. In addition, if the Lagrangean lower 

_
0

max ( )          (11)lower bound dualZ Z
ρ

ρ
≥

=
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bound remains unimproved for 50 iterations (UC=50), 

the step size coefficient (λk ) would be divided by two. 

The simulation was written in the C language and 

terminated at the end of 2000 iterations and operated on 

a PC running Windows XP with a 1.8 GHz CPU power. 

In the LPR-based method, by removing Constraints 

(6) and (7), the original Integer Linear Programming 

(ILP) problem is relaxed to a Linear Programming (LP) 

problem. Thus, the solution to the relaxed problem is a 

legitimate lower bound of the original ILP problem. To 

obtain an upper bound, we also develop a 

corresponding heuristic algorithm. The algorithm ranks 

all SD pairs in accordance with the desired packet delay. 

The next feasible path founded in the LP solution is 

then assigned to the SD pair with the smallest packet 

delay. There may be multiple feasible paths for an SD 

pair; we select the shortest path with the largest xp value 

in the algorithm. The path assignment process repeats 

until either the traffic demands of all SD pairs are 

satisfied (i.e., feasible), or there is no remaining 

resource (i.e., infeasible). In the simulation, the LP 

problem was solved using the CPLEX software, 

operating in the same PC environment previously 

described. 

Numerical results for the NSFNET, PACBELL, and 

GTE are summarized in Table II, III, and IV, 

respectively. The traffic demands (i.e., the traffic arrival 

rate) for all SD pairs are randomly determined with 

their mean value shown in the first column of the tables. 

Moreover, the Gap in the third column of the tables is 

computed as the ratio of the difference of the upper and 

lower bounds to the lower bound in percentage. 

As shown in Table II for NSFNET, the LPR-based 

method reaches a low guarantee of 20% gap, incurring 

high CPU computation time. Compared to it, the LRM-

based method achieves ideal lower and upper bounds 

(gap< 5%) under all four traffic demand cases except 

case 1. The algorithm also improves the CPU 

computation time by one order of magnitude. We 

discover that, even though both methods achieve 

optimal lower bounds, the LRM-based heuristic 

algorithm arrives at much improved upper bounds due 

to the use of the Lagrangean multipliers derived upon 

seeking the Lagrangean relaxation solution. 

In Table III for PACBELL, the LPR-based method 

reaches a low guarantee of 29% gap. Compared to it, 

the LRM-based method again achieves ideal lower and 

upper bounds (<8%). The LRM-based algorithm also 

improves the CPU computation time by two order of 

magnitude. It is worth mentioning that in the case of the 

mean traffic demand being equal to 3.0, while the LPR-

based method fails to obtain a feasible solution, the 

LRM-based method arrives at the optimal solution. 

Finally, in Table IV for the GTE network, the LRM-

based method outperforms the LPR-based method in 

both the solution superiority and the computation 

time in all traffic cases. Specifically, the LPR-based 

method again reaches fairly low guarantee of 27% 

gap. The method produces a non-optimal solution 

but with an improved guarantee of 13% gap. This 

justifies the viability of the LRM-based method for 

providing efficient QoS routing method. 

 

 

 

5. Conclusions and Future Works 
In this paper, we have improved a QoS 

routing problem using a Lagrangean Relaxation 

based approach augmented with an efficient primal 

Heuristic algorithm, called LRH. With the aid of 

generated Lagrangean multipliers and lower bound 

indexes, the primal heuristic algorithm of LRH 

achieves a near-optimal upper-bound solution. Our 

method has three major characteristics. First, we start 

to consider user’s perspective and system’s 

perspective jointly. Second, in our routing procedure, 

the candidate path set does not need to be prepared 

in advance and the best paths are generated while 

solving the subproblems in our approach. Third, our 

method can both provide the upper bound and lower 

bound to the problem, and this distinguishing feature 

can help us to verify the performance of our 

solutions.  

Future Works 

  We are able to reconfigure the virtual topology to 

adapt to changing traffic patterns. Some 

reconfiguration studies on virtual networks have 

been reported before [10, 11, 12]; however, these 

studies assumed that the new virtual topology was 

known a priori, and were concerned with the cost 

and sequence of branch-exchange operations to 

transform from the original virtual topology to the 

new virtual topology. We propose a methodology to 

obtain the new virtual topology, based on optimizing 

a given objective function, as well as minimizing the 

changes required to obtain the new virtual topology 

from the current virtual topology. This approach 

would result in the minimum number of switch re-

tunings, thus minimizing the number of disrupted 

virtual paths. Consequently, this approach also 
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minimizes the time it takes to complete the 

reconfiguration process.  

In the ideal situation, given a small change 

in the traffic matrix, we would prefer for the new 

virtual topology to be largely similar to the previous 

virtual topology, in terms of the constituent virtual 

paths and the routes for these virtual paths, i.e., we 

would prefer to minimize the changes needed to 

adapt from the existing virtual topology to the new 

topology. More formally, it would be preferable if a 

large number of the plδ  variables retain the same 

values in the two solutions, without compromising 

the quality of the solution (in terms of minimizing 

the congested link utilization). 

 Let us consider the snapshot of two traffic 

matrices, 
1

sdλ  and 
2

sdλ , taken at two not-too-distant 

time instants. We assume that there is a certain amount 

of correlation between these two traffic matrices. Given 

a certain traffic, there may be many different virtual 

topologies, each of which has the same optimal value 

with regard to the objective function. But we will 

terminate after the first such optimal optimal solution is 

found. Our reconfiguration algorithm finds the virtual 

topology corresponding to 
2

sdλ  which matches 

“closest” with the virtual topology corresponding to 
1

sdλ  (based on our above definition of “closeness”). 

Reconfiguration Algorithm 
We perform the following sequence of actions: 

1). Generate formulations (1)F  and (2)F  

corresponding to traffic matrices 
1

sdλ  and 
2

sdλ , 

respectively, based on the formulation in Section 3. 

2). Derive solutions (1)S  and (2)S , corresponding to 

(1)F  and (2)F , respectively. Denote the variables’ 

values in (1)S  as (1)px  and (1)wly , and those in 

(2)S  as (1)px  and (1)wly , respectively. Let the 

value of the objective function for (1)S  and (2)S  be 

1OPT  and 2OPT , respectively. 

3). Modify ( (2)F  to '(2)F ) by adding the new 

constraint           

2                                                                        (10)OPTα=  

This ensures that all the virtual topologies generated by 

'(2)F  would be optimal with regard to the objective 

function. The new objective function for '(2)F  is 

Minimize: (1) (2)wl wl

w l

y y−∑∑                    (12)

 Note that the mod operation, x , is a nonlinear 

function. If we assume that wly  can only take on binary 

values, then (12) become linear, i.e., if (1) 1wly = , then 

(1) (2) (1 (2))wl wl wly y y− ≡ − ; else if (1) 0wly = , 

then (1) (2) (2)wl wl wly y y− ≡ . Hence, '(2)F  may be 

solved directly. 
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