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Abstract- The COordinate Rotation DIgital 
Computer (CORDIC) algorithm is an arithmetic 
algorithm to evaluate various elementary 
functions through a series of iterative operations. 
In this paper, a high-speed sine/cosine generator 
is based on double rotation of the original 
CORDIC algorithm by predicting all the rotation 
directions from the initial input angle. The 
proposed architecture has a simple prediction 
scheme through an efficient determination strategy 
of rotation direction. The critical delay path is 
reduced by utilizing the carry-save adder (CSA). 
Thus, the computation complexity of the proposed 
architecture is evaluated; the proposed 
architecture improves the latency of 37.5% in 
16-bit operand, 40.6% in 24-bit operand and 
42.5% in 32-bit operand, respectively. While in the 
large number-bit operand, the speed should be 
improved by 48%. 
 
Keywords: double rotation algorithm, CORDIC, 
σ -prediction algorithm, carry-save adder, sine/ 
cosine generator. 
 
1. Introduction 

In direct digital frequency synthesizer (DDFS) 
system [1] and orthogonal frequency division 
multiplexer (OFDM) system [2], [3], the key 
component is the sine/cosine function generator to 
computes θsin and θcos to a precision of N 
fraction bits. In this paper, a high-speed 
sine/cosine generator based on the CORDIC 
algorithm  is proposed. CORDIC (COordinate 
Rotation DIgital Computer) is an algorithm for 
performing a sequence of iteration computations 
using coordinate rotation [4], [5]. It can generate 
some powerful elementary function realized only 
by a simple set of adders and shifters. The basic 
CORDIC iteration equations are 
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in a hyperbolic coordinate system, the iterations 
are repeated at 13 +i . 
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the rotation iσ for rotation mode )0( →nz  is 
)( ii zsign=σ , while for vectoring 

mode )0( →ny , it is )()( iii ysignxsign ⋅−=σ . 
 For the i-th iteration, a scale factor becomes 
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where the rotation directions are defined to 
}1,1{ +−=iσ . 

 
2. Double Rotation CORDIC 

Algorithm 
The basic concept of the accelerated CORDIC 

algorithm is to reduce the iterations. The double 
rotation CORDIC algorithm is developed to 
reduce the iterations or computation time [6]. The 
double rotation CORDIC iteration equations 
should be derived and the computation complexity 
should be also evaluated.  

The CORDIC iteration equations in circular 
coordinate system are also written in the form of 
matrix multiplications. 
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According to eqs.(6), we obtain 
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the eq. (7) is an iteration equation of the double 
rotation CORDIC algorithm. 
Thus, the double rotation CORDIC iteration 
equation in circular coordinate system is modified 
as shown below 
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  The computation complexity of parallel 
processing is increased to two carry-save additions 
((3,2)CSAs) and one shift for each iteration [7]. In 

n-bit operand system, while 1
4
−≥

ni , eqs.(8) and 

(9) becomes 
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Thus, the computation complexity of parallel 
processing is one (3,2)CSA and one shift for each 
iteration. 
 
3. A Novel σ -Prediction Algorithm 
  The basic intention to realize the double 
rotation CORDIC algorithm is to generate more 
σ  values in each step. Now, the proposed 
architecture requires two σ values in each step. 
The σ -value prediction algorithm is described as 
below: 
In this algorithm, the i2σ and 12 +iσ are generated 
in following steps, the i2σ is determined by sign 
of )2( iz . The series of new constants can be 
defined as 
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Three equations for determining 1+iσ and z(i+2) 
are defined as 
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The determination strategy of },{ 122 +ii σσ and 

)22( +iz is illustrated in Figs. 1, 2 and 3.    
The flowchart for the 12 +iσ -prediction and 

)22( +iz determination algorithm is illustrated in 
Fig. 1, detailed flowcharts for specific cases are 
illustrated in Fig. 2 and 3, respectively. Now, 
the σ -prediction and )22( +iz  determination 
algorithm is analyzed and developed, this 
algorithm is simple and easy to implement on 
hardware. Thus, the algorithm is very suited to 
VLSI implementation. The determination circuit 
of 12 +iσ  and z(2i+2) is shown in Fig. 4.  
 
4. The Accelerated CORDIC 
Architecture for Sine/Cosine Generator 
  The proposed architecture has n-bit word length, 
so it makes n-iteration to compute the circular 
coordinate system. In this architecture, the (4,2) 

carry-save adder (CSA) and carry-propagation 
adder (CPA) consists of two three-input, 
two-output (3,2) carry-save adders/subtractors and 
one carry-look-ahead adder [8]. Fig. 5 shows the 
proposed accelerated architecture with the rotation 
mode in a circular coordinate system.  
Thus, the computation complexity is two CPA 
computations, a CLA computation and a shift for 

each iteration at first 
4
n iterations, and the 

computation complexity is a CPA computation, a 
CLA computation and a shift for each iteration at 

last 
4
n iterations. 

  The Sine/Cosine generator is implemented by 
the accelerated CORDIC architecture with the 
rotation mode in the circular coordinate system. 

The input of 0x  is 
1

1
K

 and input of 0y  is 0, 

the input of 0z  is an angle for sine and cosine 
function. In this architecture, the shift 
sequence )},1({ is is pre-defined, so that the 1K is a 
constant.  
 
5. Performance Analyses of the 
Accelerated CORDIC Architecture 
    Since the computation complexity of 
accelerated CORDIC architecture is two additions 

and one shift for each iteration at first 
4
n -iteration. 

At last 
4
n -iteration, the computation complexity 

of the architecture is an addition and shift for each 
iteration. The total computation complexity of the 
accelerated CORDIC architecture is  

(2×TCSA +TCLA+Tshift)× 4
n +(TCSA + TCLA+Tshift)× 4

n  
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where TCSA (operation time of CSA)=TFA (delay of 
full-adder)=2TG (delay of single gate), Tshift 
(operation time of hardwired shift)= TG and TCLA 

(operation time of CLA)= GTn
⋅+ )3

2
(  [7]. 

GTn
⋅+ )8

2
( and GTn

⋅+ )6
2

(  are computation 

time for first 
4
n -iteration and last 

4
n -iteration, 

respectively. 
The total computation complexity of conventional 
CORDIC is n CLA computations and n shifts. The 
computation complexity is represented 
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According to Fig. 3, the 12 +iσ and 
)22( +iz determination circuit consists of three 

subtractors, and one multiplexer. The 
determination time of 12 +iσ and )22( +iz  is  
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where GMUX TT ⋅≤ 2 . 
Thus, the determination time of 12 +iσ and 

)22( +iz  is less than computation time of 

[ 2+ix 2+iy ], which is GTn
⋅+ )8

2
(  or GTn

⋅+ )6
2

( , 

and the process of the 12 +iσ and z(2i+2) 
determination can not reduce the throughput. 

The percentage of latency improvement versus 
number of bit in each operand is shown in Fig. 6. 
 
6. Numerical Analyses of the Double 
Rotation CORDIC Algorithm 
  The numerical analysis of the double rotation 
CORDIC algorithm is discussed in this section. 
Several error analysis researches of the CORDIC 
algorithm have been done [9], [10], [11]. The 
difference between the double rotation CORDIC 
algorithm and the conventional CORDIC 
algorithm is the term dropped in eqs. (8), (9), and 
(10). Now, the maximum error of the double 
rotation CORDIC algorithm related to the 
conventional CORDIC algorithm is analyzed and 
derived as Theorem 1 [6], [9], [11]: 
Theorem 1: The upper bound of the double 
rotation CORDIC algorithm is  
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where v∆ , u∆ and 12,2 +∆ iiP are errors of v , u , 
and 122 +ii PP , respectively. 
Here, the error analysis of v∆  is beyond this 
paper [6], [11], so we assume that 0=∆v , and 

12,2 +∆ iiP  is the error introduced by double 
rotation. According to eq. (27), we obtain 
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According to eq. (31), for all i, we obtain 
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The error upper bound would be indicated, and 
the extra bits and iterations to gain same accuracy 
of the conventional CORDIC algorithm could be 
estimated.  

When 32=n , we have 91063378.2 −×≤
v
u∆  

and the errors are smaller than the upper bound, 
which is also illustrated in Fig. 7. 
   
7. Conclusion 
  This paper presents double rotation architecture 
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and a novel σ -prediction algorithm of CORDIC 
iteration applying them to the sine/cosine 
generator. The proposed architecture does not 
require extra ROM or complicated determination 
hardware. The speed is improved by using 
carry-save adder (CSA) with reduce the delay time 
of the critical path. 
  The double rotation CORDIC architecture with 
a novel σ -prediction algorithm improves the 
latency of the conventional CORDIC algorithm at 
least 37.5%, the efficiency of the CORDIC 
computation is increased by bits and iterations, 
and it makes the latency of the conventional 
CORDIC algorithm improve at most 48%. 
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Fig. 1. Flowchart for the 12 +iσ -prediction and )22( +iz  determination algorithm. Detailed flowcharts for 
specific cases when sign(z(2i)) evaluation returns +1 , -1, and when the algorithm is in a branching are 
illustrated in Figs. 2 and 3, respectively. 
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Fig. 4. (a) Determination circuit of )22( +iz  
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Fig. 2. Flowchart for i-iteration for the case when ))2((2 izsigni =σ evaluation returns +1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Flowchart for i-iteration for the case when ))2((2 izsigni =σ evaluation returns -1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1))2((2 +=== izsigniσ

Perform in parallel

if )"")22((()"")22((( 21 +=+∧+=+ izsignizsign
then )22()22(,1 112 +=++=+ iziziσ  

if )"")22((()"")22((()"")22((( 321 −=+∧+=+∧−=+ izsignizsignizsign  

then )22()22(,1 212 +=+−=+ iziziσ  
if )"")22((()"")22((()"")22((( 321 +=+∧+=+∧−=+ izsignizsignizsign  

then )22()22(,1 112 +=++=+ iziziσ  

if )"")22((()"")22((( 21 −=+∧−=+ izsignizsign  
then )22()22(,1 212 +=+−=+ iziziσ  

1))2((2 −=== izsigniσ

Perform in parallel

if )"")22((()"")22((()"")22((( 321 +=+∧−=+∧+=+ izsignizsignizsign

then )22()22(,1 212 +=++=+ iziziσ  

if )"")22((()"")22((()"")22((( 321 −=+∧−=+∧+=+ izsignizsignizsign  
then )22()22(,1 112 +=+−=+ iziziσ  

if )"")22((()"")22((( 21 +=+∧+=+ izsignizsign
then )22()22(,1 212 +=++=+ iziziσ  

if )"")22((()"")22((( 21 −=+∧−=+ izsignizsign  
then )22()22(,1 112 +=+−=+ iziziσ  

Fig.4 (b) 122 , +ii σσ and )22( +iz  
generator 

z(2i+2)

Sign(z1(2i+2))

Sign(z2(2i+2)) 

σ2i

z (2i) 

Δ1(2i) z1(2i+2)

z2(2i+2) 
Determination 

Circuit  

(2:1 Multiplexer)

σ2i

z (2i) 

Δ2(2i) 

±

±

z (2i) 

Δ3(2i) 

±

σ2i+1

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1289



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. The accelerated CORDIC architecture with the rotation mode in the circular coordinate system 
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