
 1

Abstract
Peer-to-peer systems (P2P) have attracted much
current attention as a popular way to share huge
volumes of resources directly within peers. Efficient
content search and load balancing are both
important research issues in P2P environments,
especially in those without centralized global indexes.
Although a number of content search schemes are
known to alleviate these problems, they cannot
provide flexible object searches while balance the
load for content demand in P2P network, thereby
resulting in severe load imbalance and consequently
increased user response times. In this paper we tend
to address these problems by harnessing all available
resources in the P2P network and balance the load
without decreasing user response time. We proposed
a novel decentralized service discovery mechanism
by creating a new service call P2P Registry (P2PReg)
in Domain Name Server (DNS). In our scheme, each
peer is able to register and discover desirable
services automatically through current DNS within a
short duration in an efficient way. The proposed
method not only performs least searching time and
low bandwidth but also balances load in P2P systems
in order to avoid hot spot problems naturally. It is
obvious that the more replicas there are, the better
the media delivery quality of the specific content
object is. We also present the results of simulation
work to validate the viability of our approach. Our
simulation study showed that serving data discovery
over local search is indeed effective in improving the
system performance significantly.

Keywords: Service Discovery, Contents Discovery,
Load Balancing, Decentralized Peer-to-Peer
Networks (P2P), Domain Name Server (DNS)

1 This research was supported by the National Science

Council NSC- 92-2213-E-324-006-
2 Corresponding author

Tel: +886-4-23323000 Ext. 4534 Fax: +886-4-23742375

1. Introduction

Recent years have seen a tremendous proliferation of
peer-to-peer (P2P) file sharing applications such as
Napster [1] and KaZaA [2] as a popular way to share
huge volumes of resources. In this context, P2P
systems allows users to share, search for and
download files. P2P is not new as it has been
investigated for decades [3], [4]. Many researchers
have been focused on understanding the issues
surrounding these systems and built several P2P
applications to demonstrate the usefulness of this
new technology. It is clear that P2P research is an old
but rich area for versatile research.

The most distinct characteristic of P2P computing
is that there is symmetric communication between
the peers; each participating autonomous computing
node or device represents as a peer and behaving as
both client and server, which can collaborate with
each other in symmetric. It is clear that network
bandwidth is better utilized rely on the direct
communication within peers. Disk space for storing
the files is also distributed across the peers in the P2P
networks. These networks scale indefinitely without
decreasing search time and without the need for
costly centralized resources. They utilize the
processing and networking power of the end-users
machines since these resources always grow in direct
proportion to the network itself.

Although P2P distributed computing paradigm
alleviates the scalability problem that has dogged
client-server systems and enable a lot of interesting
and useful applications, there are limitations that
come with these advantages of its complexity in peer
discovery in P2P network that lacks a centralized
server. Hence the ability to effectively locate a peer
and retrieve services from a potentially huge number
of decentralized peers in a decentralized network
within a short duration is rather important and
challengeable. We would like to address these
problems by investigating the benefit of Domain
Name Server (DNS) hierarchical structure into the
P2P architecture and sufficient query communication.

Designing a Decentralized Peer-to-Peer Network with Rapid Service
Discovery and Effective Load Balancing1

Ching-Wen Chen2

Phui-Si Gan

Chao-Hsiang Yang

Department of Computer
Science and Information

Engineering
Chaoyang University of

Technology, Taiwan
chingwen@mail.cyut.edu.tw

Department of Computer
Science and Information

Engineering
Chaoyang University of

Technology, Taiwan
s9227601@mail.cyut.edu.tw

Department of Computer
Science and Information

Engineering
Chaoyang University of

Technology, Taiwan
s9227616@mail.cyut.edu.tw

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1174

 2

While much work has been done to harness the
huge computing resources of P2P systems for
high-performance computing and scientific
applications, issues concerning load-balancing with a
view towards faster access to data for normal users
have not received adequate attention. Global search
results in an unfair allocation of user objects to peers
and creates hotspots in certain parts of the zone. A
hotspot refers to a node which receives a large
volume of requests in rapidly and dramatically, often
resulting in the node being overwhelmed and
response times shooting up. Notably, load-balanced
P2P system not only provides considerable savings in
network bandwidth, but also ensures that the benefit
of powerful networks extends well beyond
e-commerce and scientific applications to individuals
living in this world.

The purpose of this paper is to investigate the
problem of efficient content discovery and load
balance in the form of a DNS based directory
hierarchy. We proposed a novel decentralized service
discovery mechanism by creating a new service call
P2P Registry (P2PReg) in DNS. With the help of
DNS, we can discover desirable peers and obtain
services from the peer within a short duration. In our
scheme, each DNS server has a local peer index for
quickly finding local peer when a query is received.
Hence, a requesting peer can find all its potential
serving peers and send query q to search for desired
files directly to peers which holding related file. We
also capture the interests of the peers through the
number and types of files maintained and provided
by the peers in the network.

According to the inherent hierarchical architecture
of DNS, the proposed method not only performs least
searching time and low bandwidth but also ensure
that the search process result in a nearest peer that
has the desired content tends to balance load in order
to avoid hot spot problems naturally. This is all
achieved without the need for costly centralized
resources.We also present the results of simulation
work to validate the viability of our approach.

This paper is organized as follows. We point out
the major research issues of P2P systems and various
related work in section 2 and describe how the trees
architecture is formed and contents are delivered
upon request with our proposed service discovery
method in section 3. Then, in Section 4, we will
describe how to balance load in P2P systems with our
proposed method in order to avoid hot spot problems
naturally. Section 5 presents the simulation model for
a more realistic system and reports results. The last
section gives the conclusion for the paper.

2. Related Work

Enormous discussions on P2P computing with
definitions, current trends and related issues and
tradeoffs in designing a scalable P2P system can be
found at [5, 6]. Tsoumakos [7] gave a through

comparisons and analysis on P2P systems, and
pointed out the trends and potential profits of P2P
systems over arbitrary network topology. A number
of open problems have been addressed such as traffic
problem, cost and vulnerable central index, yet each
of the architecture possesses its own advantages and
disadvantages with a significant amount of
heterogeneity among them.

As an example for a pure peer-to-peer system, the
original Gnutella implements fully distributed
searching which does not build indices, every query
is propagated to every peer, users search for files by
flooding the network with queries; this may have
difficulty to deal with the large numbers of sites or
complex queries. Instead, resulting in a simple but
very costly approach as just a simple query can flood
the Gnutella network [8].

Napster is not really considered as real P2P
systems in the strictest sense as it uses a centralized
server to maintain a directory of MP3 music files that
are on users’ computer. Although it is simple and able
to locate files quickly and efficiently due to the
central index database it maintains. It remains as one
of the easiest networks to target and can be shut
down by a court order or hacker attack.. As a result, it
will likely end up with unacceptable delay and user
frustration.

However, Freenet [9] is open source, provide an
anonymous file sharing service to guarantee clients
and publishers anonymity, and uses no centralized
server. It is decentralized and symmetric and
automatically adapts when hosts leave and join.
Freenet allows data to be published, replicated and
retrieved while maintaining the anonymity of data
producers and consumers.

Yang [10] proposed efficient search methods for
P2P environments. They considered the trade-off
between the number of messages and response times
in searches and proposed methods combining the
Gnutella-based breadth-first search and
Freenet-based depth-first search.

The problem of the efficient search in a P2P
network is also addressed in [11] by introducing the
concept of routing indices, which allow nodes to
forward queries to their neighbors that are more
likely to have answers.

Brocade [12] proposed hierarchical virtual
network infrastructure based on physical topology.
Brocade constructs a secondary overlay to be layered
on top of peer-to-peer lookup systems. The
secondary overlay builds a location layer between
super-nodes. A super-node acts as a landmark for
each network domain.

Several researchers have previously proposed
interesting dynamic load balancing and channel
assignment schemes to overcome the congestion
problem. Generic load balancing is a relatively old
and very and well-researched area [13] [14]. Existing
load-balancing algorithms proposed in the distributed
systems literature are not appropriate for a

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1175

 3

peer-to-peer network. We find that load-based
algorithms do not handle the heterogeneity that is
typical in a peer-to-peer network. The work in [15]
addressing the problem of load balancing in order to
face “flash crowds”. However, they assume a static
system architecture and global knowledge.

In [16], a load balancing scheme for Chord is
introduced that is based on the notion of virtual
servers. Each physical node can support multiple
virtual servers. For overloaded nodes several
strategies for moving virtual servers to underloaded
nodes are discussed. However, the authors mention
that there might be negative effects on search
efficiency with their approach. Our work aims to
solve a much more general problem, as stated above.

3. Design Description

In this section, we will present a brief overview of
DNS and discuss our proposed method in more
details.

3.1 Overview of DNS
The Domain Name Server (DNS) is a distributed
Internet directory service which provides a
distributed database of records spread across a
semi-static hierarchy of servers. DNS is used mostly
to translate human readable domain names (e.g.
www.csie.cyut.edu.tw) to numerical IP addresses (e.g.
163.17.10.11) or vice versa aim to identify hosts on
the Internet, and to control Internet email delivery
[17, 18, and 19]. The DNS namespace is divided into
a hierarchy of domains and each sub-domain can be
locally administered independently by an
authoritative name server that are responsible for
keeping information about that domain up-to-date.

3.2 P2P Registry (P2PReg)
When new hosts are added to a domain, the
administrator of DNS must edit the database
manually to make the new hosts public. The other
authoritative servers periodically fetch the contents
of the master file whenever a new client joins or
leaves in order to keep their records up-to-date.

To address this problem with least effort, we
present a mechanism by creating a new service call
P2P Registry (P2PReg) in DNS to enable peers
register and leave the DNS server automatically. Our
scheme is based on DNS domain hierarchy, although
some adjustments have been made in order to make
use in the domain tree.

When a host logs on to Internet, metadata on her
entire library is automatically uploaded to the DNS
server and added to the peer index as a peer (e.g. if
the register user hosted as “Personal Computer (PC)
1”, the registered domain name represent as
“PC1_P2P”) in order to distinguish from normal
node. We suppose a peer who departs the DNS server
either purposely or accidentally due to a failure. As a
result of these situations, when a peer logs off, all of

her library information is automatically removed
from the peer index which done by P2PReg to reduce
the bandwidth burden. At any given time, only the
libraries of connected, or active, peers are in the
index. While this policy allows the index to remain
small and thereby increases query efficiency.

3.3 Peer Register and Peer Logoff
There is no connection between peer and DNS server
at the beginning stage. The connection established
whenever a host starts on a P2P program. When the
connection is established, the peer informs DNS of
the host name and request to register as a peer in P2P
networks through P2PReg automatically.

No matter a peer logs off purposely or accidentally,
all of her library information is automatically
removed from the peer index which done by P2PReg.
While this policy guarantee that peers in the index
are active and connected to P2P network at any given
time.

3.4 Content Discovery
We have packaging the resources being shared by
peers as different services in order to avoid in
returning large unneeded peer list in a request. We
capture the interests of the peers through the number
and types of files maintained and provided by the
peers in P2P networks. As evident, services can be
classified as categories, or simply software services
that are device independent. For simplicity, we
assume that there are only four topics of interest:
Application Software (AS), Operation System (OS),
Music (M), Movie (MV) and Others (O). If a register
peer provides application software services, we
designate an alias to the registered domain name
represent “PC1_P2P” as “AS_P2P”. In case of a
peer which holding many topics of services, the alias
act to be longer, and thereby increases query
efficiency, it also avoids confusion for user in
identification of peer interest.

When DNS server receives a query from hosts
which registered as peer, it first uses the local
database to answer the query. If not enough answers
are found or the requestor wish to look for more
related peers, the service retrieval request is
redirected along the hierarchical tree upward until
finding a proper peer which has certain services or
reach the TTL. Eventually, the searching process
results in a list of peers that have the desired content.

With instant reply from DNS server, the requestor
peer has a sufficient knowledge of the services that
can access from these peers and uses the results to
determine which peer is suitable to connect to. For
each request, the peer utilizes the searching
mechanism to discover the serving peers and related
information, such as the uplink bandwidth and
number of current uploading sessions of the peers.

Hence, a requesting peer can find all its potential
serving peers and send query q to search for desired
files (e.g. music file) directly to peers which holding

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1176

 4

related file. In this case, the reply message will
follow the request path to reach the peer that initiated
the request. These domain transfers are done using
the special zone transfer query type in DNS (AXFR
query type [12]).

4. Load Balancing

Load balancing is a critical issue for the scalability
achievement of peer-to-peer networks. A good peer
can be a hot spot if all of the requesting clients direct
their request to the peer that considered as good peer.
Nodes with a high degree of similar interests are
considered good peers. Hence, a good peer may
receive more load than it can handle. In order to
ensure the high performance of the system, we have
to avoid bottlenecks and balance the load across all
system nodes. In fact, serving data discovery over
local search eliminates the need to have each good
peer become a hot spot. In this section, we will
describe how to balance load in P2P systems with our
proposed method in order to avoid hot spot problems
naturally.

4.1 Finding Nearby Peers
In decentralized peer-to-peer network, peers are
dynamic, often without permanent IP addresses and
potentially located in more topologically diverse
locations in the Internet. Clearly, a client would be
desirable to find nearby peers that are well-connected
without resorting to expensive network
measurements. Finding nearby peers can greatly
increase the efficiency of peer-to-peer
communications.

Two peers are deemed to be topologically close if
their IP addresses share a common address prefix. In
our scheme, each DNS server has a local peer index
for quickly finding local peer when a query is
received. According to the inherent hierarchical
architecture of DNS, we can ensure that the peer that
discovered is topologically nearest to us, hence, yield
better performance in searching a peer.

4.2 Replicas
Ideally, the request forwarding decision should be
made at the global level. Requestor is willing to
forward their request to a good peer indeed. Hence,
global-wise searching results in an unfair allocation
of user objects to peers and creates hotspots in
certain parts of the zone as stated in Figure 1. The
basic premise in our proposed networks is that any
one of a set of “replica” nodes can provide the
requested content, increasing the availability of
interesting content without requiring the presence of
any particular area. In fact, serving data discovery
over local search eliminates the need to have each
good peer become a hot spot and distributes load
separately.

Level 2

Level 3

Level 4

Level 5

Level 1

… … … …
Figure 1 Global-wise searching

(a)

…… ……

Separation Line

Level 2

Level 3

Level 4

Level 5

Level 1

… … … …

(b)

Separation Line

Level 2

Level 3

Level 4

Level 5

Level 1

Figure 2 (a) two replicas (b) four replicas

For example, a complete tree with k level holds 2k-1
node as each parent node holds two children nodes.
When there is the only replica in this complete tree,
yields 2k-1 average searching time units. However,
when the replica is 21, yields 2k-2 average searching
time units. Yet, when the replica is 2n, the average
searching time units must be 2k-n-1. Hence, we can
conclude that average searching time units of a
complete k level tree is xk-n-1 whenever the replicas is
n with each parent node holding x children nodes.
From the above analysis, we can set the searching
area (how many levels) depends on practical
situation and user requirement. It is quite sure that
when the replicas reach an optimal level, the
performance of content searching may approximate
to global-wise searching. From Figure 2, it is obvious
that the more replicas there are, the better the media
delivery quality of this specific content object is.

5. Experimental Results

In this section, we implement our proposed
architecture and algorithms. We present the results of
simulation work to validate the viability of our
approach. Three experiments were performed using
different number of contents as 500 thousands, 1500
thousands and 2500 thousands, each experiment

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1177

 5

being tested with different searching area
(global-wise searching, searching within one level,
two levels and the like). In these experiments, we
examine the performance of load balancing with a
complete tree with seven levels in a P2P environment.
For each experiment we will highlight the important
conclusions and give a condensed, high-level
explanation for the results.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 4 8 16 32 64 128 256 512 1024 2048

Replicas

(a)

Ho
ps
 C
ou
nt
 (
No
rm
al
iz
ed
)

BFS 1Level
2Level 3Level
4Level 5Level
6Level 7Level

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 4 8 16 32 64 128 256 512 1024 2048

Replicas

(b)

H
o
p
s

C
o
u
n
t

(
N
o
r
m
a
l
i
z
e
d
)

BFS 1Level
2Level 3Level
4Level 5Level
6Level 7Level

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 4 8 16 32 64 128 256 512 1024 2048

Replicas

(C)

H
o
p
s

C
o
u
n
t

(
N
o
r
m
a
l
i
z
e
d
)

BFS 1Level
2Level 3Level
4Level 5Level
6Level 7Level

Figure 3 Total Hop count with varying the

number of replica when the numbers of contents
are (a) 500 (b) 1500 (c) 2500 thousands

5.1 Load balancing
In Figures 3, we plot the total number of hops count
taken for a peer to retrieve the hot object over the
number of replicas for each of the number of
contents (500, 1500, 2500 thousands of contents) in
P2P network. We see that hops count here means
average hops numbers in location. It is clearly shown
that our proposed method with local search is capable
of distributing the load more evenly than Breadth
First Search (BFS), especially, reducing the loads of
the hot node. The load balancing is significantly
better in this case, but we note that it is very close to
that global-wise searching. Overall, this means that
even given large amount of contents, the end result

has not much different.

5.2 Standard Deviation
In order to ensure that the load distribution is equally,
we consider the ability of our proposed method to
balance the load locally by standard deviation to
measure the gap between practical situation and
ideally value. The standard deviation of different
searching method and replicas is then given by the
following formula:

∑
=

 −=

n

i
is

n
x

n 1

21 S

In our problem setting, n stands for the number of
replicas, x stands for the load, and Si for the number
of service in practical.

The standard deviation is equal to zero whenever
the result of load distribution in practical is equal to
the average in mathematical calculation. It is
approaching ideally load balance status as the value
of standard deviation more closely to zero.

Due to the reason that all nodes may send request
for searching specification content, so the whole
framework and the depth of the tree is different
depends on each peer. The depth of a tree is the
number of levels of links, not including the top. As
the simulation we stated here, we adopt a complete
tree with seven levels, so the largest depth of the
nodes is 13 from the formula (n-1)*2 + 1.

0

100

200

300

400

500

600

1 2 4 8 16 32 64 128 256 512

Replicas

(a)

S
ta

nd
ar

d
D

ev
ia

ti
on

BFS

1

4

7

10

13

0

100

200

300

400

500

600

1 2 4 8 16 32 64 128 256 512

Replicas

(b)

S
ta

nd
ar

d
D

ev
ia

ti
on

BFS

1

4

7

10

13

Figure 4 Standard deviation vs replicas in

 (a) 500 (b) 1500 thousands contents

In Figures 4 and 5, we plot the standard deviation

for each of the number of contents (500, 1500, 2500
thousands of contents). In summary, our initial
results suggest that our proposed architecture can
improve overall system performance. Distributed
streaming and hierarchical architecture are promising
solutions to reduce load at individual peers while
improving robustness.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1178

 6

Table 1 Standard Deviation with different

searching area in 2500 thousands contents
1 2 4 8 16 32 64 128 256 512

BFS 0 112 127 145 48.7 23.1 18.2 7.5 4.76 3.19

1 level 0 112 148 145 49.5 25.8 19.3 7.99 4.86 3.19

2 level 0 112 148 129 48.6 27.3 18.7 8.74 5.94 4.34

3 level 0 170 108 107 48.5 32.4 19.7 10.3 8.14 6.48

4 level 0 201 119 95.1 47.9 32 21.3 13.2 10.6 9.33

5 level 0 242 129 102 48.5 39.4 25.8 16.5 12.5 10.9

6 level 0 254 275 118 49.8 45 29.3 18.6 14.7 12.7

7 level 0 382 234 137 55.4 48.6 34.5 23.4 17.1 16.4

8 level 0 338 145 90.3 66.9 58.8 38.6 25.7 24 27

9 level 0 269 165 127 94.6 85.9 49.3 30.6 28.2 32.4

10 level 0 250 215 146 109 112 60.7 38.5 33.5 44.2

11 level 0 205 277 219 153 130 88.1 51.9 34.1 44.2

12 level 0 313 433 236 174 174 94.4 52.1 34.1 44.2

13 level 0 500 433 331 242 174 124 62.6 34.1 44.2

Search
Metho

Replicas

0

100

200

300

400

500

600

1 2 4 8 16 32 64 128 256 512

Replicas

S
ta

nd
ar

d
D

ev
ia

ti
on

BFS
1

4
7
10

13

Figure 5 Standard Deviation vs Replicas in 2500

thousands contents

Our simulation study showed that serving data

discovery over local search is indeed effective in
improving the system performance significantly. We
can conclude that when the number of replica reach
an optimal level, the performance of content
searching may approximating to global-wise
searching by just searching a few levels. It is obvious
that the more replicas there are, the better the media
delivery quality of the specific content object is.

6. Conclusions

While efficient content search in decentralized P2P
networks within a short duration is important, issues
concerning load-balancing with a view towards faster
access to data for normal users is rather
challengeable. In this paper, we proposed a
decentralized service discovery mechanism by
harnessing all available resources in the P2P network
and balance the load without decreasing user
response time. We can conclude that when the
numbers of replicas reach an optimal level, the
performance of contents searches approximating to
global-wise search by just searching a few levels.
Our simulation study showed that serving data
discovery over local search is indeed effective in
improving the system performance significantly. In
our design, it is obvious that the more replicas there
are, the better the media delivery quality of the
specific content object is.
References

[1] Napster, Inc., http://www.napster.com
[2] KaZaA, http://www.kazaa.com
[3] Young.K., “Look no Server”, Network. pp.21, 22

& 26, March 1993.
[4] Simon.S., “Peer-to-Peer Network Management

in an IBM SNA Network”, IEEE Network
Magazine, Vol. 5, pp. 30-34, March 1991.

[5] Peer-to-peer working group,
http://www.peer-to-peerwg.org/.

[6] Open P2P website: http://www.openp2p.com.
[7] D. Tsoumakos and N. Roussopoulos, “A

Comparison of Peer-to-Peer Search Methods”,
International Workshop on the Web and
Databases (WebDB), June 12-13, 2003.

[8] Gnutella homepage,
http://www.gnutella.wego.com.

[9] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong,
“Freenet: A Distributed Anonymous Information
Storage and Retrieval System”, In Work on
Design Issues in Anonymity and Unobservability,
pages 311-320, July 2000.

[10] B. Yang and H. Garcia-Molina, “Improving
Search in Peer-to-Peer Networks.” ICDCS’02,
2002.

[11] A. Crespo, H. Garcia-Molina, “Routing Indices
for Peer-to-Peer systems”, In Proc. ICDCS’02.

[12] B.Y. Zhao, Y. Duan, and L. Huang, “Brocade:
Landmark Routing on Overlay Networks”, In
Proceedings of the 1st International Workshop on
Peer-to-Peer Systems, March 2002.

[13] R.M. Karp, M. Luby, and F. Meyer auf der
Heide, “Efficient PRAM Simulation on a
Distributed Memory Machine”, ACM STOC,
May 1992.

[14] M. Mitzenmacher, “The Power of Two Choices
in Randomized Load Balancing”, Ph.D.thesis,
1996.

[15] T. Stading, P. Maniatis, M. Baker,
“Peer-to-Peer Cashing Schemes to Address
Flash Crowds”, In Proc. IPTPS’02.

[16] Ananth Rao, Karthik Lakshminarayanan,
Sonesh Surana, Richard Karp, and Ion Stoica.
“Load Balancing in Structured P2P Systems”, In
2nd International Workshop on Peer-to-Peer
Systems (IPTPS ‘03), 2003.

[17] P. Mockapetris, “Domain names—concepts
and facilities”, Internet Request for Comments
(RFC 1034), February 1987.

[18] P. Mockapetris, “Domain
names—Implementation and specification”,
Internet Request for Comments (RFC 1035),
February 1987.

[19] A. Kumar, J. Postel, C. Neuman, P, Danzig,
and S. Miller, “Common DNS implementation
error and suggested fixes”, Internet Request for
Comments (RFC 1536), October 1993.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1179

