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Abstract

This paper is concerned with a particular family
of regular 4-connected graphs, called chordal rings.
Chordal rings are a variation of ring networks. By
adding extra two links (or chords) at each vertex in a
ring network, the reliability and fault-tolerance of the
network are enhanced. Two spanning trees on a graph
are said to be independent if they are rooted at the
same vertex, say r, and for each vertex v 6= r, the two
paths from r to v, one path in each tree, are internally
disjoint. A set of spanning trees on a given graph is
said to be independent if they are pairwise indepen-
dent. In 1999, Y. Iwasaki et al. proposed a linear time
algorithm to find four independent spanning trees on
a chordal ring. In this paper, we shall give new al-
gorithms to generate four independent spanning trees
with reduced height in each tree.

Keyword: chordal rings, interconnection networks,
fault-tolerant broadcasting, independent spanning
trees, internally disjoint path.

1 Introduction

Chordal rings are a variation of ring networks. By
adding extra two links (or chords) at each vertex in
a ring network, the reliability and fault-tolerance of
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wang@cs.ntust.edu.tw).

the network are enhanced [1, 3, 7, 8]. A number of
problems on chordal rings (or called distributed loop
networks) have been studied in the past two decades,
including the diameter problem [1], the shortest paths
problem [4], the routing and fault-tolerant routing
problem [11, 12, 13, 14]. A chordal ring CR(N, d)
is a graph with its vertex set V = {0, 1, . . . ,N − 1}
and edge set E = {(u, v)|[v − u]N = 1 or d}, where
[x]N denotes x modulo N . To ensure every vertex has
four adjacent vertices, we assume that d is less than
N/2. An example of chordal ring for N = 14 and
d = 4 is shown in Figure 1.
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Figure 1: CR(14, 4) chordal rings.

Two paths in a graph are internally disjoint if
they have no common vertex except the two end ver-
tices. A spanning tree of a graph G is a subgraph
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of G that contains all vertices in G and forms a tree.
Two spanning trees of G are said to be independent
if they are rooted at the same vertex, say r, and for
each vertex v 6= r, the two paths from r to v, one path
in each tree, are internally disjoint. A set of spanning
trees of a graph is independent if they are pairwise
independent. For example, a set of four independent
spanning trees of CR(14, 4) is shown in Figure 2.
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Figure 2: A set of independent spanning trees on
CR(14, 4).

The study of finding independent spanning trees
has applications on fault-tolerant broadcasting pro-
tocol [2, 9]. The fault tolerance can be achieved by
sending k copies of a message along k independent
spanning trees rooted at the source node. If the source
node is faultless, this scheme can tolerate up to k− 1
faulty nodes.

In [9], Itai and Rodeh gave a linear time algorithm
for finding two independent spanning trees rooted at
an arbitrary vertex in a biconnected graph. In [5],
Cheriyan and Maheshwari showed that, for any 3-
connected graph G = (V,E) and for any vertex r in
G, three independent spanning trees rooted at r can
be found in O(|V ||E|) time. In [15], Zehavi and Itai
conjectured that any k-connected graph has k inde-
pendent spanning trees rooted at an arbitrary vertex
r. Recently, Curran presented an O(|V |3) time al-
gorithm for finding four independent spanning trees

rooted at any given vertex in a 4-connected graph
[6]. This result has contribution to Zehavi and Itai’s
conjecture. However, the conjecture is still open for
arbitrary k-connected graphs with k ≥ 5. Although
chordal rings discussed here are all 4-connected, effi-
cient algorithms for solving the independent spanning
trees problem in chordal rings are still valuable.

In [10], Iwasaki et al. gave a linear time algorithm
to solve the independent spanning trees problem in a
chordal ring. In Figure 2, based on their algorithm,
four spanning trees T1, T2, T3 and T4 rooted at vertex
0 in CR(14, 4) are constructed. Following the defini-
tion of independent spanning trees, for every vertex
v 6= 0, the four paths from 0 to v in T1, T2, T3 and T4

are internally disjoint (or vertex-disjoint).
Let dG(u, v) denote the distance between vertices

u and v in G. The height of a spanning tree T rooted
at vertex r, denoted by height(T ), is the maximum
distance of the paths from r to any other vertex in
T , i.e., height(T ) = max{dT (r, v)|v 6= r}. For ex-
ample, the heights of independent spanning trees Ti

(i = 1, 2, 3, 4) shown in Figure 2 are all five. In this
paper, we focus our efforts on the height of indepen-
dent spanning trees. Obviously, the performance of
a broadcasting protocol can be improved by reduc-
ing the height of a spanning tree rooted at the source
node. We shall design new algorithms to generate
four independent spanning trees with reduced height
in each tree.

The remaining part of this paper is organized as
follows. In Section 2, a linear time algorithm is pro-
posed to generate height-reduced independent span-
ning trees rooted at one vertex in a chordal ring. In
Section 3, we solve the problem for a special class of
chordal rings, i.e., CR(N, d) where [N ]d = 0. In Sec-
tion 4, we prove the correctness of our algorithms.
Section 5 contains our concluding remarks.

2 A New Algorithm for Generating In-
dependent Spanning Trees

Chordal rings are vertex-symmetric [7]. With-
out loss of generality, we simply consider indepen-
dent spanning trees rooted at vertex 0 of a chordal
ring. Let T1, T2, T3 and T4 denote the four spanning
trees. Since the four adjacent vertices of vertex v in
CR(N, d) are [v+1]N , [v−1]N , [v+d]N and [v−d]N ,
vertices 1, d,N − 1 and N − d can be assigned as the
only child of the root in T1, T2, T3 and T4 , respec-
tively. The first algorithm we proposed can generate
four independent spanning trees rooted at vertex 0 in
CR(N, d), where 2 ≤ d < N/2. The algorithm con-
tains three phases. At the first phase, we generate
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Procedure Gen T1(N, d)
begin
1. Calculate the span column.

Let node = d× b(N − (d− 1))/dc − 1.
Let span column = [node−N ]d.
If span column < d− 1 then

do move = True
2. For i = 1 to d− 1 do

Set parent of vertex i to i− 1.
3. For i = 1 to d− 1 do

If i > bd/2c then
Set parent of vertex [i− d]N to [i− d]N -1.

Else // i ≤ bd/2c
Set parent of vertex [i− d]N to i.

4. For i = 1 to d− 1 do
Let x = i.
While x ≤ N − 2d do

If (d− i) > span column then
If do move=True and [N−(x+d)]d =0
and b(N − (x + d))/dc ≤ bN/2dc

Set parent of vertex x+d to x+d+1.
Else

Set parent of vertex x + d to x.
Else // (d− i) ≤ span columnd

Set parent of vertex x + d to x + 2d.
Let x = x + d.

5. For i = 1 to b(N − d)/dc do
Let x = i× d.
If do move = True and i ≤ bN/2dc then

Set parent of vertex x to x + 1.
Else

Set parent of vertex x to x− 1.
end.

T1 using Procedure Gen T1. Then, we generate T2

using Procedure Gen T2. We generate T3 and T4

from T1 and T2 directly by replacing the label of each
non-root vertex v with N − v.

Then, we describe our algorithm for generating
four independent spanning trees rooted at vertex 0
in CR(N, d).

Algorithm IST CR
Input : CR(N, d)
Output : T1,T2,T3 and T4

begin
1. Call Procedure Gen T1(N, d).
2. Call Procedure Gen T2(N, d).
3. Generate T3 from T1 by replacing the label of

each non-root vertex v in T1 with N − v.
4. Generate T4 from T2 by replacing the label of

each non-root vertex v in T2 with N − v.
end.

Procedure Gen T2(N, d)
begin
1. Calculate the span column.

Let node = d× b(N − (d− 1))/dc − 1.
Let span column = [node−N ]d.
If span column < d− 1 then
do move = True

2. For i = 1 to b(N − d)/dc do
Let x = i× d.
Set parent of vertex x to x− d.

3. For i = d to N − d− 1 and [i + 1]d 6= 0 do
If d− [i− 1]d > span column then

If do move=True and [N−(i+1)]d =0
and b(N − (i + 1))/dc ≤ bN/2dc

Set parent of vertex i + 1 to i+1−d.
Else

Set parent of vertex i + 1 to i.
Else // d− [i− 1]d ≤ span column

Set parent of vertex i + 1 to i + 2.
Let x = x + d.

4. For i = 1 to d− 1 do
If i ≤ b(d− 1)/2c then

Set parent of vertex i to i + d.
Else // i > b(d− 1)/2c

Set parent of vertex i to i + 1.
5. For i = 1 to d− 1 do

If i > bd/2c then
Set parent of vertex [i− d]N to i.

Else // i ≤ bd/2c
Set parent of vertex [i− d]N to
[i− d]N − d.

end.

For example, we generate T1, T2, T3 and T4 on
CR(14, 4) as shown in Figure 3. Notice that the
height of each tree in Figure 3 is reduced from five
to four by comparing with the corresponding tree in
Figure 2. Constructing the four independent spanning
trees also takes linear time, as did in [10].

We are now at a position to compare the results
of our algorithms with Iwasaki’s algorithms. Us-
ing Iwasaki’s algorithms, the height of each span-
ning tree can be expressed by a simple formula,
i.e., height(Ti) = d + b(N − 2d)/dc, where i =
1, 2, 3, 4. Taking a look at our algorithm, in pro-
cedures Gen T1(N, d) and Gen T2(N, d), variable
span column plays an important role to determine
the height of independent spanning trees generated by
Algorithm IST CR. For the sake of conciseness, we
omit the detail analysis. In case of span column =
bd/2c, the height of independent spanning trees is
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Figure 3: T1, T2, T3 and T4 on CR(14, 4).

d − bd/2c + b(N − 2d)/dc + 1. In the best situation
(bN/2dc > 1), the heights of T1 and T3 can be further
reduced to d−bd/2c+b(N−2d)/dc. In the worst case,
the height of independent spanning trees can not be
reduced any more by using our algorithms. For ex-
ample, the height of independent spanning trees on
CR(14, 2) is 2+b(14−2×2)/2c = 7 by using Iwasaki’s
algorithms. This height can not be reduced. Conse-
quently, we have the following theorem.

Theorem 1 Algorithm IST CR can reduce the
height of independent spanning trees in RC(N, d) to
an extent of bd/2c by comparing with Iwasaki’s algo-
rithms.

3 Another Algorithm for Construct-
ing Independent Spanning Trees

In this section, we propose another algorithm to
generate independent spanning trees for a special class
of chordal rings. That is, this algorithm is designed
for chordal rings CR(N, d) where N is dividable by d

(i.e., [N ]d = 0) and d > 2. For this class of chordal
rings, Algorithm IST CR does not help in indepen-
dent spanning trees problem. We give the algorithm
as follows.

Then, we describe our algorithm for generating
four independent spanning trees rooted at vertex 0 in
CR(N, d). Clearly, constructing the four independent
spanning trees also takes linear time.

Procedure Div T1(N, d) (d > 2,[N ]d = 0.)
begin
1. For i = 1 to d− 1 do

Set parent of vertex i to i− 1.
2. For i = 1 to d− 1 do

Let x = i.
While x ≤ N − d do

Case 1: i < bd/2c
If x/d < N/2d then

Set parent of vertex x + d to x.
Else

Set parent of vertex x+d to [x+2d]N .
Case 2: i = bd/2c

If x/d < N/2d then
Set parent of vertex x + d to x.

Else
If [d]2 6= 0 or [x + 2d]N < d

Set parent of vertex x+d to [x+2d]N .
Else

Set parent of vertex x+d to [x+d−1]N .
Case 3: i > bd/2c

Set parent of vertex x + d to x + d− 1.
Let x = x + d.

3. For i = 1 to (N/d− 1) do
Let x = i× d.
Set parent of vertex x to x + 1.

end.

Algorithm DIV CR
Input : CR(N, d) (d > 2,[N ]d = 0.)
Output : T1,T2,T3 and T4

begin
1. Call Procedure Div T1(N, d).
2. Call Procedure Div T2(N, d).
3. Generate T3 and T4 using the same method

as steps 3 and 4 of Algorithm IST CR.
end.

For example, we generate T1, T2, T3 and T4 on
CR(35, 5) as shown in Figure 4. The heights of T1 and
T3 in Figure 4 are both 7, while the heights of T2 and
T4 are both 8. Notice that the height of independent
spanning trees constructed by Iwasaki’s algorithm is
10. The result of Algorithm IST CR is also 10.

Using Procedure Div T1, the height of the span-
ning tree can be expressed by a simple formula, i.e.,
d−1+bN/2dc. That is, height(T1)= height(T3)=d−
1 + bN/2dc. Meanwhile, the height of the span-
ning tree generated by procedure Div T2 is N/d −
1 + bd/2c. That is, height(T2)=height(T4)= N/d −
1 + bd/2c. By comparing with Iwasaki’s algorithms,
the reduced height of each spanning tree is either
d + b(N − 2d)/dc− (d− 1+ bN/2dc) = b(N/d− 1)/2c
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Procedure Div T2(N, d) (d > 2,[N ]d = 0.)
begin
1. For i = 1 to (N/d− 1) do

Let x = i× d.
Set parent of vertex x to x− d.

2. For i = 1 to N/d− 1 do
Let x = i× d.
If i ≤ b(N/d− 1)/2c then

For j = 1 to bd/2c do
Set parent of vertex x + j to x + j − 1.

For j = 1 to b(d− 1)/2c do
Set parent of vertex x− j to x− j + 1.

Else // i > b(N/d− 1)/2c
For j = 1 to bd/2c do

If i = b(N/d)/2c and [N/d]2 = 0 then
Set parent of vertex x+j to x+j−1.

Else
Set parent of vertex x+j to x+j−d.

For j = 1 to b(d− 1)/2c do
Set parent of vertex x− j to x− j − d.

3. For i = 1 to b(d− 1)/2c do
Set parent of vertex i to i + d.
Set parent of vertex N − i to [N − i + d]N .

If [d]2 = 0 then
The parent of vertex d/2 to d/2 + 1.

end.

or d+b(N−2d)/dc−(N/d−1+bd/2c) = b(d−1)/2c.
As a result, we have Theorem 2.

Theorem 2 Algorithm DIV CR can reduce the
height of independent spanning trees in RC(N, d)
by an amount of b(N/d − 1)/2c (in T1 and T3) or
b(d−1)/2c (in T2 and T4) by comparing with Iwasaki’s
algorithms.

4 Correctness of the algorithms

In this section, we shall concisely prove that
T1, T2, T3 and T4 generated by both Algorithms
IST CR and DIV CR are independent spanning
trees rooted at 0 in CR(N, d).

Lemma 3 T1, T2, T3 and T4 generated by both Algo-
rithms IST CR and DIV CR are spanning trees of
CR(N, d).

Proof. By analyzing the steps of Algorithms
IST CR and DIV CR, Ti (i=1,2,3,4) consists of N
vertices and N−1 edges. Meanwhile, Ti is connected.
Therefore, T1, T2, T3 and T4 are four spanning trees of
CR(N, d). �
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Figure 4: T1, T2, T3 and T4 on CR(35, 5).

To prove that T1, T2, T3 and T4 are pairwise inde-
pendent, we define the ancestor set of a vertex v in Ti

(i = 1, 2, 3, 4), denoted by ancestor(v, i), as the ver-
tex set of the path from root vertex 0 to the parent
vertex of v in Ti. By the definition of independent
spanning trees, we figure out that Ti and Tj (i 6= j)
are independent if and only if for every vertex v in
CR(N, d), v 6= 0, ancestor(v, i)

⋂
ancestor(v, j) = 0.

This property is the main idea in proving the following
lemma.

Lemma 4 T1, T2, T3 and T4 generated by both Algo-
rithms IST CR and DIV CR are mutually indepen-
dent.

Proof. By analyzing the ancestor set of every vertex
v (v 6= 0) with respect to the four spanning trees gen-
erated by IST CR orDIV CR, we can prove that
ancestor(v, 1)

⋂
ancestor(v, 2)⋂

ancestor(v, 3)
⋂

ancestor(v, 4) = 0. That is,
T1, T2, T3 and T4 are mutually independent. �

We summarize Lemmas 3 and 4 as Theorem 5.

Theorem 5 Algorithm IST CR and Algorithm
DIV CR can correctly generate four independent
spanning trees rooted at vertex 0 in CR(N, d).
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5 Concluding remarks

In this paper, we present two algorithms for con-
structing four independent spanning trees rooted at
an arbitrary vertex in a chordal ring. By compar-
ing with Iwasaki’s algorithms, Algorithm IST CR
can reduce the height of each spanning tree to an
extent of bd/2c, while Algorithm DIV CR can re-
duce the height of each spanning tree by an amount
of b(N/d− 1)/2c (in T1 and T3) or b(d− 1)/2c (in T2

and T4). To provide a clear comparison, we aggregate
the results of programming efforts as shown in Table
1. We use two criteria in Table 1, total height(TH)
and total path length(TPL). The former is the sum-
mation of height(Ti)(i = 1, 2, 3, 4), the latter is the
summation of path length in each tree.

Table 1: Comparison of different algorithms.

Iwasaki IST CR DIV CR
N d TH TPL TH TPL TH TPL
7 2 12 52 12 52 N/A N/A
32 5 36 608 30 520 N/A N/A
31 7 36 588 28 480 N/A N/A
9 3 16 80 14 78 12 76
30 5 36 556 34 532 28 468
35 5 40 716 38 688 30 594
36 6 40 740 38 708 32 614
48 8 48 1180 46 1120 38 958
99 11 72 3604 70 3454 54 2834
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