
Incorporating Voice Dialogs in a Multi-user Virtual Environment

Chun-Feng Liao and Tsai-Yen Li
Computer Science Department, National Chengchi University

{try,li@nccu.edu.tw}

Abstract- The applications of 3D virtual
environments and voice user interface (VUI) on
personal computers has received significant
attentions in recent years. Since speech is the most
natural way of communication, incorporating VUI
into virtual environments can greatly enhance user
interaction and immersiveness. Although there have
been many researches addressing the issue of
integrating VUI and 3D virtual environment, most of
the proposed solutions do not provide an effective
mechanism for multi-user dialog management. The
objective of this research is on providing a solution
for VUI integration and dialog management and
realizing such a mechanism in a multi-user virtual
environment. We have designed a dialog scripting
language called XAML-V (eXtensible Animation
Markup Language -Voice Extension), based on the
VoiceXML standard, to address the issues of
synchronization between VUI and animation and
dialog management for multi-user interaction. We
have also realized such a language on a multi-user
virtual environment to evaluate the effectiveness of
this design.

Keywords: Voice User Interface, VoiceXML,
Dialog Management, Multi-user Virtual
Environment.

1. Introduction
Due to the rapid development of graphics

hardware and software, virtual reality that used to
run on high-end graphics workstation can now be
experienced on desktop computers. Among the
potential applications, Multi-User Virtual
Environment (MUVE) is one that allows many users
to share their experiences in a 3D virtual
environment [11]. The nature of this type of system
requires tight integration of 3D graphics and
distributed system technologies. An example
application of this type of environment is the
prevalent 3D on-line games that have received
significant attentions in recent years. Other
applications on military, entertainment, education,
etc. are also emerging [2][15].

Most MUVE systems today, such as DIVE[4] and
ActiveWorld[1], adopts a multi-model user interface
consisting of 3D navigation and textual chatting.
However, few of them have incorporated voice user
interface, the most natural way of communication for
humans, into their systems, despite the recent
advances in speech-related technologies. We think

the main reasons are two-fold. First, there exists no
effective dialog management mechanism for multiple
users across the network in general. Most of the
voice applications today are simple applications
focusing on the voice dialogs between a human and
a machine playing the role of the other human.
Second, there is no flexible way to integrate dialog
specifications seamlessly into a computer-generated
animation in the current MUVE systems.

In this paper, we propose a dialog management
mechanism that enables the voice user interface in a
multi-user virtual environment. The mechanism uses
a protocol to let two avatars, representing either
humans or machines, to establish a dialog connection
and allow other avatars in the virtual world to
observe the progress of the dialog. The protocol is an
XML-based document while the dialog itself is a
form based on VoiceXML [14]. Due to the
extensibility of XML, this dialog management
mechanism is seamlessly integrated into a MUVE
system called IMNet that adopts XAML (eXensible
Animation Mockup Language) [10] as the
underlying animation scripting language. The voice
interface is described with a language called XAML-
V and embedded in an XAML script as a plug-in
which can in turn trigger additional animation scripts
inside the dialog.

In the next section, we will briefly review the
related work in multi-user virtual environment and
dialog management. In Section 3, we will describe
the requirements of enabling voice dialogs in a
MUVE. We will then present the design of XAML-
V for realizing such a voice interface in the
following section. In Section 5, we will describe
some implementation issues and illustrate our design
with an example dialog among multiple users.
Finally, we will conclude the paper with some future
research directions.

2. Related Work
2.1. Multi-user virtual environments

According to the way that a message is
propagated among the users, one can roughly
classify the architecture of a MUVE into two
categories: client-server and peer-to-peer. In a
client-server architecture, all client messages are sent
to the server which in turn broadcasts the messages
to all other clients[1][3]. The most common problem
about this architecture is that the server can easily
become a bottleneck when the number of clients

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

483

rises. However, most MUVE systems today adopt
this architecture for its implementation simplicity.
On the other hand, the MUVE systems adopting a
peer-to-peer architecture communicate without a
centralized control [5][6]. However, these systems
are more difficult to implement and manage than the
client-server architecture. Since system architecture
is not the main concern of this work, we have chosen
a MUVE system called IMNet (Intelligent Media
Net)[9] with the client-server architecture.

In addition to the issue of system architecture, the
application protocol for delivering multi-modal
contents, such as 3D animation and textual chat, has
also been an active research topic. A recent focus is
on designing an XML-based animation scripting
language for describing the activities in a virtual
environment. For example, Avatar Markup
Language (AML) [8] focuses on facial expression
but only provides limited functions for altering a
canned motion. STEP is another XML-based
scripting language that emphasizes on its logical
reasoning ability [7]. XAML is also an XML-based
animation scripting language featuring its
extensibility in modeling animations with various
levels of controls and allowing other external
modules to be incorporated as plug-in [10]. In this
work, we have chosen to extend XAML to
incorporate a mechanism for voice dialog
management in the IMNet system.

2.2. Dialog management
The researches for core voice technologies, such

as speech synthesis and recognition, and voice
applications have made significant progresses in
recent years. International standards such as
VoiceXML are emerging as the de facto for dialog-
based applications. Most of these designs aim to
provide a voice user interface to a user by
downloading a dialog form from a document server.
However, since two-way communications between a
human and a computer are usually the basic
assumption for designing such a language, it cannot
be directly applied to a MUVE system without
modifications.

Galatea[13] is an Anthropomorphic Spoken
Dialog Agent (ASDA) platform that makes use of
the dialog model of VoiceXML. It extends
VoiceXML to incorporate animation descriptions
such as facial expression scripts. However, in [12],
the authors argue that the form-filling mechanism in
VoiceXML is insufficient for expressing state
transitions in an advanced dialog. Therefore, a
language called DialogXML is designed to express a
more complex dialog. A dialog manager is also
designed to translate the scripts in this language into
VoiceXML scripts at run time.

3. Dialog Management in MUVE
VoiceXML was originally designed for dialogs

between human and system in a telephony

environment. A human user interacts with the system
by retrieving a sequence of dialog forms from a
document server just as we do in a typical session of
a web application. In such an environment, there are
at most two interactive instances in a dialog session.
However, in a typical MUVE, the number of avatars
in a scene is usually much larger. In a dialog session,
two avatars are the active subjects while the other
avatars act as observers. In order to clarify the roles
of the avatars in a typical MUVE, we have adopted
the following notations.

Subjects: Avatars in a dialog.
Observers: Avatars not in a dialog.
U: Avatars controlled by human.
S: Avatars controlled by system.
Suffix s: Subject avatars.
Suffix i (i=1,2,3…): Observer avatars.

For example, Us denotes an avatar in dialog

controlled by a human user.
If we adopt the dialog model of a typical

VoiceXML session between two avatars controlled
by a human (Us) and a machine (Ss), the dialog may
actually happen between Us and the document server
as shown in Figure 1. After the dialog is initialized,
Ss sends its dialog script’s URL to Us (steps1-2), and
then Us fetches the script according to this URL from
the document server, and collects inputs from the
user. A new script is then fetched based on the user’s
response (steps 3-6).

When applying the VoiceXML dialog model to a
MUVE as described above, we encountered several
problems. First, although Ss is in a dialog with Us, Ss
is not aware of the dialog status after sending out the
URL of the first dialog script. If some network
failures occur during the dialog or Us deliberately
stops the dialog, Ss will not be notified and updated.
Second, without a mechanism to maintain the dialog
status, Ss may be talking to two or more avatars
simultaneously or showing a mixed and confused
animation to a wrong target. Therefore, we have
proposed several mechanisms as described below to
enhance the original dialog model.

Figure 1. Sequence diagram of applying the

VoiceXML dialog model to a MUVE

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

484

3.1. Proxy request
In order to make Ss be aware of the dialog status

when talking with Us, we propose to use a proxy-
request mechanism as for a proxy server on WWW.
In the enhanced model, all dialog requests must pass
through Ss as shown in Figure 2.

With the Proxy-Request mechanism, Ss will
receive all messages sent by Us, and thus be aware of
its dialog status with Us. Therefore, Ss can detect and
recover from potential errors. Since the participants
of a dialog are all aware of the dialog status, the
realization of many advanced dialog management
mechanisms such as dialog initiation and locking as
described below then become possible.

3.2. Dialog initiation and locking
Another characteristic of a dialog in a MUVE is

that a user can only dedicate to a dialog session at
one time. From our daily experience, we know that
the output voice from one to many people is
common but input voice from many people to a
person is unusual. For instance, when a teacher is
giving a lecture to her students, the voice is one-to-
many. When many students speak out for questions
at the same time, it is difficult for the teacher to
understand all the questions. Therefore, we think that
for a valid dialog, the output from an avatar to others
may have a one-to-one or one-to-many relationship;
but input from others to the avatar should only allow
one-to-one relationship. To realize such a
mechanism, we need to design a dialog initiation and
locking process to maintain dialog states
appropriately.

Before any clients can start their dialogs, they
must negotiate with the other dialog partner to
ensure that it is not in a dialog already. We have
designed a two-round negotiation process as
illustrated in Figure 3. Assume that Us intends to
have a dialog with Ss. First, Us has to confirm that it
is not in a dialog already with other clients in order
to start the initiation process (step 1 in Figure 3). If
this is the case, Us will enter the “dialog negotiation”
state (see Figure 4) and send a “dialog request”
message to Ss (steps 2~3). If Ss is also not in a dialog,

it will enter “dialog negotiation” state as well and
return a “dialog accept” message (steps 5~6) back to
Us. When Us receives this message, it will enter the
“in dialog” state and send back a “dialog accept
acknowledgement” message (steps 8~9). Ss then will
also enter the “in dialog” state and fetch the first
dialog script from the document server for Us (steps
10~13). On the other hand, if Ss is busy in another
dialog already in step 4, it will send back a “dialog
reject” message. When Us receives this message or
the process times out due to any abnormal network
problems, it will enter the “not in dialog” state and
abort the initiation process.

3.3. Dialog message types
The dialog initiation messages described above

are sent between the two engaging parties only.
However, after the dialog session starts, different
avatars in a MUVE should receive different
messages due to their distinguished roles in the
dialog. For example, except for the engaging avatars,
the other avatars are observers of the dialog. They
should receive the content of the dialog but should
not participate or reply to any of these dialogs.
Therefore, two types of messages are designed:

Figure 3. The sequence dialog for the dialog

initiation process

Figure 4. State diagram for dialog initiation

and locking

Figure 2. The sequence diagram of adopting

the Proxy Request mechanism in a dialog

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

485

dialog scripts and broadcasting scripts. The dialog
scripts are similar to a typical VoiceXML dialog
form while the broadcasting scripts are like a dialog
without questions. The dialog scripts are mandate
and cannot be ignored while the broadcasting scripts
may be safely ignored by other avatars if necessary.

4. Design of XAML-V
A scripting language called XAML-V (XAML

Voice extension), an extension of XAML, is
designed to realize the voice user interface and
dialog management described in the previous section.
In this section, we will describe the scripting
language in more details to illustrate how it takes
advantage of the extensibility of XAML to make the
animation scripting language speech-enabled.
XAML-V mainly consists of tags with two types of
functions: dialog context and dialog management
protocol.

4.1. Dialog context
XAML is an animation scripting language that

allows other modules, such as XAML-V, to be
incorporated as plug-ins. As shown in Figure 5, a
XAML-V script is enclosed in the <xaml-v> tag,
which is embedded in an <AnimPlugin> tag. The
dialog context part of XAML-V is based on a subset
of VoiceXML with the telephony-related elements
removed since they are not appropriate in MUVE.

For example, the tags of <block>, <prompt>,
<form>, and <field> all bear the same meanings as
they are in VoiceXML while <transfer>, <filled>,
and <assign> are removed.

In addition to the VoiceXML-related tags,
XAML-V also supports embedded animations inside
a dialog at both the form level and the field level.
The embedded animations are XAML scripts that do
not recursively include XAML-V scripts. For
example, in Figure 6, a form-level and a field-level
animation that imports canned motions from external
files through the <AnimImport> tag is used.

The XAML-V script example in Figure 6
describes a scenario where a computer-controlled
avatar welcomes the user by a greeting statement
“Good Morning, sir. May I help you?” Then the
system asks the user where he/she is interested in
going while playing a high-level ”listen” animation
clip at the same time to prompt the user for a
response. The response will then be sent to the given
URL for further processing.

4.2. Dialog management protocol
Several tags are added to support the dialog

management mechanism proposed in the previous
section. Figure 7 shows an example of dialog
negotiation message. The “context” attribute
indicates the type of dialog negotiation being
executed, and the “source” attribute indicates where
this message is from.

In Figure 7, the “context” attribute is “request”,
and the “source” is “Us”. The script means that an
avatar “Us” would like to “request” a conversion
with the user. The possible values for the “context”
attribute of the dialog-negotiation element include:
request, accept, reject, dialogAck, and endDialog.
Each of these values maps to an action in a dialog
negotiation process described in the previous section.

Figure 8 shows an example of the Proxy Request
mechanism in XAML-V. The idea is to encapsulate
HTTP GET/POST messages in the <proxy-request>
tag such that the system-controlled avatar can fetch
the next document from the document server. In the
<proxy-request> element, the HTTP method,

<?xml version=”1.0” encoding=”UTF-8”?>
<AnimItem>
 <AnimPlugin>
 <xaml-v version=”1.0”>
 <block>
 <prompt>No, Thanks</prompt>
 </block>
 </xaml-v>
 <AnimPlugin>
</AnimItem>

Figure 5. XAML-V script as a plugin of
XAML

<xaml-v version=”1.0”>
 <form id=”helloForm” type=”dialog”>
 <prompt>Good morning
 <animation>
 <AnimItem dur=”3000”>
 <AnimImport src=”Stand”>
 </AnimItem>
 </animation>
 <field name=”helpType”>
 <prompt>May I help you? You can say: “I.M.
Lab”, “Computer Center”, or “No, thanks”</prompt>
 <animation>
 <AnimItem dur=”3000”>
 <AnimImport src=”Listen”/>
 </AnimItem>
 </animation>
 </field>
 <submit next=”helpFormResponse.jsp” />
 </form>
</xaml-v>

Figure 6. Embedding animation in a XAML-
V script

<proxy-request>
 <method>GET</method>
 <url>helloFormResponse.jsp</url>
 <parameter>
 <param key=”helpType” value=”no thanks”/>
 </parameter>
</proxy-request>

Figure 8. An XAML-V script for proxy
request

<xaml-v>
 <protocol>
 <dialog-negotiate source=”Us” context=”request”/>
 </protocol>
</xaml-v>

Figure 7. Dialog request message

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

486

requesting URL, and requesting parameters are the
sub-elements to encapsulate detail information.

5. Implementation and Example
5.1. Implementation

We have implemented the enhanced dialog model
with XAML-V in IMNet [9][10]. The XAML-V
module serves as a plug-in component of the XAML
platform and coordinates with various input and
output devices. The XAML-V module interprets
XAML-V script ands manages several dialog
mechanisms (e.g. dialog lock or dialog state). A
comparison of the implementation of XAML with
other speech-enabled MUVE systems is summarized
in Table 1.

Figure 9 shows the overall architecture of
XAML-V platform. The VoicePluginObject serves
as a plug-in point to XAML platform. It accepts
scripts from the XAML platform and delegate to a
XAML-V interpreter. The XAML-V interpreter is the
core of the XAML-V platform, which parses
incoming scripts and orchestrates the other
components. ExecutionContext is the data store for
run-time configurations and information needed by
the interpreter. The dialog document server is a
repository for dialog scripts. These scripts may also
be generated dynamically using server-side scripting
technologies. For example, we use an open source
Java Servlet container (Tomcat 4.1) as the dialog
document server in our implementation. The
HttpClient fetches dialog scripts from the document

server and handle HTTP protocol details for the
interpreter. Tag Handlers are collections of classes
conformed to a “TagHandler” interface, and each of
them is designed to handle a specific tag. The
interpreter delegates work to this component
according to the tags that it encounters. For example,
it will delegate work to PromptTagHandler class if
the interpreter encounters a <prompt> tag. In
addition to rendering the voice with the TTS module,
the PromptTagHandler object will send out a
broadcasting message containing a <prompt> script
to let all other avatars render the voice as observers.

According to the plug-in model of XAML, when
the interpreter encounters the <AnimPlugin> element,
it will search a pre-configured component registry
for a valid plug-in to handle the script described
inside the <AnimPlugin> element. The XAML
interpreter will acquire the control of current
executing thread and delegate to a plug-in
component when it finds one. Since XAML-V is
actually the plug-in component, the XAML-V
interpreter will take over the control of current
thread and continue to execute the script.

5.2. An Example
In Figure 10, we show the snapshots of the user

interface for an example of interactive animation
with a voice dialog written in XAML and XAML-V.
The example dialog script is similar to the one
shown in Figure 6. In the scenario, a virtual

Table 1. Comparison of implementation in various MUVE’s with voice user interface
System Cernak[4] Wauchope

MSFT[15]
Wauchope
ISFS[16] XAML-V

Virtual
environment VRAC’s C6 EA’s World Toolkit Cortona VRML

Browser IM-Browser

Speech recognition CSLU Toolkit IBM ViaVoice 8 IBM ViaVoice 8 IBM ViaVoice 9
SR grammar Home made IBM SRCL JSGF SRGF (W3C Standard)
SR invocation Keyword Not mentioned Push to talk Push to talk

TTS Festival IBM ViaVoice 8 IBM ViaVoice 8 IBM ViaVoice 9
Speech API Not mentioned IBM SMAPI JSAPI JSAPI w/ Cloud Garden Bridge

Speech-VR bridge TCP Socket TCP Socket UCP Socket TCP Socket

Dialog flow control SCI IDE Rule and data stored
in RDBMS

Rule and data
stored in RDBMS XAML-V

Figure 10. Snapshots of the interface for an

example dialog in a MUVE

Figure 9. System architecture of XAML-V

platform

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

487

character acts as a receptionist via the voice user
interface when a real user enters the virtual
environment. The receptionist greets the guest by
saying “Good morning, Sir, May I help you?”
(Figure 10(a)) Then he will listen to the user’s input
for the destination that he/she is interested in and
play a high-level animation “listening” at the same
time (Figure 10(b)). If the user does not need any
assistance, the receptionist will end the dialog by
saying “Good-Bye” (Figure 10(f)). If the user
specifies one of the destinations that the receptionist
knows, she will guide the user to the destination
(Figure 10(c)). Unless the user says “No, thanks”,
the receptionist will continue to ask the user for
further question (Figures 10(d) and (e)).

Figure 11 shows two snapshots (corresponding to
(b) and (c) in Figure 10) of the dialog from the
observer’s view. The avatar with blonde hair is the
observer of this dialog. She can hear all speech
voices of the dialog, or may choose to ignore these
voices safely if she would like to have a dialog with
another avatar.

6. Conclusions and Future Work
In this paper, we have proposed to enhance

MUVE with a voice user interface. We have
presented a dialog management mechanism for
MUVE based on VoiceXML and XAML. The
proposed XAML-V dialog scripting language
includes functions on dialog lock, dialog
broadcasting, dialog negotiation, and a proxy request
mechanism. We have demonstrated the
appropriateness of this design by examples and
shown that by integrating with an appropriate voice
interface, users can communicate with each other in
a more natural way in MUVE.

We have been focusing on realizing the dialog
management mechanism for MUVE; however, many
desirable features still need to be added to enhance
the immersion of the virtual environment. For
example, the volume of the voice dialog as well as
other 3D sound effects should be adjustable
according to the relative locations between avatars.
In addition, a more attractive facial animation
synchronized with the voice dialog should be
adopted to enhance visual realism.

This work was partially supported by a grant from National
Science Council under contact NSC 93-2213-E-004-001.

References
[1] ActiveWorlds,

URL:<http://www.activeworlds.com>.
[2] O. Apaydin. “Networked Humanoid Animation

Driven by Human Voice using Extensible 3D (X3D),
H-Anim and Java Speech Open Standards,” Master’s
Thesis, Naval Postgraduate School, March 2002.

[3] Blaxxun, URL:<http://www.blaxxun.com>
[4] M. Cernak and A. Sannier, “Command Speech

Interface to Virtual Reality Applications,” Technical
Report, Virtual Reality Applications Center at Iowa
State University of Science and Technology, June
2002.

[5] E. Frecon and M. Stenius, “DIVE: A Scalable
network architecture for distributed virtual
environments,” Distributed Systems Engineering
Journal (Special issue on Distributed Virtual
Environments), Vol. 5, No. 3, pp.91-100, September
1998.

[6] C. Greenhalgh and S. Benford, “MASSIVE: a
collaborative virtual environment for
teleconferencing,” ACM Trans. CHI, Vol.2, pp.239-
261, 1995.

[7] Z. Huang, A. Eliens, and C. Visser, “STEP: A
Scripting Language for Embodied Agents,”
Proceedings of the Workshop on Lifelike Animated
Agents, 2002.

[8] S. Kshirsagar, A. Guye-Vuilleme, and K. Kamyab,
“Avatar Markup Language,” Proc. of 8th
Eurographics Workshop on Virtual Environments,
pp. 169-177, May, 2002.

[9] M.Y Liao, ”An Extensible Scripting Language for
Interactive Animation,” Master’s thesis, Department
of Computer Science, National Chengchi University,
2004.

[10] M.Y Liao and T.Y Li, ”A Scripting Language for
Extensible Animation,” Proc. of 2003 Computer
Graphics Workshop, Taiwan, 2003.

[11] M. Matijasevic, “A Review of Networked Multi-
User Virtual Environment,” URL:
<http://citeseer.nj.nec.com/matijasevic97review.html
>, 1997

[12] E. Nyberg, T. Mitamura, P. Placeway, M. Duggan,
and N. Hataoka, “DialogXML: Extending
VoiceXML for Dynamic Dialog Management,” Proc.
of the Human Language Technology Conf., 2002.

[13] S. Sagayama, S. Kawamoto, H. Shimodaira, T. Nitta,
T. Nishimoto, S. Nakamura, K. Itou, S. Morishima,
T. Yotsukura, A.Kai, A.Lee, Y. Yamashita, T.
Kobayashi, K. Tokuda, K. Hirose, N. Moinematsu,
A. Yamada, Y. Den, and T. Utsuro, “Galatea:An
Anthropomorphic Spoken Dialogue Agent Toolkit,”
IPSJ SIG-SLP, Feburary 2003

[14] VoiceXML, URL:< http://www.w3.org/Voice/>
[15] K. Wauchope, “Interactive Ship Familiarization

System: Technical Description,” AIC Technical
Report AIC-03-001, Navy Center for Applied
Research in Artificial Intelligence, Washington DC,
2003.

[16] K. Wauchope, S. Everett D. Tate, and T. Maney,
“Speech-Interactive Virtual Environments for Ship
Familiarization,” Proc. of 2nd Intl. EuroConference
on Computer and IT Applications in the Maritime
Industries (COMPIT '03), pp. 70-83, Hamburg,
Germany, May 2003.

Figure 11. Snapshots (b and c) of the above

dialog from an observer’s viewpoint

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

488

