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Abstract- Internet computing and grid 
technologies promise to change the way we tackle 
complex problems. They will enable large-scale 
aggregation and sharing of computational, data and 
other resources across institutional boundaries. And 
harnessing these new technologies effectively will 
transform scientific disciplines ranging from high-
energy physics to the life sciences. In this paper, we 
construct two heterogeneous PC clusters to form a 
grid computing environment and setup the 
middleware - Globus Toolkit on the master node of 
each cluster. Then, CISCO 2511 router is used to 
connect these two PC clusters and control the 
communication bandwidths. Subsequently, we use 
two different communication styles to benchmark 
our grid computing system: one is tightly-coupled 
synchronization job and the other one is loosely-
coupled communication job. The result show when 
tightly synchronization application is running with 
lower communication bandwidth will result in the 
overall performance down. But the lower 
communication bandwidth will not affect the 
performance of loosely-coupled application. 
 
Keywords: Benchmarking, Grid computing, Globus, 
SUN Grid Engine, Speedup, Cluster computing. 
 
1. Introduction 
 

Grid computing, most simply stated, is 
distributed computing taken to the next evolutionary 
level. The goal is to create the illusion of a simple 
yet large and powerful self managing virtual 
computer out of a large collection of connected 

heterogeneous systems sharing various combinations 
of resources. The standardization of 
communications between heterogeneous systems 
created the Internet explosion. The emerging 
standardization for sharing resources, along with the 
availability of higher bandwidth, are driving a 
possibly equally large evolutionary step in grid 
computing [1, 14, 15]. 

The Infrastructure of grid is a form of networking. 
Unlike conventional networks that focus on 
communication among devices, grid computing 
harnesses unused processing cycles of all computers 
in a net-work for solving problems too intensive for 
any stand-alone machine. A well-known grid 
computing project is the SETI (Search for 
Extraterrestrial Intelligence) @Home project [30], 
in which PC users worldwide donate unused 
processor cycles to help the search for signs of 
extraterrestrial life by analyzing signals coming 
from outer space. The project relies on individual 
users to volunteer to allow the project to harness the 
unused processing power of the user’s computer. 
This method saves the project both money and 
resources. 

Another key technology in the development of 
grid networks is the set of middleware applications 
that allows resources to communicate across 
organizations using a wide variety of hardware and 
operating systems. The Globus Toolkit [2] is a set of 
tools useful for building a grid. Its strength is a good 
security model, with a provision for hierarchically 
collecting data about the grid, as well as the basic 
facilities for implementing a simple, yet world-
spanning grid. 
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Globus will grow over time through the work of 
many organizations that are extending its 
capabilities. More information about Globus can be 
obtained at http://www.globus.org. The accepted 
standard in this application space is the Globus 
Toolkit. The Globus Toolkit is a middleware product 
designed to facilitate grid computing, and also like 
Linux is available under an “open source” licensing 
agreement for free use.  

The promise of grid computing is to provide vast 
computing resources for computing problems like 
the SETI example that require supercomputer type 
re-sources in a more affordable way. Grid 
computing also offers interesting opportunities for 
firms to tackle tough computing tasks like financial 
modeling without incurring high costs for super 
computing resources. The developers of the Globus 
Toolkit envision that grid computing will become 
the pervasive paradigm for providing computing 
recourses to large collaborative projects and virtual 
organizations.  

The organization of this paper is as follow. In 
section 2, we make a background review of Cluster 
Computing, MetaComputing and Grid Computing. 
In section 3, it is our hardware and software 
configuration. In section 4, grid computing 
environment is proposed and constructed on 
multiple Linux PC Clusters by using Globus Toolkit 
(GT) and SUN Grid Engine (SGE). The 
experimental results are also con-ducted by using 
these MPI programs: pi problem, prime problem, 
matrix multiplication and POVRAY to demonstrate 
the performance. The experimental results are 
presented and discussed. We conclude this study in 
section 5. 
 

2. Background Review 

2.1. Cluster Computing 
The first cluster computing was a NASA effort 

called Beowulf. Beowulf was started in 1994 and the 
first effort consisted of a 16-node cluster made up of 
commodity off the shelf (COTS) systems 
interconnected with Ethernet. While this approach 
does not try to exploit the excess computing power 
in the network, the use of COTS computers and 
standard network architectures means that Beowulf 
class systems are inexpensive to build and operate 
and can offer supercomputer levels of processing 
power. 

Scalable computing clusters, ranging from a 
cluster of (homogeneous or heterogeneous) PCs or 
workstations to SMP (Symmetric MultiProcessors), 
are rapidly becoming the standard platforms for 
high-performance and large-scale computing. A 
cluster is a group of independent computer systems 

and thus forms a loosely coupled multiprocessor 
system. A network is used to provide inter-processor 
communications. Applications that are distributed 
across the processors of the cluster use either 
message passing or network shared memory for 
communication. A cluster computing system is a 
compromise between a massively parallel processing 
system and a distributed system. An MPP 
(Massively Parallel Processors) system node 
typically cannot serve as a standalone computer; a 
cluster node usually contains its own disk and 
equipped with a complete operating systems, and 
therefore, it also can handle interactive jobs. In a 
distributed system, each node can function only as 
an individual resource while a cluster system 
presents itself as a single system to the user. 

Since a Beowulf cluster is a parallel computer 
system, it suits applications that can be partitioned 
into tasks, which can then be executed concurrently 
by a number of processors. These applications range 
from high-end, floating-point intensive scientific 
and engineering problems to commercial data-
intensive tasks. Uses of these applications include 
ocean and climate modeling for prediction of 
temperature and precipitation, seismic analysis for 
oil exploration, aerodynamic simulation for motor 
and aircraft design, and molecular modeling for 
biomedical research [10, 11, 21, 22] 

The previous study [11] lists four benefits that can 
be achieved with clustering. These can also be 
thought of as objectives or design requirements: 
l Absolute scalability: It is possible to create 

large clusters that far surpass the power of even 
the largest standalone machines. A cluster can 
have dozens of machines, each of which is a 
multiprocessor. 

l Incremental Scalability: A cluster is configured 
in such a way that it is possible to add new 
systems to the cluster in small increments. 
Thus, a user can start out with a modest system 
and expand it as needs grow, without having to 
go through a major upgrade in which an 
existing small system is replaced with a larger 
system. 

l High availability: Because each node in a 
cluster is a standalone computer, the failure of 
one node does not mean loss of service. In 
many products, fault tolerance is handled 
automatically in software. 

l Superior price/performance: By using 
commodity building blocks, it is possible to put 
together a cluster with equal or greater 
computing power than a single large machine, 
at much lower cost. 

2.2. Grid Computing 
Grid computing (or the use of a computational 

grid) is applying the resources of many computers in 
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a network to a single problem at the same time - 
usually to a scientific or technical problem that 
requires a great number of computer processing 
cycles or access to large amounts of data. A well-
known example of grid computing in the public 
domain is the ongoing SETI (Search for 
Extraterrestrial Intelligence) @Home project [30] in 
which thousands of people are sharing the unused 
processor cycles of their PCs in the vast search for 
signs of "rational" signals from outer space. 
According to John Patrick, IBM’s vice-president for 
Internet strategies, "the next big thing will be grid 
computing."  

Grid computing requires the use of software that 
can divide and farm out pieces of a program to as 
many as several thousand computers. Grid 
computing can be thought of as distributed and 
large-scale cluster computing and as a form of 
network-distributed parallel processing. It can be 
confined to the network of computer workstations 
within a corporation or it can be a public 
collaboration (in which case it is also sometimes 
known as a form of peer-to-peer computing).  

A number of corporations, professional groups, 
university consortiums, and other groups have 
developed or are developing frameworks and 
software for managing grid computing projects. The 
European Community (EU) is sponsoring a project 
for a grid for high-energy physics, earth observation, 
and biology applications. In the United States, the 
National Technology Grid is prototyping a 
computational grid for infrastructure and an access 
grid for people.  

Grid computing appears to be a promising trend 
for three reasons: (1) its ability to make more cost-
effective use of a given amount of computer 
resources, (2) as a way to solve problems that can’t 
be approached without an enormous amount of 
computing power, and (3) because it suggests that 
the resources of many computers can be 
cooperatively and perhaps synergistically harnessed 
and managed as a collaboration toward a common 
objective. In some grid computing systems, the 
computers may collaborate rather than being 
directed by one managing computer. One likely area 
for the use of grid computing will be pervasive 
computing applications - those in which computers 
pervade our environment without our necessary 
awareness. 

The establishment, management, and exploitation 
of dynamic, cross-organizational sharing 
relationships require new technology. This 
technology is Grid architecture and supporting 
software protocols and middleware [1, 2, 7, 9, 13, 
14, 15, 16, 17, 18, 20, 30] 

2.2.1. Globus Toolkit 
The Globus Project [2] provides software tools 

that make it easier to build computational grids and 
grid-based applications. These tools are collectively 
called The Globus Toolkit. The Globus Toolkit is 
used by many organizations to build computational 
grids that can support their applications. 

The composition of the Globus Toolkit can be 
pictured as three pillars:  Resource Management, 
Information Services, and Data Management.  Each 
pillar represents a primary component of the Globus 
Toolkit and makes use of a common foundation of 
security.   GRAM implements a resource 
management protocol, MDS implements an 
information services protocol, and GridFTP 
implements a data transfer protocol. They all use the 
GSI security protocol at the connection layer [2, 20]. 

GRAM, GRAM [1, 2, 26] is designed to provide a 
single common protocol and API for requesting and 
using remote system resources, by providing a 
uniform, flexible interface to, local job scheduling 
systems. The Grid Security Infrastructure (GSI) 
provides mutual authentication of both users and 
remote resources using GSI (Grid-wide) PKI-based 
identities. GRAM provides a simple authorization 
mechanism based on GSI identities and a 
mechanism to map GSI identities to local user 
accounts. 

MDS, MDS [1, 2, 27, 28] is designed to provide a 
standard mechanism for publishing and discovering 
resource status and configuration information. It 
provides a uniform, flexible interface to data 
collected by lower-level information providers. It 
has a decentralized structure that allows it to scale, 
and it can handle static (e.g., OS, CPU types, system 
architectures) or dynamic data (e.g., disk 
availability, memory availability, and loading). A 
project can also restrict access to data by combining 
GSI (Grid Security Infrastructure) credentials and 
authorization features provided by MDS. 

GridFTP [1, 2, 23, 24, 25] is a high-performance, 
secure, reliable data transfer protocol optimized for 
high-bandwidth wide-area networks. The GridFTP 
protocol is based on FTP, the highly-popular 
Internet file transfer protocol. GridFTP provides the 
following protocol features:  
l GSI security on control and data channels. 
l Multiple data channels for parallel transfers. 

Partial file transfers. 
l Direct server-to-server transfers. 
l Authenticated data channels. 
l Reusable data channels. 
l Command pipelining. 

2.2.2. MPICH-G2 
MPI is a message-passing library standard that 

was published in May 1994. The “standard” of MPI 
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is based on the consensus of the participants in the 
MPI Forums [3], organized by over 40 
organizations. Participants include vendors, 
researchers, academics, software library developers 
and users. MPI offers portability, standardization, 
performance and functionality [22]. 

The advantage for the user is that MPI is 
standardized on many levels. For example, since the 
syntax is standardized, you can rely on your MPI 
code to execute under any MPI implementation 
running on your architecture. Since the functional 
behavior of MPI calls is also standardized, your MPI 
calls should behave the same regardless of the 
implementation. This guarantees the portability of 
your parallel programs. Performance, however, may 
vary between different implementations. 

MPICH-G2 [4, 5] is a grid-enabled 
implementation of the MPI v1.1 standard. That is, 
using services from the Globus Toolkit® (e.g., job 
startup, security), MPICH-G2 allows you to couple 
multiple machines, potentially of different 
architectures, to run MPI applications. MPICH-G2 
automatically converts data in messages sent 
between machines of different architectures and 
supports multiprotocol communication by 
automatically selecting TCP for intermachine 
messaging and (where available) vendor-supplied 
MPI for intramachine messaging. Existing parallel 
programs written for MPI can be executed over the 
Globus infrastructure just after recompilation [19]. 

2.2.3. SUN Grid Engine 
Sun Grid Engine is new generation distributed 

resource management software which dynamically 
matches users’ hardware and software requirements 
to the available (heterogeneous) resources in the 
network, according to policies usually defined by 
management. 

Sun Grid Engine acts as the central nervous 
system of a cluster of networked computers. Via so-
called daemons, the Grid Engine Master supervises 
all resources in the network to allow full control and 
achieve optimum utilization of the resources 
available.  

Sun Grid Engine aggregates the compute power 
available in dedicated compute farms, networked 
servers and desktop workstations, and presents a 
single access point to users needing compute cycles. 
This is accomplished by distributing computational 
workload to available systems, simultaneously 
increasing the productivity of machines and 
application licenses while maximizing the number 
of jobs that can be completed. 

In addition, Sun Grid Engine software helps 
lower the costs of purchasing, installing, setting up 
and administering the computing environment 
because it allows: Maximized use of new/existing 
resources, Lower administration costs, Lower 

upgrade costs, More efficient reuse of existing 
legacy, Resources [6, 22]. 

3. Hardware and Software 
Configurations 

We construct a grid computing testbed which 
includes four Linux PC clusters:  
l Alpha site: 4 PC with dual Athlon MP 

2000MHz processor, 512MB DDRAM and 
Intel PRO100 VE interface. 

l Beta Site: 4 PC with single Celeron 1700 
processor, 256MB DDRAM, and 3Com 
3c9051 interface. 

l Gamma site: 4 PC with Dual Pentium 3 866 
MHz processors, 256MB SDRAM and 3Com 
3c9051 interface. 

l Sigma site: 2 PC with single Pentium 4 
2.4GHz processor, 256MB DDRAM and 
Accton EN-1216interface. 

Each master node of the cluster is running SGE 
QMaster daemon and SGE EXECUTER daemon to 
running, manage and monitor incoming job and 
Globus Toolkit v2.42 also installed. Each slave node 
is running SGE EXECUTER daemon to execute 
incoming job only. 

Figure 1: Our grid testbed 
 

Sites 1 to 3, it locates at different department and 
lab in Tunghai University, Taiwan. Site4 locates at 
NCHC (National Center for High-Performance 
Computing), Tainan, Taiwan. We use general 
application to benchmark network traffic from Site 1 
to Site4. Between Site (1, 2, 3) and Site (1, 2, 3), the 
average network latency is 3ms and the maximum 
transfer speed is 7600KBytes. Between Site (1, 2, 3) 
and Site4, the average network latency 5ms and the 
maximum transfer speed is 2000KBytes. 
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Figure 2: Grid static summary monitoring 

 

 
Figure 3: Grid summary view 

4. Experimented Results 

4.1. Application Performance Evaluation 
We use the MPI-based parallel applications for 

experimentation, the detail are listed as below: 
 
Matrix multiplication: The matrix operation 

derives a resultant matrix by multiplying two input 
matrices, a and b, where matrix a is a matrix of N 
rows by P columns and matrix b is of P rows by M 
columns. The resultant matrix c is of N rows by M 
columns. The serial realization of this operation is 
quite straightforward as listed in the following: 

for(k=0; k<M; k++) 
 for(i=0; i<N; i++){ 
  c[i][k]=0.0; 
  for(j=0; j<P; j++) 
   c[i][k]+=a[i][j]*b[j][k]; 
 } 
Its algorithm requires n3 multiplications and n3 

additions, leading to a sequential time complexity of 
O(n3). Let’s consider what we need to change in 

order to use MPI. The first activity is to partition the 
problem so each slave node can perform on its own 
assignment in parallel. For matrix multiplication, 
the smallest sensible unit of work is the computation 
of one element in the result matrix. It is possible to 
divide the work into even smaller chunks, but any 
finer division would not be beneficial because of the 
number of processor is not enough to process, i.e., 
n2 processors are needed. 

 
Prime Number: For prime problem, for example, 

if you want to find the prime numbers between 1 
and 20,000,000 (20 million). It proceeds to write 
code that initially runs on a lead node and sends the 
task of testing 101-200 to node 1, and sends the task 
of testing 201-300 to node 2, and so on. Along with 
the testing task, there would also be an instruction to 
return whatever primes a slave node discovered to 
the lead node. When all nodes have completed their 
tasks, there will have a message to tell you how 
many prime be found and what the biggest prime 
number is. 

 
PI Problem: It computes the value of   by 

numerical integration. Since 

( )
4

1tan
1

1 11

0 2

π
==

+
−∫ dx

x  
We can compute   by integration the function   

from 0 to 1. We compute an approximation by 
dividing the interval [0, 1] into some number of 
subintervals and then computing the total area of 
these rectangles by having each process compute the 
areas of some subset. 

 
CFD: A computational technology that enables 

you to study the dynamics of things that flow. Using 
CFD, you build a computational model that 
represents a system or device that you want to study. 
Then you apply the fluid flow physics to this virtual 
prototype, and the software outputs a prediction of 
the fluid dynamics. CFD is a sophisticated analysis 
technique. It not only predicts fluid flow behavior, 
but also the transfer of heat, mass (such as in 
perspiration or dissolution), phase change (such as 
in freezing or boiling), chemical reaction (such as 
combustion), mechanical movement (such as an 
impeller turning), and stress or deformation of 
related solid structures (such as a mast bending in 
the wind). 

 
Jacobi: The Jacobi method is a method of solving 

a tridiagonal matrix equation with largest absolute 
values in each row and column dominated by the 
diagonal element. Each diagonal element is solved 
for, and an approximate value plugged in. The 
process is then iterated until it converges. 

 

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1055



Merge sort: The merge sort splits the list to be 
sorted into two equal halves, and places them in 
separate arrays. Each array is recursively sorted, and 
then merged back together to form the final sorted 
list. Like most recursive sorts, the merge sort has an 

algorithmic complexity of ( )nnO log  
Elementary implementations of the merge sort 

make use of three arrays - one for each half of the 
data set and one to store the sorted list in. The below 
algorithm merges the arrays in-place, so only two 
arrays are required. 

 
Heap sort: The heap sort is the slowest of the 
( )nnO log ) sorting algorithms, but unlike the 

merge and quick sorts it doesn't require massive 
recursion or multiple arrays to work. This makes it 
the most attractive option for very large data sets of 
millions of items.  

The heap sort works as it name suggests - it 
begins by building a heap out of the data set, and 
then removing the largest item and placing it at the 
end of the sorted array. After removing the largest 
item, it reconstructs the heap and removes the 
largest remaining item and places it in the next open 
position from the end of the sorted array. This is 
repeated until there are no items left in the heap and 
the sorted array is full. Elementary implementations 
require two arrays - one to hold the heap and the 
other to hold the sorted elements. 

 
POVRAY: Given a number of computers and a 

demanding POVRay scene to render, there are a 
number of techniques to distribute the rendering 
among the available resources. If one is rendering 
an animation then obviously each computer can 
render a subset of the total number of frames. The 
frames can be sent to each computer in contiguous 
chunks or in an interleaved order, in either case a 
preview (every Nth frame) of the animation can 
generally be viewed as the frames are being 
computed.  

MPIPOV has the ability to distribute a rendering 
across multiple heterogeneous systems. Parallel 
execution is only active if the user gives the “+N” 
option to POV. Otherwise, MPIPOV behaves the 
same as regular POV-Ray and runs a single task 
only on the local machine. Using the MPI code, 
there is one master and many slave tasks. The 
master has the responsibility of dividing the image 
up into small blocks, which are assigned to the 
slaves. When the slaves have finished rendering the 
blocks, they are sent back to the master, which 
combines them to form the final image. The master 
does not render anything by itself, although there is 
usually a slave running on the same machine as the 

master, since the master doesn’t use very much CPU 
power. 

If one or more slaves fail, it is usually possible for 
MPIPOV to complete the rendering. MPIPOV starts 
the slaves at a reduced priority by default, to avoid 
annoying the users on the other machines. The slave 
tasks will also automatically time out if the master 
fails, to avoid having lots of lingering slave tasks if 
you kill the master. MPIPOV can also work on a 
single machine, like the regular POV-Ray, if so 
desired. The code is designed to keep the available 
slaves busy, regardless of system loading and 
network bandwidth. We have run MPIPOV on our 
grid testbed for skyvase pov model. 
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Figure 4: Matrix multiplication 

 
Prime Number
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Figure 5: Prime Number 
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Figure 6: PI problem 
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CFD
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Figure 7: CFD 
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Figure 8: Jacobi iteration 
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Figure 9: Merge sort 

 
Heap Sort
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Figure 10: Heap sort 

 
In those experiments, we can easily find that 

different type or style application running on 

different platform can get the different computing 
speed. In the past, when we want to solve a complex 
problem, we may submit the problem to the large 
computing center or self-made cluster. But, if we 
submit the job to the large computing center, ours 
job may get into the job queue to waiting for 
processing, it doesn’t process instantly. If we submit 
the job to the self-made cluster, have a problem that 
the cluster computing power is not enough. It results 
in that we get the result for long time. Grid 
computing solves above problem. When we want to 
submit a job, first, we can search the resource list to 
find the best site suit for computing the job. Then, 
we submit the job to the best site. Multi-site 
computing is possible, but it not suit for every 
application. The experiment result you can find in 
Figures 4, 5, 6, and 7.  

Multi-site computing, In Figures 8, 9, 10 when 
we want to solve a problem then we must think we 
need more computing resource to help us get the 
result in the shortest time. But, on the grid 
computing, it is not absolutely, grid computing is a 
heterogeneous and distributed computing 
environment, each resource is connected by the 
WAN connection between the node and node. 
Network bandwidth, latency and overhead can not to 
be compared with the system bus or LAN 
connection. 

4.2. Performance Evaluation on Different 
Communication Bandwidth 

In this experiment, we select alpha and gamma to 
perform the tests. We use this testbed with 2 CISCO 
2511 router to control and analysis the grid system 
performance on different communication 
bandwidth. 
 

POVRAY - Skyvase Model
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Figure 11: POVRAY – Skyvase 
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Matrix Multiplication
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Figure 12: Matrix multiplication 
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Figure 13: Prime Number 
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Figure 14: PI problem 

 
From Figures 11 and 12, the result show when the 

application is running, the application may have 
significant computation, memory/data usage and 
large numbers of data communication. Lower 
communication bandwidth will result in the grid 
system overall system performance down. We can 
call this style of application “Tightly Synchronized”.  

From Figures 13 and 14, when application is 
running, it did not require large numbers of data 
communication. At the first, the program will divide 
the total job into the sub-job then dispatch the sub-
job to each computing node. Then each node will 
focus on its computing job, it will not have any or 
little communication with other nodes before the 
computing task is completed. The result show 
different communication bandwidth will not affect 

the grid system overall performance. We can call 
this style of application “Loosely Coupled”. 

5. Conclusion and Future Work 
In this paper, we construct two heterogeneous 

grid-connected PC Clusters. Then we use this 
testbed and 2 CISCO 2511 router to analysis the 
grid system performance on different 
communication bandwidth. The result show when 
tightly synchronization application is running lower 
communication bandwidth will result in the overall 
performance down. But the lower communication 
bandwidth will not affect the loosely coupled 
application’s performance. 

Towards actual use of this work, two further 
research projects will be carried out. First is a job 
scheduler between cluster should be developed a 
cooperative job scheduler. When the node of the 
cluster CPU load is busy or the communication 
bandwidth jam. The job will not send to that node, 
the cooperative scheduler will send the job to other 
node. Second, it is the network QoS. In the internet, 
packet loss or network latency will also affect the 
Grid system performance. To develop a QoS 
algorithm to redirect the routing path is also 
important. 
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