
Benchmarking a Grid Computing Environment Using Different
Communication Bandwidth

Chao-Tung Yang1 Chuan-Lin Lai1 Po-Chi Shih1 Kuan-Ching Li2

1High-Performance Computing Laboratory
Department of Computer Science and Information Engineering

Tunghai University
Taichung, 407 Taiwan, ROC

ctyang@mail.thu.edu.tw

2Parallel and Distributed Processing Center
Department of Computer Science and Information Management

Providence University
Shalu, Taichung, 433 Taiwan, ROC

kuancli@pu.edu.tw

Abstract- Internet computing and grid
technologies promise to change the way we tackle
complex problems. They will enable large-scale
aggregation and sharing of computational, data and
other resources across institutional boundaries. And
harnessing these new technologies effectively will
transform scientific disciplines ranging from high-
energy physics to the life sciences. In this paper, we
construct two heterogeneous PC clusters to form a
grid computing environment and setup the
middleware - Globus Toolkit on the master node of
each cluster. Then, CISCO 2511 router is used to
connect these two PC clusters and control the
communication bandwidths. Subsequently, we use
two different communication styles to benchmark
our grid computing system: one is tightly-coupled
synchronization job and the other one is loosely-
coupled communication job. The result show when
tightly synchronization application is running with
lower communication bandwidth will result in the
overall performance down. But the lower
communication bandwidth will not affect the
performance of loosely-coupled application.

Keywords: Benchmarking, Grid computing, Globus,
SUN Grid Engine, Speedup, Cluster computing.

1. Introduction

Grid computing, most simply stated, is
distributed computing taken to the next evolutionary
level. The goal is to create the illusion of a simple
yet large and powerful self managing virtual
computer out of a large collection of connected

heterogeneous systems sharing various combinations
of resources. The standardization of
communications between heterogeneous systems
created the Internet explosion. The emerging
standardization for sharing resources, along with the
availability of higher bandwidth, are driving a
possibly equally large evolutionary step in grid
computing [1, 14, 15].

The Infrastructure of grid is a form of networking.
Unlike conventional networks that focus on
communication among devices, grid computing
harnesses unused processing cycles of all computers
in a net-work for solving problems too intensive for
any stand-alone machine. A well-known grid
computing project is the SETI (Search for
Extraterrestrial Intelligence) @Home project [30],
in which PC users worldwide donate unused
processor cycles to help the search for signs of
extraterrestrial life by analyzing signals coming
from outer space. The project relies on individual
users to volunteer to allow the project to harness the
unused processing power of the user’s computer.
This method saves the project both money and
resources.

Another key technology in the development of
grid networks is the set of middleware applications
that allows resources to communicate across
organizations using a wide variety of hardware and
operating systems. The Globus Toolkit [2] is a set of
tools useful for building a grid. Its strength is a good
security model, with a provision for hierarchically
collecting data about the grid, as well as the basic
facilities for implementing a simple, yet world-
spanning grid.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1051

mailto:ctyang@mail.thu.edu.tw
mailto:kuancli@pu.edu.tw

Globus will grow over time through the work of
many organizations that are extending its
capabilities. More information about Globus can be
obtained at http://www.globus.org. The accepted
standard in this application space is the Globus
Toolkit. The Globus Toolkit is a middleware product
designed to facilitate grid computing, and also like
Linux is available under an “open source” licensing
agreement for free use.

The promise of grid computing is to provide vast
computing resources for computing problems like
the SETI example that require supercomputer type
re-sources in a more affordable way. Grid
computing also offers interesting opportunities for
firms to tackle tough computing tasks like financial
modeling without incurring high costs for super
computing resources. The developers of the Globus
Toolkit envision that grid computing will become
the pervasive paradigm for providing computing
recourses to large collaborative projects and virtual
organizations.

The organization of this paper is as follow. In
section 2, we make a background review of Cluster
Computing, MetaComputing and Grid Computing.
In section 3, it is our hardware and software
configuration. In section 4, grid computing
environment is proposed and constructed on
multiple Linux PC Clusters by using Globus Toolkit
(GT) and SUN Grid Engine (SGE). The
experimental results are also con-ducted by using
these MPI programs: pi problem, prime problem,
matrix multiplication and POVRAY to demonstrate
the performance. The experimental results are
presented and discussed. We conclude this study in
section 5.

2. Background Review

2.1. Cluster Computing
The first cluster computing was a NASA effort

called Beowulf. Beowulf was started in 1994 and the
first effort consisted of a 16-node cluster made up of
commodity off the shelf (COTS) systems
interconnected with Ethernet. While this approach
does not try to exploit the excess computing power
in the network, the use of COTS computers and
standard network architectures means that Beowulf
class systems are inexpensive to build and operate
and can offer supercomputer levels of processing
power.

Scalable computing clusters, ranging from a
cluster of (homogeneous or heterogeneous) PCs or
workstations to SMP (Symmetric MultiProcessors),
are rapidly becoming the standard platforms for
high-performance and large-scale computing. A
cluster is a group of independent computer systems

and thus forms a loosely coupled multiprocessor
system. A network is used to provide inter-processor
communications. Applications that are distributed
across the processors of the cluster use either
message passing or network shared memory for
communication. A cluster computing system is a
compromise between a massively parallel processing
system and a distributed system. An MPP
(Massively Parallel Processors) system node
typically cannot serve as a standalone computer; a
cluster node usually contains its own disk and
equipped with a complete operating systems, and
therefore, it also can handle interactive jobs. In a
distributed system, each node can function only as
an individual resource while a cluster system
presents itself as a single system to the user.

Since a Beowulf cluster is a parallel computer
system, it suits applications that can be partitioned
into tasks, which can then be executed concurrently
by a number of processors. These applications range
from high-end, floating-point intensive scientific
and engineering problems to commercial data-
intensive tasks. Uses of these applications include
ocean and climate modeling for prediction of
temperature and precipitation, seismic analysis for
oil exploration, aerodynamic simulation for motor
and aircraft design, and molecular modeling for
biomedical research [10, 11, 21, 22]

The previous study [11] lists four benefits that can
be achieved with clustering. These can also be
thought of as objectives or design requirements:
l Absolute scalability: It is possible to create

large clusters that far surpass the power of even
the largest standalone machines. A cluster can
have dozens of machines, each of which is a
multiprocessor.

l Incremental Scalability: A cluster is configured
in such a way that it is possible to add new
systems to the cluster in small increments.
Thus, a user can start out with a modest system
and expand it as needs grow, without having to
go through a major upgrade in which an
existing small system is replaced with a larger
system.

l High availability: Because each node in a
cluster is a standalone computer, the failure of
one node does not mean loss of service. In
many products, fault tolerance is handled
automatically in software.

l Superior price/performance: By using
commodity building blocks, it is possible to put
together a cluster with equal or greater
computing power than a single large machine,
at much lower cost.

2.2. Grid Computing
Grid computing (or the use of a computational

grid) is applying the resources of many computers in

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1052

http://www.globus.org

a network to a single problem at the same time -
usually to a scientific or technical problem that
requires a great number of computer processing
cycles or access to large amounts of data. A well-
known example of grid computing in the public
domain is the ongoing SETI (Search for
Extraterrestrial Intelligence) @Home project [30] in
which thousands of people are sharing the unused
processor cycles of their PCs in the vast search for
signs of "rational" signals from outer space.
According to John Patrick, IBM’s vice-president for
Internet strategies, "the next big thing will be grid
computing."

Grid computing requires the use of software that
can divide and farm out pieces of a program to as
many as several thousand computers. Grid
computing can be thought of as distributed and
large-scale cluster computing and as a form of
network-distributed parallel processing. It can be
confined to the network of computer workstations
within a corporation or it can be a public
collaboration (in which case it is also sometimes
known as a form of peer-to-peer computing).

A number of corporations, professional groups,
university consortiums, and other groups have
developed or are developing frameworks and
software for managing grid computing projects. The
European Community (EU) is sponsoring a project
for a grid for high-energy physics, earth observation,
and biology applications. In the United States, the
National Technology Grid is prototyping a
computational grid for infrastructure and an access
grid for people.

Grid computing appears to be a promising trend
for three reasons: (1) its ability to make more cost-
effective use of a given amount of computer
resources, (2) as a way to solve problems that can’t
be approached without an enormous amount of
computing power, and (3) because it suggests that
the resources of many computers can be
cooperatively and perhaps synergistically harnessed
and managed as a collaboration toward a common
objective. In some grid computing systems, the
computers may collaborate rather than being
directed by one managing computer. One likely area
for the use of grid computing will be pervasive
computing applications - those in which computers
pervade our environment without our necessary
awareness.

The establishment, management, and exploitation
of dynamic, cross-organizational sharing
relationships require new technology. This
technology is Grid architecture and supporting
software protocols and middleware [1, 2, 7, 9, 13,
14, 15, 16, 17, 18, 20, 30]

2.2.1. Globus Toolkit
The Globus Project [2] provides software tools

that make it easier to build computational grids and
grid-based applications. These tools are collectively
called The Globus Toolkit. The Globus Toolkit is
used by many organizations to build computational
grids that can support their applications.

The composition of the Globus Toolkit can be
pictured as three pillars: Resource Management,
Information Services, and Data Management. Each
pillar represents a primary component of the Globus
Toolkit and makes use of a common foundation of
security. GRAM implements a resource
management protocol, MDS implements an
information services protocol, and GridFTP
implements a data transfer protocol. They all use the
GSI security protocol at the connection layer [2, 20].

GRAM, GRAM [1, 2, 26] is designed to provide a
single common protocol and API for requesting and
using remote system resources, by providing a
uniform, flexible interface to, local job scheduling
systems. The Grid Security Infrastructure (GSI)
provides mutual authentication of both users and
remote resources using GSI (Grid-wide) PKI-based
identities. GRAM provides a simple authorization
mechanism based on GSI identities and a
mechanism to map GSI identities to local user
accounts.

MDS, MDS [1, 2, 27, 28] is designed to provide a
standard mechanism for publishing and discovering
resource status and configuration information. It
provides a uniform, flexible interface to data
collected by lower-level information providers. It
has a decentralized structure that allows it to scale,
and it can handle static (e.g., OS, CPU types, system
architectures) or dynamic data (e.g., disk
availability, memory availability, and loading). A
project can also restrict access to data by combining
GSI (Grid Security Infrastructure) credentials and
authorization features provided by MDS.

GridFTP [1, 2, 23, 24, 25] is a high-performance,
secure, reliable data transfer protocol optimized for
high-bandwidth wide-area networks. The GridFTP
protocol is based on FTP, the highly-popular
Internet file transfer protocol. GridFTP provides the
following protocol features:
l GSI security on control and data channels.
l Multiple data channels for parallel transfers.

Partial file transfers.
l Direct server-to-server transfers.
l Authenticated data channels.
l Reusable data channels.
l Command pipelining.

2.2.2. MPICH-G2
MPI is a message-passing library standard that

was published in May 1994. The “standard” of MPI

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1053

is based on the consensus of the participants in the
MPI Forums [3], organized by over 40
organizations. Participants include vendors,
researchers, academics, software library developers
and users. MPI offers portability, standardization,
performance and functionality [22].

The advantage for the user is that MPI is
standardized on many levels. For example, since the
syntax is standardized, you can rely on your MPI
code to execute under any MPI implementation
running on your architecture. Since the functional
behavior of MPI calls is also standardized, your MPI
calls should behave the same regardless of the
implementation. This guarantees the portability of
your parallel programs. Performance, however, may
vary between different implementations.

MPICH-G2 [4, 5] is a grid-enabled
implementation of the MPI v1.1 standard. That is,
using services from the Globus Toolkit® (e.g., job
startup, security), MPICH-G2 allows you to couple
multiple machines, potentially of different
architectures, to run MPI applications. MPICH-G2
automatically converts data in messages sent
between machines of different architectures and
supports multiprotocol communication by
automatically selecting TCP for intermachine
messaging and (where available) vendor-supplied
MPI for intramachine messaging. Existing parallel
programs written for MPI can be executed over the
Globus infrastructure just after recompilation [19].

2.2.3. SUN Grid Engine
Sun Grid Engine is new generation distributed

resource management software which dynamically
matches users’ hardware and software requirements
to the available (heterogeneous) resources in the
network, according to policies usually defined by
management.

Sun Grid Engine acts as the central nervous
system of a cluster of networked computers. Via so-
called daemons, the Grid Engine Master supervises
all resources in the network to allow full control and
achieve optimum utilization of the resources
available.

Sun Grid Engine aggregates the compute power
available in dedicated compute farms, networked
servers and desktop workstations, and presents a
single access point to users needing compute cycles.
This is accomplished by distributing computational
workload to available systems, simultaneously
increasing the productivity of machines and
application licenses while maximizing the number
of jobs that can be completed.

In addition, Sun Grid Engine software helps
lower the costs of purchasing, installing, setting up
and administering the computing environment
because it allows: Maximized use of new/existing
resources, Lower administration costs, Lower

upgrade costs, More efficient reuse of existing
legacy, Resources [6, 22].

3. Hardware and Software
Configurations

We construct a grid computing testbed which
includes four Linux PC clusters:
l Alpha site: 4 PC with dual Athlon MP

2000MHz processor, 512MB DDRAM and
Intel PRO100 VE interface.

l Beta Site: 4 PC with single Celeron 1700
processor, 256MB DDRAM, and 3Com
3c9051 interface.

l Gamma site: 4 PC with Dual Pentium 3 866
MHz processors, 256MB SDRAM and 3Com
3c9051 interface.

l Sigma site: 2 PC with single Pentium 4
2.4GHz processor, 256MB DDRAM and
Accton EN-1216interface.

Each master node of the cluster is running SGE
QMaster daemon and SGE EXECUTER daemon to
running, manage and monitor incoming job and
Globus Toolkit v2.42 also installed. Each slave node
is running SGE EXECUTER daemon to execute
incoming job only.

Figure 1: Our grid testbed

Sites 1 to 3, it locates at different department and
lab in Tunghai University, Taiwan. Site4 locates at
NCHC (National Center for High-Performance
Computing), Tainan, Taiwan. We use general
application to benchmark network traffic from Site 1
to Site4. Between Site (1, 2, 3) and Site (1, 2, 3), the
average network latency is 3ms and the maximum
transfer speed is 7600KBytes. Between Site (1, 2, 3)
and Site4, the average network latency 5ms and the
maximum transfer speed is 2000KBytes.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1054

Figure 2: Grid static summary monitoring

Figure 3: Grid summary view

4. Experimented Results

4.1. Application Performance Evaluation
We use the MPI-based parallel applications for

experimentation, the detail are listed as below:

Matrix multiplication: The matrix operation

derives a resultant matrix by multiplying two input
matrices, a and b, where matrix a is a matrix of N
rows by P columns and matrix b is of P rows by M
columns. The resultant matrix c is of N rows by M
columns. The serial realization of this operation is
quite straightforward as listed in the following:

for(k=0; k<M; k++)
 for(i=0; i<N; i++){
 c[i][k]=0.0;
 for(j=0; j<P; j++)
 c[i][k]+=a[i][j]*b[j][k];
 }
Its algorithm requires n3 multiplications and n3

additions, leading to a sequential time complexity of
O(n3). Let’s consider what we need to change in

order to use MPI. The first activity is to partition the
problem so each slave node can perform on its own
assignment in parallel. For matrix multiplication,
the smallest sensible unit of work is the computation
of one element in the result matrix. It is possible to
divide the work into even smaller chunks, but any
finer division would not be beneficial because of the
number of processor is not enough to process, i.e.,
n2 processors are needed.

Prime Number: For prime problem, for example,

if you want to find the prime numbers between 1
and 20,000,000 (20 million). It proceeds to write
code that initially runs on a lead node and sends the
task of testing 101-200 to node 1, and sends the task
of testing 201-300 to node 2, and so on. Along with
the testing task, there would also be an instruction to
return whatever primes a slave node discovered to
the lead node. When all nodes have completed their
tasks, there will have a message to tell you how
many prime be found and what the biggest prime
number is.

PI Problem: It computes the value of by

numerical integration. Since

()
4

1tan
1

1 11

0 2

π
==

+
−∫ dx

x
We can compute by integration the function

from 0 to 1. We compute an approximation by
dividing the interval [0, 1] into some number of
subintervals and then computing the total area of
these rectangles by having each process compute the
areas of some subset.

CFD: A computational technology that enables

you to study the dynamics of things that flow. Using
CFD, you build a computational model that
represents a system or device that you want to study.
Then you apply the fluid flow physics to this virtual
prototype, and the software outputs a prediction of
the fluid dynamics. CFD is a sophisticated analysis
technique. It not only predicts fluid flow behavior,
but also the transfer of heat, mass (such as in
perspiration or dissolution), phase change (such as
in freezing or boiling), chemical reaction (such as
combustion), mechanical movement (such as an
impeller turning), and stress or deformation of
related solid structures (such as a mast bending in
the wind).

Jacobi: The Jacobi method is a method of solving

a tridiagonal matrix equation with largest absolute
values in each row and column dominated by the
diagonal element. Each diagonal element is solved
for, and an approximate value plugged in. The
process is then iterated until it converges.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1055

Merge sort: The merge sort splits the list to be
sorted into two equal halves, and places them in
separate arrays. Each array is recursively sorted, and
then merged back together to form the final sorted
list. Like most recursive sorts, the merge sort has an

algorithmic complexity of ()nnO log
Elementary implementations of the merge sort

make use of three arrays - one for each half of the
data set and one to store the sorted list in. The below
algorithm merges the arrays in-place, so only two
arrays are required.

Heap sort: The heap sort is the slowest of the
()nnO log) sorting algorithms, but unlike the

merge and quick sorts it doesn't require massive
recursion or multiple arrays to work. This makes it
the most attractive option for very large data sets of
millions of items.

The heap sort works as it name suggests - it
begins by building a heap out of the data set, and
then removing the largest item and placing it at the
end of the sorted array. After removing the largest
item, it reconstructs the heap and removes the
largest remaining item and places it in the next open
position from the end of the sorted array. This is
repeated until there are no items left in the heap and
the sorted array is full. Elementary implementations
require two arrays - one to hold the heap and the
other to hold the sorted elements.

POVRAY: Given a number of computers and a

demanding POVRay scene to render, there are a
number of techniques to distribute the rendering
among the available resources. If one is rendering
an animation then obviously each computer can
render a subset of the total number of frames. The
frames can be sent to each computer in contiguous
chunks or in an interleaved order, in either case a
preview (every Nth frame) of the animation can
generally be viewed as the frames are being
computed.

MPIPOV has the ability to distribute a rendering
across multiple heterogeneous systems. Parallel
execution is only active if the user gives the “+N”
option to POV. Otherwise, MPIPOV behaves the
same as regular POV-Ray and runs a single task
only on the local machine. Using the MPI code,
there is one master and many slave tasks. The
master has the responsibility of dividing the image
up into small blocks, which are assigned to the
slaves. When the slaves have finished rendering the
blocks, they are sent back to the master, which
combines them to form the final image. The master
does not render anything by itself, although there is
usually a slave running on the same machine as the

master, since the master doesn’t use very much CPU
power.

If one or more slaves fail, it is usually possible for
MPIPOV to complete the rendering. MPIPOV starts
the slaves at a reduced priority by default, to avoid
annoying the users on the other machines. The slave
tasks will also automatically time out if the master
fails, to avoid having lots of lingering slave tasks if
you kill the master. MPIPOV can also work on a
single machine, like the regular POV-Ray, if so
desired. The code is designed to keep the available
slaves busy, regardless of system loading and
network bandwidth. We have run MPIPOV on our
grid testbed for skyvase pov model.

Matrix Multiplication

0
10
20
30
40
50
60

Si
gm

a

B
et

a

G
am

m
a

A
lp

ha

A
lp

ha
+G

am
m

a

A
LL

Cluster Systems used in a Grid

Pr
oc

es
sin

g
Ti

m
e

1024*1024
512*512

Figure 4: Matrix multiplication

Prime Number

0
10
20
30
40
50
60
70
80

A
lp

ha

G
am

m
a

B
et

a

Si
gm

a

G
am

m
a+

Si
gm

a

B
et

a+
G

am
m

a

A
lp

ha
+S

ig
m

a

A
lp

ha
+B

et
a

A
LL

Cluster System used in a Grid

Pr
oc

es
sin

g
tim

e

Range: 50000000
Range: 25000000
Range: 12500000

Figure 5: Prime Number

PI

0
20
40
60
80

100
120
140
160

A
lp

ha

G
am

m
a

Be
ta

Si
gm

a

G
am

m
a+

Si
gm

a

Be
ta

+G
am

m
a

A
lp

ha
+B

et
a

A
lp

ha
+S

ig
m

a

A
L

L

Cluster System used in a Grid

Pr
oc

es
si

ng
 ti

m
e

Subspaces: 2100000000
Subspaces: 1000000000

Figure 6: PI problem

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1056

CFD

0

20

40

60

80

100

120

140

A
lp

ha

B
et

a

G
am

m
a

A
lp

ha
+B

et
a

B
et

a+
G

am
m

a

A
lp

ha
+G

am
m

a

A
LL

Cluster System used in a Grid

Pr
oc

es
sin

g
tim

e

Grid:240
Grid:200

Figure 7: CFD

Jacobi

0
5

10
15
20
25
30
35
40
45

A
lp

ha

B
et

a

G
am

m
a

A
lp

ha
+B

et
a

B
et

a+
G

am
m

a

A
lp

ha
+G

am
m

a

A
LL

Cluster System used in a Grid

Pr
oc

ss
in

g
tim

e

Iteration: 100
Iteration: 200

Figure 8: Jacobi iteration

Merge Sort

0
5

10
15
20
25
30
35
40
45

Alph
a

Beta

Gam
ma

Alph
a+

Beta

Beta
+Gam

ma

Alpha
+Gam

ma

Cluster Systems used in a Grid

Pr
oc

es
sin

g
tim

e

Range: 100000

Figure 9: Merge sort

Heap Sort

0
5

10
15
20

25
30
35
40
45

A
lp

ha

Be
ta

G
am

m
a

A
lp

ha
+B

eta

Be
ta+

G
am

m
a

A
lp

ha
+G

am
m

a

A
LL

Cluster System used in a Grid

Pr
oc

es
sin

g
tim

e

Range: 100000

Figure 10: Heap sort

In those experiments, we can easily find that

different type or style application running on

different platform can get the different computing
speed. In the past, when we want to solve a complex
problem, we may submit the problem to the large
computing center or self-made cluster. But, if we
submit the job to the large computing center, ours
job may get into the job queue to waiting for
processing, it doesn’t process instantly. If we submit
the job to the self-made cluster, have a problem that
the cluster computing power is not enough. It results
in that we get the result for long time. Grid
computing solves above problem. When we want to
submit a job, first, we can search the resource list to
find the best site suit for computing the job. Then,
we submit the job to the best site. Multi-site
computing is possible, but it not suit for every
application. The experiment result you can find in
Figures 4, 5, 6, and 7.

Multi-site computing, In Figures 8, 9, 10 when
we want to solve a problem then we must think we
need more computing resource to help us get the
result in the shortest time. But, on the grid
computing, it is not absolutely, grid computing is a
heterogeneous and distributed computing
environment, each resource is connected by the
WAN connection between the node and node.
Network bandwidth, latency and overhead can not to
be compared with the system bus or LAN
connection.

4.2. Performance Evaluation on Different
Communication Bandwidth

In this experiment, we select alpha and gamma to
perform the tests. We use this testbed with 2 CISCO
2511 router to control and analysis the grid system
performance on different communication
bandwidth.

POVRAY - Skyvase Model

0

100

200

300

400

500

600

700

800

900

100M 4M 1M 500K 250K 125K

Network Bandwidth (bps)

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
d)

640*480
800*600
1024*768

Figure 11: POVRAY – Skyvase

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1057

Matrix Multiplication

0

200

400

600

800

1000

1200

1400

1600

1800

100M 4M 1M 500k 250k 125K

Network Bandwidth (bps)

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
d)

256*256
512*512
1024*1024

Figure 12: Matrix multiplication

Prime Number

0

10

20

30

40

50

60

100M 4M 1M 500k 250k 125K

Network Bandwidth (bps)

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
d)

5000000
10000000
20000000

Figure 13: Prime Number

PI

0

5

10

15

20

25

30

100M 4M 1M 500k 250k 125K

Network Bandwidth (bps)

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
d)

500000000
1000000000
2000000000

Figure 14: PI problem

From Figures 11 and 12, the result show when the

application is running, the application may have
significant computation, memory/data usage and
large numbers of data communication. Lower
communication bandwidth will result in the grid
system overall system performance down. We can
call this style of application “Tightly Synchronized”.

From Figures 13 and 14, when application is
running, it did not require large numbers of data
communication. At the first, the program will divide
the total job into the sub-job then dispatch the sub-
job to each computing node. Then each node will
focus on its computing job, it will not have any or
little communication with other nodes before the
computing task is completed. The result show
different communication bandwidth will not affect

the grid system overall performance. We can call
this style of application “Loosely Coupled”.

5. Conclusion and Future Work
In this paper, we construct two heterogeneous

grid-connected PC Clusters. Then we use this
testbed and 2 CISCO 2511 router to analysis the
grid system performance on different
communication bandwidth. The result show when
tightly synchronization application is running lower
communication bandwidth will result in the overall
performance down. But the lower communication
bandwidth will not affect the loosely coupled
application’s performance.

Towards actual use of this work, two further
research projects will be carried out. First is a job
scheduler between cluster should be developed a
cooperative job scheduler. When the node of the
cluster CPU load is busy or the communication
bandwidth jam. The job will not send to that node,
the cooperative scheduler will send the job to other
node. Second, it is the network QoS. In the internet,
packet loss or network latency will also affect the
Grid system performance. To develop a QoS
algorithm to redirect the routing path is also
important.

References
[1] Global Grid Forum, http://www.ggf.org
[2] The Globus Project, http://www.globus.org/
[3] MPI Forum, http://www.mpi-forum.org/
[4] MPICH, http://www-unix.mcs.anl.gov/mpi/mpich/
[5] MPICH-G2, http://www.hpclab.niu.edu/mpi/
[6] Sun ONE Grid Engine,

http://wwws.sun.com/software/gridware/
[7] LHC - The Large Hadron Collider Home Page,

http://lhc-new-homepage.web.cern.ch/
[8] TeraGrid, http://www.teragrid.org/
[9] KISTI Grid Testbed, http://gridtest.hpcnet.ne.kr/
[10] Chao-Tung Yang and Chi-Chu Hung, “High-

Performance Computing on Low-Cost PC-Based
SMPs Clusters,” Proc. of the 2001 National
Computer Symposium (NCS 2001), Taipei, Taiwan,
pp 149-156, Dec. 2001

[11] E. Brewer, “Clustering: Multiply and Conquer.”
Data Communications, July 1997.

[12] Catlett C., Smarr L., Metacomputing,
Communications of the ACM, vol. 35(6), pages 44-
52, 1992.

[13] Heath A. James, Scheduling in Metacomputing
Systems, BSc (Ma&Comp Sc) (Hons)

[14] I. Foster, C. Kesselman, eds., The Grid: Blueprint
for a New Computing Infrastructure, Morgan
Kaufmann; 1st edition (January 1999)

[15] I. Foster, The Grid: A New Infrastructure for 21st
Century Science. Physics Today, 55(2):42-47, 2002.

[16] I. Foster, C. Kesselman, Globus: A Metacomputing
Infrastructure Toolkit. Intl J. Supercomputer
Applications, 11(2):115-128, 1997

[17] Mark A. Baker and Geoffery C. Fox.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1058

http://www.ggf.org
http://www.globus.org/
http://www.mpi-forum.org/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.hpclab.niu.edu/mpi/
http://wwws.sun.com/software/gridware/
http://lhc-new-homepage.web.cern.ch/
http://www.teragrid.org/
http://gridtest.hpcnet.ne.kr/

Metacomputing: Harnessing Informal
Supercomputers. High Performance Cluster
Computing. Prentice-Hall, May 1999. ISBN 0-13-
013784-7.

[18] I. Foster, C. Kesselman, S. Tuecke, The Anatomy of
the Grid: Enabling Scalable Virtual Organizations.
International J. Supercomputer Applications, 15(3),
2001..

[19] I. Foster, N. Karonis, A Grid-Enabled MPI:
Message Passing in Heterogeneous Distributed
Computing Systems. Proc. 1998 SC Conference,
November, 1998.

[20] Introduction to Grid Computing with Globus,
ibm.com/redbooks, 2002.

[21] R. Buyya, High Performance Cluster
Computing:System and Architectures, vol. 1,
Prentice Hall PTR, NJ, 1999.

[22] Thomas Sterling, Gordon Bell, Janusz S. Kowalik,
Beowulf Cluster Computing with Linux, MIT Press,
Paperback, Published March 2002.

[23] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak,
L. Liming, S. Meder, S. Tuecke, GridFTP Protocol
Specification. GGF GridFTP Working Group
Document, September 2002.

[24] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak,
I. Foster, C. Kesselman, S. Meder, V. Nefedova, D.
Quesnal, S. Tuecke, Data Management and
Transfer in High Performance Computational Grid
Environments. Parallel Computing Journal, Vol. 28
(5), May 2002, pp. 749-771.

[25] B. Allcock, S. Tuecke, I. Foster, A. Chervenak, and
C. Kesselman, Protocols and Services for
Distributed Data-Intensive Science. ACAT2000
Proceedings, pp. 161-163, 2000.

[26] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman,
S. Martin, W. Smith, S. Tuecke, A Resource
Management Architecture for Metacomputing
Systems. Proc. IPPS/SPDP ‘98 Workshop on Job
Scheduling Strategies for Parallel Processing, pg.
62-82, 1998.

[27] K. Czajkowski, S. Fitzgerald, I. Foster, C.
Kesselman, Grid Information Services for
Distributed Resource Sharing. Proceedings of the
Tenth IEEE International Symposium on High-
Performance Distributed Computing (HPDC-10),
IEEE Press, August 2001.

[28] X. Zhang, J. Freschl, and J. Schopf, A Performance
Study of Monitoring and Information Services for
Distributed Systems. Proceedings of HPDC, August
2003.

[29] Sun ONE Grid Engine Administration and User’s
Guide, Sun Microsystem, Inc. (2002)

[30] Chuan-Lin Lai, Chao-Tung Yang, “Construct a Grid
Computing Environment on Multiple Linux PC
Clusters” International Conference on Open Source
2003.

[31] Chuan-Lin Lai, Chao-Tung Yang, “Construct
a Grid Computing Environment for Parallel
Rendering” 2003 Computer Graphics
Workshop.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1059

