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ABSTRACT 

 Writing device driver has always been tedious 

and error-prone. Traditionally, C programmers 
exploit preprocessor directives to facilitate the 
driver development. In this paper, we follow this 
programming style and extend preprocessor di-
rectives to improve the development. The exten-
sion makes the C driver code more readable and 
concise. Furthermore, our complier provides 
stronger type-checking capability than original C 
compiler. Current assessment for an embedded 
Linux environment shows favorable results. 
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1. INTRODUCTION 

A device driver is a software layer to talk to pe-
ripheral hardware device. Writing device drivers 
needs knowledge of target hardware (under-
standing device specification) and involves 
many low-level instructions such as direct mem-
ory access and bit-operation [10]. Traditionally, 
the C language is the most commonly used to 
write device drivers due to its support of such 
kinds of instructions. However, such operations 
in C are not checked for type-correctness. 
Moreover, they are fairly unreadable. Because of 
lacking appropriate assistant tool and program-
ming style, writing device drivers has always 
been a tedious and error-prone task. Furthermore, 
for modern multi-tasking OSs like Windows and 
Linux, the driver is run in kernel-mode as a por-
tion of OS. This makes it hard to debug and one 
small error, like some bit of a device register 

being set wrong, may cause the whole system to 
fail. As reported in [1], device drivers have been 
noted as a major source of faults in operating 
system code. Hence, the reliability of device 
drivers is critical to system stability.  

To facilitate the development process and im-
prove the reliability, a variety of approaches 
have been suggested from both industrial and 
academic communities. Current commercial 
assistant tools like Jungo’s WinDriver and 
Bsquare’s WinDk provide a graphical user inter-
face for specifying the main features of a driver. 
They can automatically generate a code skeleton 
which is comprised of coarse-grained functions 
and libraries which wrap kernel functions. Most 
of research works in literature attempt to auto-
matically generate fine-grained driver code from 
Domain-Specific Languages (DSLs). A DSL is a 
programming language tailored for a specific 
application and provides more expressive power 
over the application domain. The language GAL 
developed by Thibault et al. [9] is designed for 
specifying X Windows video driver. Though the 
driver code is reduced about 90%, GAL covers a 
very restricted domain. The language Devil de-
veloped by Mérillon et al. [6] is designed for 
more general classes of devices. Its specification 
is complied into a set of C procedures (or in-line 
function) for accessing registers and manipulat-
ing data. These procedures are called in a tradi-
tional C driver code and prevent programmers 
from directly dealing with low-level codes. The 
languages Dveil+ [11] and NDL [3] both follow 
the Devil and attempt to propose a complete 
language to replace General Programming Lan-
guages (GPL) like C for writing device drivers. 
Although their languages have higher level ab-
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straction of device behaviors, they incur less 
flexible programming capability than GPLs. 
Interface HW/SW co-synthesis works [2, 7, 12] 
also address the automatic generation of driver 
codes for dedicated device behaviors that can be 
interpreted by their modeling. 

 Traditionally, C programmers exploit pre-
processor directives to simplify the driver de-
velopment [4]. In this paper, we follow this pro-
gramming style and propose a set of Extended C 
Preprocessor (ECP) directives to further facili-
tate the development. The extension makes the C 
driver code more readable and concise. Fur-
thermore, our complier provides stronger 
type-checking capability than original C com-
piler. Current assessment for an embedded Linux 
environment will show favorable results. 
 The approach presented in this paper is a 
part of our design framework methodology de-
scribed in our earlier publication [5]. A modified 
framework will be overviewed in the next sec-
tion. Section 3 will introduce a device model and 
device variable to abstract register data.  Sec-
tion 4 will present the grammar of ECP.  Pre-
liminary assessment will be shown in Section 5. 
Final section concludes the paper and presents 
some line of future work. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. DESIGN FRAMEWORK 
Fig. 1 shows our design framework that defines 
a design flow and supports assistant tools for 
Linux driver programming. It consists of a two 
stage design process. The inputs are 

user-specified configurations for API calls as 
well as system resources (such as DMA channel 
and interrupt vector) associated with the device. 
API is an abstraction of functions provided by 
the peripheral device, through that operation 
system (on behalf of application programs) can 
communicate with devices. Linux OS has de-
fined a standard API function prototype for each 
API routine. We prepare a set of parameterized 
code templates for these routines. The templates 
are developed on a driver model which interprets 
device behavior in terms of control flow and data 
flow. The parameters are used to define what a 
subset of API functions provided and what op-
eration mode used in both control and data flows. 
The program skeleton generator parses the con-
figuration file to extract the parameter values. 
Then it builds the driver code skeleton from the 
set of code templates. Basically, a skeleton is 
comprised of a set of the API routines, together 
with initialization and interrupt routines. All the 
routines contain not only the function interface 
but also the required statements to serve opera-
tions in both control and data flows. The details 
can be found in [13]. 
 In the second stage, one can start from the 
generated code skeleton and continue to com-
plete the driver with C language and our pro-
posed ECP directives. It has always been a 
popular programming style to write device driver 
with the help of C preprocessor [5]. Our exten-
sion is expressive uniquely over the specific 
features of device drivers, which will be elabo-
rated in later sections. The program ECP com-
piler translates preprocessor statements to C 
codes. The final output is a device driver in C 
language, which then can be fed into gcc to get 
executable codes. 

 

3. DEVICE VARIABLES 

The main tasks of a device driver are to config-
ure the device operation mode and observe its 
status to manage the data transfer. The real 
physical part interacting with the driver is a 
dedicated controller (an IC or IP) that manages 

Fig.1: The design framework for Linux driver. 
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the peripheral device, as shown in Fig. 2. In the 
IO controller, the registers can be viewed as a 
programmable interface to the driver and the 
kernel part performs the functionality provided 
by the device. Through the registers, the driver 
configures the functions of the device and ob-
serves its statuses. For example, a typical UART 
controller contains a set of registers for setting 
data format and transfer rate (baud rate), as 
shown in Fig. 3. The data format is determined 
by the values of PMD, STB and WL, each of 
which occupies a bit range within the register 
ULCON0. They are referred to as device vari-
ables. To access and manipulate device variables 
involve low-level instructions such as direct 
memory access and bit-operation. Such opera-
tions in C are not checked for type-correctness 
and are fairly unreadable. ECP provides more 
readable and concise expressions to allow them 
to be read or written like any variable in C. For 
example, if we want to set the number of stop 
bits per frame to be 2 (i.e. STB=1) while keeping 
other variables unchanged, a typical sequence of 
C codes might be written as follows: 

temp = *(ULCON0); 

temp = temp & 0xFFFFFFFB | (1 <<2); 

*(ULCON0) = temp; 

 Using ECP directives, you can write a 
simple assignment in C to get equivalent result. 

STB = 2; 

  

 

 

 

 

 

 

 

Fig. 2: A peripheral device model. 

 

 

Group Variable  

To set a function or get a status often involves 
several relevant device variables. We call the set 
of variables as group variable. For example, if 
we want to set a data format for UART commu-
nication, it is often to set PMD, STB and WL 
simultaneously. We can let a variable group 
“UARTFRAME” be composed of PMD, STB 
and WL. The ECP directives allow us to use the 
following statement to set the group. 

   #set(UARTFRAME [ODD, TwoS, Bit8]) 

    And use the following statement to get the 
group. 

   #get(UARTFRAME[ x, y, z]) 

Concatenated Variable  

A device variable could comprise several frag-
ments residing in different registers. For exam-
ple, the setting of baud rate is determined by 
three values: the X in ULCON0 register (it se-
lects external clock MCLK or internal clock 
UCLK as a reference clock), the CNT1 and 
CNT0 in UBRDIV0 register. The calculation is 
shown in Fig. 3. If we concatenate the three 
variables to be a new variable BaudRate, a sim-
ple assignment can be used to set its vale as fol-
lows: 

BaudRate  = U2400;  
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UBRDIV0:

X : Serial clock selection  
PMD: Parity mode 
STB: No. of stop bits 
WL: Word length 

BRGOUT = (MCLK or UCLK) 
 / (CNT0+1) / (16^CNT1) / 16 

Fig. 3: UART registers ( a real case 
from Samsung 3C4510B SOC). 
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Fig. 4: The main portion of ECP grammar. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. ECP DIRECTIVES 

This section will describe the main portion of 
ECP grammar and take statement examples to 
show its application. Fig. 4 summarizes the 
grammar and Fig. 5 gives statements in ECP 
directives to specify a UART device shown in 
Fig. 3.  

 The syntax for device declaration begins 
with the nonterminal device, as shown in Fig. 4. 
The directive #dev is used to define the name of 
a device, the bit-width of its registers and its 
base address (referring to line 1 in Fig. 5). The 
syntax for register declaration begins with non-
terminal reg_statement. The directive #reg (line 
2 ) is used to define the name, RW attribute, the 
address offset and an optional bank-register ID. 
The RW attribute specifies the register to be 
read-only, write-only or read-write. The offset 
plus the device’s based address equals the 
physical address of the register. In some devices, 

several sets of registers are mapped to the same 
memory addresses. Each set usually is called a 
bank. A bank register is used to select which set 
to be used. The UART device shown here does 
not use such addressing. The lines between #reg 
and #endreg define all the device variables 
within the register. Each variable definition be-
gins with directive #var. The statement in line 4 
of Fig. 5, defines “PMD” to represent the value 
in bit5~bit3 in register ULCON0. Following the 
declaration, an enumeration of identifiers that 
represent all the permissible values of the vari-
able can be defined (line 5~10). Such a structure 
can be thought of as enumerated type in C. Only 
these values in the type can be assigned to the 
device variable. Our ECP compiler performs a 
type-checking to avoid other values. The facility 
provides more safety type-checking than C lan-
guage. If no type definition exists, the variable 
accepts any positive integer less than 2N, where 
N is its bit length. 

driver →device (device | getfun | setfun | flush)* 
device → #dev  dev_line  dev_content  #enddev 
dev_line →  dev_id ( reg_bitwidth )  iobase_addr 
dev_content →  (reg_statement | convar_statement | gupvar_statement)+ 
reg_statement → #reg reg_line  reg_content  #endreg  
reg_line → reg_id ((R|W|RW)) offset  (bank_id[index]) ? 
reg_content → ( var_statement)+  
var_statement →  #var  var_line  ( (var_content)+  #endvar )? 

var_line → ( - | var_id) reg_id [ bit_position ] 
var_content → val_id  :=  num  
convar_statement →  #convar convar_line ( (convar_content)+ #endconvar)?  
convar_line → convar_id ( covar_member (,convar_member)* )  
convar_member →  var_id  
      | convar_id 
      | reg_id [ regbit_num ] 
convar_content → conval_id  :=  ( num | val_id | conval_id)(, ( num | val_id | conval_id) )*  
gupvar_statement → #gupvar  gupvar_id ( gupvar_membert (,gupvar_member)* )  
gupvar_member → ( var_id | convar_id ) 
getfun → #get ( gupvar_id [ c_var_id (, c_var_id )* ] ) 
setfun → #set ( gupvar_id [ gupvar_para (, gupvar_para)* ] ) 
flush  → #flush 
 

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1282



 

 After the variable declaration, we can 
write a simple assignment to access the variable. 
The following statement assigns “TwoS” to 
variable STB to configure the UART to use two 
stop bits in a date frame: 

STB = TwoS; 

 ECP compiler will convert the statement 
into the following:  

*(0x03ffd000) = *(0x03ffd000) & 

     0xFFFFFFFB | (1 <<2); 

 The part between #convar and #endcon-
var (line 26~31) defines a concatenated variable 
Baudrate and its enumerated data type, only a 
portion shown here. We can use the following 
simple expression to set value. 

BaudRate = U2400;  

 ECP complier converts the statement into:  

*(0x03ffd000) = *(0x03ffd000) & 

   0xFFFFFFFB | (1 <<6); 

*(0x03ffd014) =867 << 4 | 1 ; 

 The directive #gupvar is used to define a 
group variable. As shown in line 32, the group 
UARTFRAME is composed of PMD, STB and 
WL. Then we can use the following statement to 
set their values: 

#set(UARTFRAME [ODD, TwoS, Bit8]) 

 This statement is converted into: 

*(0x03ffd000)= *(0x03ffd0000) & 

   0xFFFFFFFC0 | (( 4<<3) | (1 << 2 ) | 3); 

 Reading the group at a time is specified as 
follows: 

#get(UARTFRAME[ x, y, z]) 

 This statement is converted into: 

temp = *(0x03ffd000); 

x = (temp & 0x38) >> 3; 

y = (temp & 0x04) >> 2; 

z = (temp & 0x03);  

 The statements accessing device variables 
in the same register can be grouped into one 
instruction if their access orders do not affect the 
device behavior. The directive #flush is used to 
tell the compiler that all the statements preced-
ing it must be completed before doing succeed-
ing statements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. ASSESSMENT 

The ECP compiler has been written in C using 
Flex and Berkeley Yacc to generate a front-end 
parser. To assess the utility of ECP directives, 
we have implemented four drivers, as listed in 
Table 1. The first two are designed for a 
Samsung 3C4510B-based platform, which runs 
under uClinux. The UART_DMA is a UART 
device with DMA transfer mode. The LCD is a 
16 character by 2 line device. The last two are 
designed for an X-Hyper250B platform, which 

Fig. 5: A portion of the device declaration 
for UART. 

1 #dev  UART(32)  0x03FF0000 
2 #reg  ULCON0(RW) 0xD000 
3 #var X ULCON0[6] 
4 #var PMD ULCON0[5:3] 
5  Disable:= '0**' 
6  Odd := '100' 
7  Even := '101' 
8  As1 := '110' 
9  As0 := '111' 
10 #endvar  
11 #var  STB ULCON0[2] 
12  OneS := 0 
13  TwoS := 1 
14 #endvar 
15 #var  WL ULCON0[1:0] 
16  Bit5 := 0 
17  Bit6 := 1 
18  Bit7 := 2 
19  Bit8 := 3 
20 #endvar 
21 #endreg 
22 #reg UBRDIV0(RW) 0xD014 
23 #var CNT0  UBRDIV0[15:4] 
24 #var CNT1  UBRDIV0[3:0] 
25 #endreg 
26 #convar BaudRate(X,CNT0,CNT1) 
28   U1200 := 1,1735,1 
29   U2400 := 1,867,1 
30  ……………. 
31 #endconvar 
32 #gupvar UARTFRAME(PMD, STB, WL)
33 ……………….. 
34 #enddev 
 

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1283



 

runs under Linux 2.4.18 kernel. The RTC (Real 
Time Clock) device is used to configure a clock 
source with a wide range of frequencies. The 
I2C device enables the processor to 
communicate with I2C peripherals. Table 1 
shows the result in terms of lines of code. All 
original codes are designed in C. The number of 
lines of C preprocessor (CPP) is counted for 
only the part dealing with the target devices. The 
number of lines of configuration file used to 
specify API and system resource is given in 
“CF” column. The number of lines in ECP 
directives is given in “ECP” column. The “C” 
column in ours indicates how many lines of C 
code are required to finish the driver, not 
including the code produced by the skeleton 
generator and ECP compiler. The required 
numbers in average are significantly shorter than 
the original ones. 
Table 1: Code comparison 

Original Ours 
Device 

C CPP CF ECP C 
UART_DMA 43   19 6  220 2 
LCD 107  29 5  64 65 

RTC 424 26 23 24 317 
I2C 666 31 14 90 617 

6. CONCLUSION 
Writing device driver has always been tedious 
and error-prone. In this paper, we propose en 
extended set of C preprocessor directives to fa-
cilitate the driver development. The extension 
makes the C driver code more readable and con-
cise. Furthermore, our complier provides 
stronger type-checking capability than original 
C compiler. Current assessment for an embed-
ded Linux environment shows favorable results. 
We are studying more real device drivers and 
wish to give more comparisons to demonstrate 
the effectiveness of our design framework. 
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