

 An Extension of C Preprocessor Directives for Device

Programming
Kuan Jen Lin, Jian Lung Chen, and Chuang Hsiang Huang

Department of Electronic Engineering, Fu Jen Catholic University, Taiwan

E-mail: kjlin@mails.fju.edu.tw

ABSTRACT

 Writing device driver has always been tedious

and error-prone. Traditionally, C programmers
exploit preprocessor directives to facilitate the
driver development. In this paper, we follow this
programming style and extend preprocessor di-
rectives to improve the development. The exten-
sion makes the C driver code more readable and
concise. Furthermore, our complier provides
stronger type-checking capability than original C
compiler. Current assessment for an embedded
Linux environment shows favorable results.

KEY WORDS: Device driver, Programming
language, Preprocessor, Linux, Open source.

1. INTRODUCTION

A device driver is a software layer to talk to pe-
ripheral hardware device. Writing device drivers
needs knowledge of target hardware (under-
standing device specification) and involves
many low-level instructions such as direct mem-
ory access and bit-operation [10]. Traditionally,
the C language is the most commonly used to
write device drivers due to its support of such
kinds of instructions. However, such operations
in C are not checked for type-correctness.
Moreover, they are fairly unreadable. Because of
lacking appropriate assistant tool and program-
ming style, writing device drivers has always
been a tedious and error-prone task. Furthermore,
for modern multi-tasking OSs like Windows and
Linux, the driver is run in kernel-mode as a por-
tion of OS. This makes it hard to debug and one
small error, like some bit of a device register

being set wrong, may cause the whole system to
fail. As reported in [1], device drivers have been
noted as a major source of faults in operating
system code. Hence, the reliability of device
drivers is critical to system stability.

To facilitate the development process and im-
prove the reliability, a variety of approaches
have been suggested from both industrial and
academic communities. Current commercial
assistant tools like Jungo’s WinDriver and
Bsquare’s WinDk provide a graphical user inter-
face for specifying the main features of a driver.
They can automatically generate a code skeleton
which is comprised of coarse-grained functions
and libraries which wrap kernel functions. Most
of research works in literature attempt to auto-
matically generate fine-grained driver code from
Domain-Specific Languages (DSLs). A DSL is a
programming language tailored for a specific
application and provides more expressive power
over the application domain. The language GAL
developed by Thibault et al. [9] is designed for
specifying X Windows video driver. Though the
driver code is reduced about 90%, GAL covers a
very restricted domain. The language Devil de-
veloped by Mérillon et al. [6] is designed for
more general classes of devices. Its specification
is complied into a set of C procedures (or in-line
function) for accessing registers and manipulat-
ing data. These procedures are called in a tradi-
tional C driver code and prevent programmers
from directly dealing with low-level codes. The
languages Dveil+ [11] and NDL [3] both follow
the Devil and attempt to propose a complete
language to replace General Programming Lan-
guages (GPL) like C for writing device drivers.
Although their languages have higher level ab-

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1279

straction of device behaviors, they incur less
flexible programming capability than GPLs.
Interface HW/SW co-synthesis works [2, 7, 12]
also address the automatic generation of driver
codes for dedicated device behaviors that can be
interpreted by their modeling.

 Traditionally, C programmers exploit pre-
processor directives to simplify the driver de-
velopment [4]. In this paper, we follow this pro-
gramming style and propose a set of Extended C
Preprocessor (ECP) directives to further facili-
tate the development. The extension makes the C
driver code more readable and concise. Fur-
thermore, our complier provides stronger
type-checking capability than original C com-
piler. Current assessment for an embedded Linux
environment will show favorable results.
 The approach presented in this paper is a
part of our design framework methodology de-
scribed in our earlier publication [5]. A modified
framework will be overviewed in the next sec-
tion. Section 3 will introduce a device model and
device variable to abstract register data. Sec-
tion 4 will present the grammar of ECP. Pre-
liminary assessment will be shown in Section 5.
Final section concludes the paper and presents
some line of future work.

2. DESIGN FRAMEWORK
Fig. 1 shows our design framework that defines
a design flow and supports assistant tools for
Linux driver programming. It consists of a two
stage design process. The inputs are

user-specified configurations for API calls as
well as system resources (such as DMA channel
and interrupt vector) associated with the device.
API is an abstraction of functions provided by
the peripheral device, through that operation
system (on behalf of application programs) can
communicate with devices. Linux OS has de-
fined a standard API function prototype for each
API routine. We prepare a set of parameterized
code templates for these routines. The templates
are developed on a driver model which interprets
device behavior in terms of control flow and data
flow. The parameters are used to define what a
subset of API functions provided and what op-
eration mode used in both control and data flows.
The program skeleton generator parses the con-
figuration file to extract the parameter values.
Then it builds the driver code skeleton from the
set of code templates. Basically, a skeleton is
comprised of a set of the API routines, together
with initialization and interrupt routines. All the
routines contain not only the function interface
but also the required statements to serve opera-
tions in both control and data flows. The details
can be found in [13].
 In the second stage, one can start from the
generated code skeleton and continue to com-
plete the driver with C language and our pro-
posed ECP directives. It has always been a
popular programming style to write device driver
with the help of C preprocessor [5]. Our exten-
sion is expressive uniquely over the specific
features of device drivers, which will be elabo-
rated in later sections. The program ECP com-
piler translates preprocessor statements to C
codes. The final output is a device driver in C
language, which then can be fed into gcc to get
executable codes.

3. DEVICE VARIABLES

The main tasks of a device driver are to config-
ure the device operation mode and observe its
status to manage the data transfer. The real
physical part interacting with the driver is a
dedicated controller (an IC or IP) that manages

Fig.1: The design framework for Linux driver.

Code-Skeleton Generator
Parameterized
Code
Templates

ECP compiler

Manual coding with C and
ECP directives.

C-code device driver

API/Resource Configuration

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1280

the peripheral device, as shown in Fig. 2. In the
IO controller, the registers can be viewed as a
programmable interface to the driver and the
kernel part performs the functionality provided
by the device. Through the registers, the driver
configures the functions of the device and ob-
serves its statuses. For example, a typical UART
controller contains a set of registers for setting
data format and transfer rate (baud rate), as
shown in Fig. 3. The data format is determined
by the values of PMD, STB and WL, each of
which occupies a bit range within the register
ULCON0. They are referred to as device vari-
ables. To access and manipulate device variables
involve low-level instructions such as direct
memory access and bit-operation. Such opera-
tions in C are not checked for type-correctness
and are fairly unreadable. ECP provides more
readable and concise expressions to allow them
to be read or written like any variable in C. For
example, if we want to set the number of stop
bits per frame to be 2 (i.e. STB=1) while keeping
other variables unchanged, a typical sequence of
C codes might be written as follows:

temp = *(ULCON0);

temp = temp & 0xFFFFFFFB | (1 <<2);

*(ULCON0) = temp;

 Using ECP directives, you can write a
simple assignment in C to get equivalent result.

STB = 2;

Fig. 2: A peripheral device model.

Group Variable

To set a function or get a status often involves
several relevant device variables. We call the set
of variables as group variable. For example, if
we want to set a data format for UART commu-
nication, it is often to set PMD, STB and WL
simultaneously. We can let a variable group
“UARTFRAME” be composed of PMD, STB
and WL. The ECP directives allow us to use the
following statement to set the group.

 #set(UARTFRAME [ODD, TwoS, Bit8])

 And use the following statement to get the
group.

 #get(UARTFRAME[x, y, z])

Concatenated Variable

A device variable could comprise several frag-
ments residing in different registers. For exam-
ple, the setting of baud rate is determined by
three values: the X in ULCON0 register (it se-
lects external clock MCLK or internal clock
UCLK as a reference clock), the CNT1 and
CNT0 in UBRDIV0 register. The calculation is
shown in Fig. 3. If we concatenate the three
variables to be a new variable BaudRate, a sim-
ple assignment can be used to set its vale as fol-
lows:

BaudRate = U2400;

31… 8 7 6 5 4 3 2 1 0

 IR X PMD STB WL

ULCON0:

31………15………….4 3 2 1 0

0 CNT0 CNT1

UBRDIV0:

X : Serial clock selection
PMD: Parity mode
STB: No. of stop bits
WL: Word length

BRGOUT = (MCLK or UCLK)
 / (CNT0+1) / (16^CNT1) / 16

Fig. 3: UART registers (a real case
from Samsung 3C4510B SOC).

Device
Kernel

data

address

Controller IC(IP) Registers

Device Variables

D
evice driver

Physical device

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1281

Fig. 4: The main portion of ECP grammar.

4. ECP DIRECTIVES

This section will describe the main portion of
ECP grammar and take statement examples to
show its application. Fig. 4 summarizes the
grammar and Fig. 5 gives statements in ECP
directives to specify a UART device shown in
Fig. 3.

 The syntax for device declaration begins
with the nonterminal device, as shown in Fig. 4.
The directive #dev is used to define the name of
a device, the bit-width of its registers and its
base address (referring to line 1 in Fig. 5). The
syntax for register declaration begins with non-
terminal reg_statement. The directive #reg (line
2) is used to define the name, RW attribute, the
address offset and an optional bank-register ID.
The RW attribute specifies the register to be
read-only, write-only or read-write. The offset
plus the device’s based address equals the
physical address of the register. In some devices,

several sets of registers are mapped to the same
memory addresses. Each set usually is called a
bank. A bank register is used to select which set
to be used. The UART device shown here does
not use such addressing. The lines between #reg
and #endreg define all the device variables
within the register. Each variable definition be-
gins with directive #var. The statement in line 4
of Fig. 5, defines “PMD” to represent the value
in bit5~bit3 in register ULCON0. Following the
declaration, an enumeration of identifiers that
represent all the permissible values of the vari-
able can be defined (line 5~10). Such a structure
can be thought of as enumerated type in C. Only
these values in the type can be assigned to the
device variable. Our ECP compiler performs a
type-checking to avoid other values. The facility
provides more safety type-checking than C lan-
guage. If no type definition exists, the variable
accepts any positive integer less than 2N, where
N is its bit length.

driver →device (device | getfun | setfun | flush)*
device → #dev dev_line dev_content #enddev
dev_line → dev_id (reg_bitwidth) iobase_addr
dev_content → (reg_statement | convar_statement | gupvar_statement)+
reg_statement → #reg reg_line reg_content #endreg
reg_line → reg_id ((R|W|RW)) offset (bank_id[index]) ?
reg_content → (var_statement)+
var_statement → #var var_line ((var_content)+ #endvar)?

var_line → (- | var_id) reg_id [bit_position]
var_content → val_id := num
convar_statement → #convar convar_line ((convar_content)+ #endconvar)?
convar_line → convar_id (covar_member (,convar_member)*)
convar_member → var_id
 | convar_id
 | reg_id [regbit_num]
convar_content → conval_id := (num | val_id | conval_id)(, (num | val_id | conval_id))*
gupvar_statement → #gupvar gupvar_id (gupvar_membert (,gupvar_member)*)
gupvar_member → (var_id | convar_id)
getfun → #get (gupvar_id [c_var_id (, c_var_id)*])
setfun → #set (gupvar_id [gupvar_para (, gupvar_para)*])
flush → #flush

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1282

 After the variable declaration, we can
write a simple assignment to access the variable.
The following statement assigns “TwoS” to
variable STB to configure the UART to use two
stop bits in a date frame:

STB = TwoS;

 ECP compiler will convert the statement
into the following:

*(0x03ffd000) = *(0x03ffd000) &

 0xFFFFFFFB | (1 <<2);

 The part between #convar and #endcon-
var (line 26~31) defines a concatenated variable
Baudrate and its enumerated data type, only a
portion shown here. We can use the following
simple expression to set value.

BaudRate = U2400;

 ECP complier converts the statement into:

*(0x03ffd000) = *(0x03ffd000) &

 0xFFFFFFFB | (1 <<6);

*(0x03ffd014) =867 << 4 | 1 ;

 The directive #gupvar is used to define a
group variable. As shown in line 32, the group
UARTFRAME is composed of PMD, STB and
WL. Then we can use the following statement to
set their values:

#set(UARTFRAME [ODD, TwoS, Bit8])

 This statement is converted into:

*(0x03ffd000)= *(0x03ffd0000) &

 0xFFFFFFFC0 | ((4<<3) | (1 << 2) | 3);

 Reading the group at a time is specified as
follows:

#get(UARTFRAME[x, y, z])

 This statement is converted into:

temp = *(0x03ffd000);

x = (temp & 0x38) >> 3;

y = (temp & 0x04) >> 2;

z = (temp & 0x03);

 The statements accessing device variables
in the same register can be grouped into one
instruction if their access orders do not affect the
device behavior. The directive #flush is used to
tell the compiler that all the statements preced-
ing it must be completed before doing succeed-
ing statements.

5. ASSESSMENT

The ECP compiler has been written in C using
Flex and Berkeley Yacc to generate a front-end
parser. To assess the utility of ECP directives,
we have implemented four drivers, as listed in
Table 1. The first two are designed for a
Samsung 3C4510B-based platform, which runs
under uClinux. The UART_DMA is a UART
device with DMA transfer mode. The LCD is a
16 character by 2 line device. The last two are
designed for an X-Hyper250B platform, which

Fig. 5: A portion of the device declaration
for UART.

1 #dev UART(32) 0x03FF0000
2 #reg ULCON0(RW) 0xD000
3 #var X ULCON0[6]
4 #var PMD ULCON0[5:3]
5 Disable:= '0**'
6 Odd := '100'
7 Even := '101'
8 As1 := '110'
9 As0 := '111'
10 #endvar
11 #var STB ULCON0[2]
12 OneS := 0
13 TwoS := 1
14 #endvar
15 #var WL ULCON0[1:0]
16 Bit5 := 0
17 Bit6 := 1
18 Bit7 := 2
19 Bit8 := 3
20 #endvar
21 #endreg
22 #reg UBRDIV0(RW) 0xD014
23 #var CNT0 UBRDIV0[15:4]
24 #var CNT1 UBRDIV0[3:0]
25 #endreg
26 #convar BaudRate(X,CNT0,CNT1)
28 U1200 := 1,1735,1
29 U2400 := 1,867,1
30 …………….
31 #endconvar
32 #gupvar UARTFRAME(PMD, STB, WL)
33 ………………..
34 #enddev

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1283

runs under Linux 2.4.18 kernel. The RTC (Real
Time Clock) device is used to configure a clock
source with a wide range of frequencies. The
I2C device enables the processor to
communicate with I2C peripherals. Table 1
shows the result in terms of lines of code. All
original codes are designed in C. The number of
lines of C preprocessor (CPP) is counted for
only the part dealing with the target devices. The
number of lines of configuration file used to
specify API and system resource is given in
“CF” column. The number of lines in ECP
directives is given in “ECP” column. The “C”
column in ours indicates how many lines of C
code are required to finish the driver, not
including the code produced by the skeleton
generator and ECP compiler. The required
numbers in average are significantly shorter than
the original ones.
Table 1: Code comparison

Original Ours
Device

C CPP CF ECP C
UART_DMA 43 19 6 220 2
LCD 107 29 5 64 65

RTC 424 26 23 24 317
I2C 666 31 14 90 617

6. CONCLUSION
Writing device driver has always been tedious
and error-prone. In this paper, we propose en
extended set of C preprocessor directives to fa-
cilitate the driver development. The extension
makes the C driver code more readable and con-
cise. Furthermore, our complier provides
stronger type-checking capability than original
C compiler. Current assessment for an embed-
ded Linux environment shows favorable results.
We are studying more real device drivers and
wish to give more comparisons to demonstrate
the effectiveness of our design framework.

7. ACKNOWLEDGMENTS
This work was supported by the National Sci-
ence Council, Taiwan, R.O.C. under grant NSC
92-2213-E-030-022.

8. REFERENCES
[1] A. Chou et al., “An Empirical Study of Op-

eration System Errors,” Proceedings of the
18th ACM Symposium on Operation System
Principles, pp. 73-88, 2001.

[2] P. Chou, R. B. Ortega and G. Borriello, “In-
terface Co-synthesis Techniques for Em-
bedded Systems,” Proceedings of
IEEE/ACM International Conference on
Computer-Aided Design, pp. 280-287, 1995.

[3] C. L. Conway and S. A. Edwards, “NDL: A
Domain-Specific Language for Device
Drivers,” Proceedings of 2004 ACM
SIGPLAN/SIGBED conference on Lan-
guages, compilers, and tools.

[4] A. Mansky, “Using The C Preprocessor For
Device Control,” C/C++ Users Journal,
Dec. 1990.

[5] K. J. Lin, S. W. Chen and J. L. Chen,” A
Design Framework for Embedded Linux
Drivers,” NCS, Taiwan, 2003.

[6] F. Merillon, L. Réveillère, C. Consel, R.
Marlet, and G. Muller, “A DSL Approach to
Improvee Productivity and Safety in Device
Drivers Development,” Proceedings of the
15th International Conference on Automated
Software Engineering, 2000.

[7] M. O’Nils and A. Jantsch , “Operating sys-
tem sensitive device driver synthesis from
implementation independent protocol speci-
fication,” Proceedings of Design, Automa-
tion and Test in Europe Conference and Ex-
hibition, pp. 563-567, 1999.

[8] A. Rubini and J. Corbet, Linux Device
Driver, 2nd Edition O’Reilly, 2001.

[9] S. A. Thibault, R. Marlet and C. Consel,
“Domain-Specific Language: From Design
to Implementation Application to Video De-
vice Drivers Generation,” IEEE Tran. On
Software Engineering, pp. 363-377,
May/June 1999.

[10] E. Tuggle, “Writing Device Drivers,”
Embedded Systems Programming, pp. 42-65,
Jan 1993.

[11] Q. L. Zhang, M. Y. Zhu and S. Y. Chen,
“Automatic Generation of Device Driv-
ers,“ ACM SIGPLAN Notices, pp.60-69,
June 2003.

[12] Shaojie Wang, Malik S., Bergamaschi,
R.A, ”Modeling and Integration of Periph-
eral Devices in Embedded Systems,” DTAE,
pp.136-141, 2003.

[13] J. L. Chen, “Assistant Tools and Language
for Device Programming,” MS. Thesis, Fu
Jen Catholic University, 2004.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1284

