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Abstract-In this paper, we present an efficient algorithm 
for BLOCK-CYCLIC data redistribution to minimize 
communication costs on symmetric matrix.  The main 
idea of the algorithm is to explore all identical elements 
in local space.  By realigning those elements into 
corresponding destination data layout, inter-processor 
data transmission overheads can be reduced.  Given a 
BLOCK-CYCLIC (x, *) to BLOCK-CYCLIC (y, *) 
symmetrical matrix data re-decomposition over P 
processors, the theoretical analysis shows 1/P data 
packing/unpacking and communication costs can be 
reduced.  The experimental results reflect small extra 
computational overheads of the Symmetric 
Redistribution Algorithm (SRA) will be incurred.  
However, the SRA technique can still provides superior 
overall performance. 

Keywords: data redistribution, coordinates transformation, 
symmetric matrix, communication optimization 
 
1 Introduction 

The data parallel programming model is more and 
more important for programming distributed memory 
multi-computers. Suitable data decomposition in order 
to efficiently execute a data parallel program on a 
distributed memory multi-computer is important. A 
good data distribution can let the computational load 
balance, increase data locality, and minimize 
interprocessor communication overloads.  

Many data parallel programming languages such 
as High Performance Fortran (HPF), Fortran D, Vienna 
Fortran, and High Performance C (HPC) provide 
compiler directives for programmers to design a data 
distribution module.  Regular distributions provided 
by these languages, on general, one-dimensional array 
distribution has three types; BLOCK, CYCLIC, and 
BLOCK-CYCLIC(c).  In a similar way, 
multi-dimensional array distributions also have those 
types.  However, as a result of multi-dimension array 
distribution has column-wise and row-wise orientation, 
the structures become more complicated. 

In some scientific applications, it is possible for an 
algorithm to process more than one data distribution 
layout during different computational phases in the 
same program.  For example, BLOCK-CYCLIC (*, 
CYCLIC) and BLOCK-CYCLIC (*, BLOCK)  are 

good distributions for LU decomposition problem in 
parallel program, the BLOCK-CYCLIC (CYCLIC, *) 
distribution is suitable for matrix multiplication.  
However, the LU decomposition and matrix 
multiplication are usually collaborated for the same 
computation.  Therefore, data re-decomposition is 
required to accomplish data locality during runtime. 

In general, data redistribution costs consist of 
computation costs and communication costs. The 
computation costs include indexing costs and message 
packing/unpacking costs.  The indexing 
(communication sets generation) refers to calculate the 
destination/source processors of local elements for 
exchanging data with other processors.  The 
packing/unpacking costs refer as the time complexity to 
construct data buffers for message passing.  The 
communication cost is the time to send/receive 
messages with remote processors. 

In this paper, we propose an efficient algorithm, 
the Symmetric Redistribution Algorithm (SRA), for 
symmetric matrix data redistribution.  The main idea 
of the SRA method is to reuse all identical elements in 
local space to minimize runtime data transmission 
overheads.  Given a BLOCK-CYCLIC (x, *) to 
BLOCK-CYCLIC (y, *) symmetrical matrix data 
re-decomposition over P processors, it is proved that 
1/P packing/unpacking and data transmission costs can 
be reduced. 

The rest of this paper is organized as follows. In 
Section 2, a brief discussion of related work will be 
presented.  In section 3, we will introduce notations 
and terminology used in this paper and then present our 
algorithm for redistribute a symmetric matrix with 
BLOCK-CYCLIC (x,*) to BLOCK-CYCLIC (y,*).  
In Section 4, a theoretical model for performance 
analysis and simulation test will be given. Section 5 
briefly concludes this paper. 

2 Related works 

Data distribution and redistribution problems have 
been studied for many years.  Some work has been pay 
attention to communication set generation, while some 
specialize on communication optimization.  For 
example, the communication scheduling can avoid node 
contention, the processor mapping technology can 
increase data hits and minimize the amount of data 
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exchange for reducing communication overheads, and 
the multi-phase redistribution strategy can reduce 
message startup cost.  We briefly explain these 
researches in both multi-computer compiler techniques 
and runtime support techniques in the following. 

For those studies, Walker et al. [10] used the 
standardized message passing interface, MPI, to express 
the redistribution operations. They implemented the 
BLOCK-CYCLIC array redistribution algorithms in 
both synchronous and asynchronous schemes.  Since 
the excessive synchronization overheads incurred from 
the synchronous scheme, they also presented the 
random and optimal scheduling algorithms for 
BLOCK-CYCLIC array redistribution. The 
experimental results showed that the performance of the 
synchronous method with optimal scheduling algorithm 
was comparable to that of the asynchronous method. 

For communication optimization techniques, the 
communication scheduling problem has been proved 
step optimal on Jack Dongarra’s study [2].  GGP [4] is 
a novel inter-cluster scheduling algorithm for 
redistributing data.  The DAP optimization of 
redistribution is to avoid unnecessary remapping by 
eliminating partially dead and partially redundant 
distribution changes [5].  The Processor Mapping 
Technique [7] solves block to cyclic(x) problem for 
minimizing data transmission costs.  In [6, 9], 
techniques for overlapping communication and 
computation were addressed on various cases. 

For indexing techniques, the PITFALLS [8] 
developed efficient algorithm to perform array 
redistribution between two disjoint processor sets in the 
source and destination distribution; the Basic-Cycle 
Calculation (BCC) method [1] is an example to 
generate communication sets using pattern attribute in 
each section.  The Generalized Basic-Cycle 
Calculation (GBCC) method [3] extends BCC to solve 
array redistribution with different source and 
destination processor sets. 
 
3. Data Redistribution on Symmetric Matrix 
3.1 Preliminaries 

Generally, data redistribution can be performed in 
two phases, the sending phase and the receiving phase. 
The sending phase is proceeded with the original 
distribution and source processor set P that composed 
by numbers of processors ip , where i = 0, …, 1−P .  
In the sending phase, ip  has to determine all data sets 
which need to be sent to corresponding destination 
processors, packs those data sets into messages, then 
sends messages to their destination processors. The 
receiving phase is to accomplish the target distribution 
which is over destination processor set Q that composed 
by numbers of processor qj, where j = 0, …, 1−Q .   
In the receiving phase, iq  has to determine all data 
sets which need to be received from their source 
processors, unpacks elements in messages to their 

corresponding local array positions.  Without loose of 
generality, we assume that P=Q and ip =qj.  
Therefore, each processor has to calculate four 
communication sets, i.e., the Destination Processor Set 
(DPS [ iq ]), the Send Data Set (SDS [ jiP→ ]), the 
Source Processor Set (SPS [ iP ]), and the Receive Data 
Set (RDS [ jiP← ]). 

    To simplify the illustration of this paper, we use 
BC(x1, y1)→BC(x2, y2) to represent 
BLOCK-CYCLIC(x1, y1) to BLOCK-CYCLIC(x2, 
y2) redistribution.  Notations and terminologies used 
in this article are defined as follows. 

Definition 1：Given a BC(x1, y1)→BC(x2, y2)data 

redistribution on matrix nnM ×  over P processors, the 

source local matrix of processor iP  is denoted by iSLM , 

the destination local matrix of processor jP  is denoted 

by jDLM , where Pji <≤ ,0 . 

Definition 2：Given a BC(x1, y1)→BC(x2, y2)data 

redistribution on matrix nnM ×  over P processors, the 

source processor of an element in nnM ×  or jDLM  is 

defined as the processor that owns the element in the 

source distribution. The destination processor of an 

element in nnM ×  or iSLM  is defined as the processor 

that owns the element in the destination distribution, 

where Pji <≤ ,0 . 

Definition 3：Given a matrix Mn×n, an Adjacent Block 

denoted by ),(
),(

~ yx
yxM ′′  is defined as the set of elements 

clustered in a rectangular region with an upper-left 

coordinate (x, y) and a lower-right coordinate (x', y'), 

where 0 ≤ x ≤ x' ≤ n−1, 0 ≤ y ≤ y' ≤ n−1.  E.g. 
)0,0(
)2,2(

~
M ={A[0, 0:2], A[1, 0:2], A[2, 0:2]}. 

3.2 Cost Model 

 Given a ),(),( 2211 yxBCyxBC →  redistribution 
on a two-dimensional matrix M [N: N] over P 
processors, the time for an algorithm to perform the 
redistribution, in general, can be modeled as follows: 
               commcompt TTT +=cos            (1) 

where compT is the time for communication set 
generation that employ an algorithm to compute 
source/destination processors of local matrix elements 
and the time to pack elements in source local matrix 
that have the same destination processors to a sending 
buffer, and unpack elements in messages that received 
from source processors to their corresponding 
destination local matrix positions; commT  is the time for 
an algorithm to send and receive data among every 
processors.  We said that compT  and commT  are the 
computation and communication time of a data 
redistribution algorithm, respectively. 
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 For the Symmetric Redistribution Algorithm 
(SRA), according to the above description, we can have 
the following formulation, 

    dscompt TDTSSRATSRAT ×+×+= )()(cos        (2) 

Where )(SRATcomp  is the computation time of SRA to 
perform ,*)(,*)( yBCxBC →  data redistribution; A 
detail analysis of this part will be discussed in next 
section; S is the maximum number of processors that a 
source processor needs to send data to, i.e., max{|DPS 
[Pi]| | Pi <≤0 }; D is the maximum total message size 
of a source processor Pi; sT  is the startup time of the 
interconnection network of a parallel machine; and dT  
is the data transmission time of the interconnection 
network of a parallel machine.  

3.3 The Proposed Algorithm 

Communication time is an important factor to the 
overall performance of runtime data redistribution. 
Several optimizations have been proposed to minimize 
the communication overheads in various ways. For 
example, the multi-phase redistribution method was 
used to reduce message startup cost, the communication 
scheduling approach was used to avoid node contention, 
and the processor mapping technique was used to 
minimize data transmission cost. In this paper, we 
attempt to discuss the method that can reduce data 
transmission cost in redistributing symmetric matrices. 
Utilize the symmetrical attribute of matrix elements, the 
desired destination data layout can be achieved via 
reconfigured parts of elements in local space without 
receiving remote data from other processors.  
Consequently, the data transmission overheads during 
runtime could be reduced.  
3.3.1 Motivating Example 

Figure 1 shows an example of 
,*)2(,*)( BCBLOCKBC →  on 1212×M  over three 

processors.  Matrices figured in the upper and the 
lower diagrams represent the layouts of the source and 
the destination distributions, respectively. 

According to the preliminary explication, the 
communication sets of DPS and SPS for all processors 
can be listed as follows, 

   
DPS [ 0P ] = { 10 , PP } SPS [ 0P ] = { 10 , PP } 

DPS [ 1P ] = { 20 , PP } SPS [ 1P ]= { 20 , PP } 

DPS [ 2P ] = { 21 , PP } SPS [ 2P ] = { 21 , PP } 
  
 
For the communication sets of RDS, we select 1P  

as an example to illustrate the generation of 
communication messages. Considering source local 
matrix of 1P , i.e., 1SLM  and the Receive Data Sets of 

1P  as listed follows, which can be determined by 
mathematical close forms that described in [3] 

RDS [ 01←P ] = {1b, 2b, 0, 3c, 3d, 3e, 3f, 3g, 3h, 3i, 3j, 

3k 1c, 2c, 3c, 0, 4d, 4e, 4f, 4g, 4h, 4i, 4j, 4k}, 
RDS [ 21←P ] = {1h, 2h, 3h, 4h, 5h, 6h, 7h, 8h, 0, 9i, 9j, 

9k 1i, 2i, 3i, 4i, 5i, 6i, 7i, 8i, 9i, 0, 0j, 0k }, 

1SLM = {1d, 2d, 3d, 4d, 0, 5e, 5f, 5g, 5h, 5i, 5j, 5k, 1e, 
2e, 3e, 4e, 5e, 0, 6f, 6g, 6h, 6i, 6j, 6k, 1f, 2f, 3f, 
4f, 5f, 6f, 0, 7g, 7h, 7i, 7j, 7k, 1g, 2g, 3g, 4g, 
5g, 6g, 7g, 0, 8h, 8i, 8j, 8k} 

We find that RDS [ 01←P ] and RDS [ 21←P ] have 
some data which are the same with 1SLM , the boldface 
fonts of above example show this situation. 

Source Distribution 

 

Destination Distribution 

 

2

1

0

P

P

P

0P

0P

1P

1P

2P

2P
 

Figure 1: BC(BLOCK, *) to BC (2, *)  data 
re-decomposition on 1212×M  over 3 processors. 

3.3.2 BC(x, *) to BC(y, *) data redistribution on 
symmetric matrix 

To illustrate the symmetrical matrix redistribution 

method, we use figure 2 as the follow-up example of 

the motivating case.  The first observation is made to 

the source local matrix of P0 in source distribution as 

shown in figure 2(a).  Adjacent blocks )0,0(
)3,3(1

~
MSL  and 

)8,0(
)11,3(1

~
MSL  are identical to the transposition of 

)4,0(
)7,3(0

~
MSL  and )4,0(

)7,3(2
~

MSL , respectively.  This 

relationship leads the following lemma. 

Lemma 1：Given a ,*)(,*)( yBCxBC →  redistribution 

on an n×n symmetric matrix over P processors, for any 

source processor p sends data to destination processor q, 

in the source distribution, 
),0(

),(

~ g

tspMSLU  = 
Tr

usqMSL )
~

(
),0(

),(
U , where Pxqg ×= , Pxpr ×= , 

1−= Pns , 1−+= xgt , 1−+= xgu , Pqp <≤ ,0 . 
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Proof:  Due to page limitation, we omit the proof of 

this lemma in this version. � 
 

1SLM  
1d 2d 3d 4d 0 5e 5f 5g 5h 5i 5j 5k 

1e 2e 3e 4e 5e 0 6f 6g 6h 6i 6j 6k 

1f 2f 3f 4f 5f 6f 0 7g 7h 7i 7j 7k 

1g 2g 3g 4g 5g 6g 7g 0 8h 8i 8j 8k 

0SLM  

0 1a 1b 1c 1d 1e 1f 1g 1h 1i 1j 1k 

1a 0 2b 2c 2d 2e 2f 2g 2h 2i 2j 2k 

1b 2b 0 3c 3d 3e 3f 3g 3h 3i 3j 3k 

1c 2c 3c 0 4d 4e 4f 4g 4h 4i 4j 4k 

2SLM  

1h 2h 3h 4h 5h 6h 7h 8h 0 9i 9j 9k 

1i 2i 3i 4i 5i 6i 7i 8i 9i 0 0j 0k 

1j 2j 3j 4j 5j 6j 7j 8j 9j 0j 0 ak 

1k 2k 3k 4k 5k 6k 7k 8k 9k 0k ak 0 

(a) 

1DLM  

1b 2b 0 3c 3d 3e 3f 3g 3h 3i 3j 3k 

1c 2c 3c 0 4d 4e 4f 4g 4h 4i 4j 4k 

1h 2h 3h 4h 5h 6h 7h 8h 0 9i 9j 9k 

1i 2i 3i 4i 5i 5i 7i 8i 9i 0 0j 0k 

0DLM  

0 1a 1b 1c 1d 1e 1f 1g 1h 1i 1j 1k 

1a 0 2b 2c 2d 2e 2f 2g 2h 2i 2j 2k 

1f 2f 3f 4f 5f 6f 0 7g 7h 7i 7j 7k 

1g 2g 3g 4g 5g 6g 7g 0 8h 8i 8j 8k 

2DLM  

1d 2d 3d 4d 0 5e 5f 5g 5h 5i 5j 5k 

1e 2e 3e 4e 5e 0 6f 6g 6h 6i 6j 6k 

1j 2j 3j 4j 5j 6j 7j 8j 9j 0j 0 ak 

1k 2k 3k 4k 5k 6k 7k 8k 9k 0k ak 0 

(b)  
Figure 2: sSLM and sDLM  in the BC(BLOCK, *) to 
BC (2, *) data redistribution  on 1212×M  over 3 
processors. 

 The above example shows that two difference 
processors might have the same data in the source 
distribution.  Since data is distributed over processors 
in a regular block-cyclic manner, to accomplish data 
exchange, it is possible for one to reuse data elements 
that reside in local space if the data is necessary for next 
computation in the target distribution phase. 

A similar observation can be extracted from the 

target distribution layout as shown in figure 2(b).  As 
the above example, we examine the destination local 

matrix of P1.  Adjacent blocks )0,0(
)1,3(1

~
MDL  ∪ 

)6,0(
)7,3(1

~
MDL  and )4,0(

)5,3(1
~

MDL  ∪ )10,0(
)11,3(1

~
MDL  are 

identical to the transposition of 
)2,0(
)3,3(0

~
MDL ∪ )8,0(

)9,3(0
~

MDL  and )2,0(
)3,3(2

~
MDL ∪ )10,0(

)11,3(2
~

MDL , 

respectively.  We consequently obtain the following 
two lemmas. 

Lemma 2：Given ,*)(,*)( yBCxBC →  redistribution 

on an n×n symmetric matrix over P processors, for any 

destination processor q receives data from source 

processor p, in the target distribution, 
),0(

),(

~ g

tspMDLU  

= 
Tr

usqMDL )
~

( ),0(
),(

U , where Pyqg ×= , 

Pypr ×= , 1−= Pns , 1−+= ygt , 1−+= ygu , 

Pqp <≤ ,0 . 
Lemma 3：Given ,*)(,*)( yBCxBC →  redistribution 
on an n×n symmetric matrix over P processors, if iP  
needs to send jS elements to jP , then )1( PS j ×  
elements within Sj exist originally in DLMj, where 

Pji <≤ ,0 , ji ≠ .  

3.3.3 Algorithms 

    In general, data redistribution can be divided into 
sending and receiving phases.  The detailed operations 
are performed in 6 steps. 

Step 1：Indexing of source distribution. Calculate the 
data sets of source local array that need to be 
transmitted. 

Step 2：Message packing. Gather the data according to 
data sets that obtained in Step 1 and pack them 
together into local buffers. 

Step 3：Sending messages.  Send all messages to 
corresponding destination processors. 

Step 4：Indexing of destination distribution. Calculate 
the data sets of the destination local array that 
need to be received. 

Step 5：Receive data. Receive all messages from their 
source processors into local buffers 

Step 6：Message unpacking. Unpack messages from 
receiving buffers to destination local array 
according to the communication sets that 
obtained in Step 4. 

According to the descriptions in section 3.3.2, we add 
two optimization phases into above operations.  The 
modified steps are given as follows and represented in 
italic fonts. 

Step 2：Minimize Sending Data Sets.  Calculate the 
index that destination processors already have 
the same data; message packing, gather the 
data according to data sets that obtained in this 
step and pack them together into local buffers. 

Step 4：Indexing of destination distribution. Calculate 
the data sets of the destination local array that 
need to be received.  Minimize Receiving 
Data Sets. Calculate the index that source 
processors are already have the same data and 
put the data into destination local matrix. 

 
The algorithm for symmetrical matrix redistribution is 
given as follows. 
 
Algorithm_Symmetric_Redistribution 

01. /*Indexing of Send*/ 

02.  for i=0 to local_row{ 

03.   golbal_row_index[i]= iP *x+(i%x)+((i/x)*((numproc-1)*x)); 

04.  } 

05.  for i=0 to local_row{ 

06   send_index[i][*]=((golbal_row_index[i]/y)%numproc); 
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07.  } 

08./*Minimize Sending */ 

09.  for j=0 to local_col { 

10.  brother_index[*][j]=j /x%P; 

11.  } 

12. /* Message Packing*/ 

13. for i= 0 to local_row{ 

14.   for j=0 to loca_col{ 

15.    if send_index[i][j]!=brother_index[i][j]{ 

16.      k=((gol_row_index[i]/y)%numproc); 

17.     kbuff [size]= ija  

18.   }}} 

19. /*Send data*/ 

20. send data in kbuff  to kP  

21 /*indexing of Receive*/ 

22.  for i=0 to local_row{ 

23.   golbal_row_index[i]= iP *y+(i%y)+((i/y)*((numproc-1)*y)); 

24.  } 

25.  for i=0 to local_row{ 

26   receive_index[i][*]=((golbal_row_index[i]/x)%numproc); 

27.  } 

28./*Minimize Receiving */ 

29.  for j=0 to local_col { 

30.  brother_index[*][j]=j /y%P; 

31.  } 

32, if receive_index[i][j]!=brother_index[i][j]{ 

33       ]][[ hgM i = ija ;//g=0 to n/P×x , h=n/P×y 

34    } 

35,   transposition iM  to T
iM ; 

36,   for k=1 to local_row { 

37.       for j= 1 to g { 

38.        if k/y% P=I { 

39,      ,*kb = ][*][ jMi ; 

40.    }}} 

41. /*Receive data*/ 

42. receive data in kbuff  to kP  

43 /*Unpacking*/ 

44. for i= 0 to local_row{ 

45.   for j=0 to loca_col{ 

46.    if receive_index[i][j]!=brother_index[i][j]{ 

47.      k=((gol_row_index[i]/x)%numproc); 

48.      ijb = kbuff [size] 

49.   }}} 

50.   end Algorithm_Symmetric_Redistribution 

 
4. Performance Analysis and Experimental Results 

4.1 Theoretical Analysis 

To investigate the efficiency of the SRA method, 
we select a traditional redistribution algorithm, denoted 
as TR, to proceed our analysis.  Given a BC(x, *) to 
BC(y, *) redistribution on an n×n symmetric matrix 
over P processors, the indexing cost of the traditional 
redistribution algorithm (TR), according to [3], can be 
defined as follow 

             ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

),gcd(

),(
)(

yx

yxlcm
OTRTindex        (3) 

For packing/unpacking cost, since the size of local 
matrix is Pn /2 , we can obtain that 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

P

n
OTRTTRT unpackpack

2

)()(      (4) 

For the SRA method, in order to explore those 
identical pairs of communication patterns, each 
processor calculates the communication sets for matrix 
elements in both dimensions.  This is twice as 
Tindex(TR), i.e., 2× )(TRTindex .  After the indexing 
phase, an intersection operation with asymptotic 
complexity is ( )PnO 2  should be carried out.  
Therefore, we have  

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

P

n
OSRATindex

2
)(             (5) 

For the packing and unpacking process, 
according to lemma 3, each processor only needs to 
transmit ))1(( PPS j −×  elements to destination 

processors Pj, where Sj is the size of message that 
should be sent to Pj.  Therefore, the packing and 
unpacking costs of SRA can be defined as 

P

P
TRTSRAT packpack

1
)()(

−×=       (6) 

 For the communication costs, because the SRA 
method minimizes the amount of data that need to be 
communicated, the analysis of this part will be focused 
on data transmission overheads.  Since the data 
transmission overheads is directly proportional to the 
size of outgoing messages, therefore the communication 
costs can be similarly obtained from equation (6).  
Given the communication costs of TR method as 
Tcomm(TR), then the communication cost of SRA can be 
modeled as 

          
P

P
TRTSRAT commcomm

1
)()(

−×=       (7) 

4.2 Experimental Result 
To evaluate the performance of the proposed 

method, we have implemented the SRA and TR methods. 
Both methods were written in the single program 
multiple data (SPMD) programming paradigm with 
C+MPI codes and executed on an SMP/Linux cluster 
consisted of 16 SMP nodes, which are interconnected 
by 100M switch.  Each SMP node has one AMD 
Athlon XP2000+ CPU and 1GB main memory. The 
operating system used is Linux kernel version 2.4.18. 
The mpich and gcc compiler we used is version 1.2.4 
and gcc 3.2.1, respectively. 

Table 1 shows the results of SRA and TR 
algorithms to perform a BC (BLOCK, *) to BC (CYCLIC, 
*) data redistribution on different matrix size and 
number of processors.  In table 1, the terms 
SRA_comm and TR_comm represent the communication 
time of the algorithms; the terms SRA_comp and 
TR_comp represent the computational time for message 
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generation, the terms SRA_total and TR_total represent 
the overall execution time of SRA and TR algorithms, 
respectively.  From table 1, we observed that 
SRA_comp is larger than TR_comp.  Although the SRA 
method reduces 1/P message packing and unpacking 
costs, the SRA method constructs message sets twice in 
its local space as described in last section, which is two 
times to that of TR algorithm, i.e., O(2 × N/P);  
Therefore, the SRA method has little extra 
computational overheads. 

For communication overheads, because SRA can 
reduce 1/P transmission data, the SRA_comm is smaller 
than TR_comm.  Since the communication time plays 
as the major factor to overall performance in runtime 
data redistribution, the extra computational overheads 
of SRA method will not offset the benefit of the reduced 
communication costs.  Consequently, we can observe 
that SRA_total outperforms TR_total. 

Table 1：Execution time of different algorithms to 
perform BC(BLOCK, *) to BC(CYCLIC, *) 

  
Processor # 3 6 9 12 15 

Matrix Size N×N N=1500 N=3000 N=4500 N=6000 N=7500 

SRA_comm 0.5079 0.8354 1.3608 1.8112 2.4085 

TR_comm 0.7797 1.0479 1.5390 2.0859 2.6626 

SRA_comp 0.0958 0.2421 0.3742 0.6808 0.9785 

TR_comp 0.0393 0.1409 0.3022 0.4969 0.7644 

SRA_total 0.6037 1.0775 1.735 2.4920 3.3870 

TR_total 0.8190 1.1888 1.8412 2.5828 3.4271 

single precision                                                   second  
 

Another minor discovery is that the improvement 
rate of the SRA method decreased as the number of 
processors increased.  This is because that the 
improvement rate of data transmission cost for the SRA 
algorithm is directly proportional to (1/P × matrix size).  
Consequently, the SRA algorithm performs well when 
matrix size is large or the number of processors is small.  
These phenomena match our previous theoretical 
demonstrations. 

5. Conclusion 

In this paper, we have presented an algorithm for 
efficient symmetric matrices data redistribution. 
Applying the attribute of symmetrical matrices, parts of 
identical data that located in local space can be reused 
to avoid inter-processor data exchange (as illustrated in 
lemmas 1 and 2).  The theoretical analysis of lemma 3 
also proved that 1/P message packing/unpacking and 
communication costs can be reduced.  The 
experimental results reflect small extra computational 
overheads of the SRA algorithm will be incurred.  
However, the SRA technique can still provide superior 
overall performance.  A shortcoming of our proposed 
algorithm is that SRA can handle only one of the two 
dimensions of a matrix at a redistribution phase, i.e., BC 
(x, *) to BC (y, *) and BC (*, x) to BC (*, y). 

There are some possible extensions could be made.  
One of the issues would be to consider the problem 

with generalized arbitrary source and destination 
processor sets.  Another important future research 
direction would be to investigate the techniques in 
irregular scientific computation problems.  It would 
also be interesting to extend this technique on 
computational grid architectures. 
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