
Efficient Algorithm for Symmetric Matrix Data Redistribution
Min-Hao Chen, Ching-Hsien Hsu and Shih-Chang Chen

Department of Computer Science and Information Engineering

Chung Hua University, Hsinchu, Taiwan 300, ROC

Tel: 886-3-5186410 Fax: 886-3-5186416

Email: chh@chu.edu.tw

Abstract-In this paper, we present an efficient algorithm
for BLOCK-CYCLIC data redistribution to minimize
communication costs on symmetric matrix. The main
idea of the algorithm is to explore all identical elements
in local space. By realigning those elements into
corresponding destination data layout, inter-processor
data transmission overheads can be reduced. Given a
BLOCK-CYCLIC (x, *) to BLOCK-CYCLIC (y, *)
symmetrical matrix data re-decomposition over P
processors, the theoretical analysis shows 1/P data
packing/unpacking and communication costs can be
reduced. The experimental results reflect small extra
computational overheads of the Symmetric
Redistribution Algorithm (SRA) will be incurred.
However, the SRA technique can still provides superior
overall performance.

Keywords: data redistribution, coordinates transformation,
symmetric matrix, communication optimization

1 Introduction

The data parallel programming model is more and
more important for programming distributed memory
multi-computers. Suitable data decomposition in order
to efficiently execute a data parallel program on a
distributed memory multi-computer is important. A
good data distribution can let the computational load
balance, increase data locality, and minimize
interprocessor communication overloads.

Many data parallel programming languages such
as High Performance Fortran (HPF), Fortran D, Vienna
Fortran, and High Performance C (HPC) provide
compiler directives for programmers to design a data
distribution module. Regular distributions provided
by these languages, on general, one-dimensional array
distribution has three types; BLOCK, CYCLIC, and
BLOCK-CYCLIC(c). In a similar way,
multi-dimensional array distributions also have those
types. However, as a result of multi-dimension array
distribution has column-wise and row-wise orientation,
the structures become more complicated.

In some scientific applications, it is possible for an
algorithm to process more than one data distribution
layout during different computational phases in the
same program. For example, BLOCK-CYCLIC (*,
CYCLIC) and BLOCK-CYCLIC (*, BLOCK) are

good distributions for LU decomposition problem in
parallel program, the BLOCK-CYCLIC (CYCLIC, *)
distribution is suitable for matrix multiplication.
However, the LU decomposition and matrix
multiplication are usually collaborated for the same
computation. Therefore, data re-decomposition is
required to accomplish data locality during runtime.

In general, data redistribution costs consist of
computation costs and communication costs. The
computation costs include indexing costs and message
packing/unpacking costs. The indexing
(communication sets generation) refers to calculate the
destination/source processors of local elements for
exchanging data with other processors. The
packing/unpacking costs refer as the time complexity to
construct data buffers for message passing. The
communication cost is the time to send/receive
messages with remote processors.

In this paper, we propose an efficient algorithm,
the Symmetric Redistribution Algorithm (SRA), for
symmetric matrix data redistribution. The main idea
of the SRA method is to reuse all identical elements in
local space to minimize runtime data transmission
overheads. Given a BLOCK-CYCLIC (x, *) to
BLOCK-CYCLIC (y, *) symmetrical matrix data
re-decomposition over P processors, it is proved that
1/P packing/unpacking and data transmission costs can
be reduced.

The rest of this paper is organized as follows. In
Section 2, a brief discussion of related work will be
presented. In section 3, we will introduce notations
and terminology used in this paper and then present our
algorithm for redistribute a symmetric matrix with
BLOCK-CYCLIC (x,*) to BLOCK-CYCLIC (y,*).
In Section 4, a theoretical model for performance
analysis and simulation test will be given. Section 5
briefly concludes this paper.

2 Related works

Data distribution and redistribution problems have
been studied for many years. Some work has been pay
attention to communication set generation, while some
specialize on communication optimization. For
example, the communication scheduling can avoid node
contention, the processor mapping technology can
increase data hits and minimize the amount of data

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1340

exchange for reducing communication overheads, and
the multi-phase redistribution strategy can reduce
message startup cost. We briefly explain these
researches in both multi-computer compiler techniques
and runtime support techniques in the following.

For those studies, Walker et al. [10] used the
standardized message passing interface, MPI, to express
the redistribution operations. They implemented the
BLOCK-CYCLIC array redistribution algorithms in
both synchronous and asynchronous schemes. Since
the excessive synchronization overheads incurred from
the synchronous scheme, they also presented the
random and optimal scheduling algorithms for
BLOCK-CYCLIC array redistribution. The
experimental results showed that the performance of the
synchronous method with optimal scheduling algorithm
was comparable to that of the asynchronous method.

For communication optimization techniques, the
communication scheduling problem has been proved
step optimal on Jack Dongarra’s study [2]. GGP [4] is
a novel inter-cluster scheduling algorithm for
redistributing data. The DAP optimization of
redistribution is to avoid unnecessary remapping by
eliminating partially dead and partially redundant
distribution changes [5]. The Processor Mapping
Technique [7] solves block to cyclic(x) problem for
minimizing data transmission costs. In [6, 9],
techniques for overlapping communication and
computation were addressed on various cases.

For indexing techniques, the PITFALLS [8]
developed efficient algorithm to perform array
redistribution between two disjoint processor sets in the
source and destination distribution; the Basic-Cycle
Calculation (BCC) method [1] is an example to
generate communication sets using pattern attribute in
each section. The Generalized Basic-Cycle
Calculation (GBCC) method [3] extends BCC to solve
array redistribution with different source and
destination processor sets.

3. Data Redistribution on Symmetric Matrix
3.1 Preliminaries

Generally, data redistribution can be performed in
two phases, the sending phase and the receiving phase.
The sending phase is proceeded with the original
distribution and source processor set P that composed
by numbers of processors ip , where i = 0, …, 1−P .
In the sending phase, ip has to determine all data sets
which need to be sent to corresponding destination
processors, packs those data sets into messages, then
sends messages to their destination processors. The
receiving phase is to accomplish the target distribution
which is over destination processor set Q that composed
by numbers of processor qj, where j = 0, …, 1−Q .
In the receiving phase, iq has to determine all data
sets which need to be received from their source
processors, unpacks elements in messages to their

corresponding local array positions. Without loose of
generality, we assume that P=Q and ip =qj.
Therefore, each processor has to calculate four
communication sets, i.e., the Destination Processor Set
(DPS [iq]), the Send Data Set (SDS [jiP→]), the
Source Processor Set (SPS [iP]), and the Receive Data
Set (RDS [jiP←]).

 To simplify the illustration of this paper, we use
BC(x1, y1)→BC(x2, y2) to represent
BLOCK-CYCLIC(x1, y1) to BLOCK-CYCLIC(x2,
y2) redistribution. Notations and terminologies used
in this article are defined as follows.

Definition 1：Given a BC(x1, y1)→BC(x2, y2)data

redistribution on matrix nnM × over P processors, the

source local matrix of processor iP is denoted by iSLM ,

the destination local matrix of processor jP is denoted

by jDLM , where Pji <≤ ,0 .

Definition 2：Given a BC(x1, y1)→BC(x2, y2)data

redistribution on matrix nnM × over P processors, the

source processor of an element in nnM × or jDLM is

defined as the processor that owns the element in the

source distribution. The destination processor of an

element in nnM × or iSLM is defined as the processor

that owns the element in the destination distribution,

where Pji <≤ ,0 .

Definition 3：Given a matrix Mn×n, an Adjacent Block

denoted by),(
),(

~ yx
yxM ′′ is defined as the set of elements

clustered in a rectangular region with an upper-left

coordinate (x, y) and a lower-right coordinate (x', y'),

where 0 ≤ x ≤ x' ≤ n−1, 0 ≤ y ≤ y' ≤ n−1. E.g.
)0,0(
)2,2(

~
M ={A[0, 0:2], A[1, 0:2], A[2, 0:2]}.

3.2 Cost Model

 Given a),(),(2211 yxBCyxBC → redistribution
on a two-dimensional matrix M [N: N] over P
processors, the time for an algorithm to perform the
redistribution, in general, can be modeled as follows:
 commcompt TTT +=cos (1)

where compT is the time for communication set
generation that employ an algorithm to compute
source/destination processors of local matrix elements
and the time to pack elements in source local matrix
that have the same destination processors to a sending
buffer, and unpack elements in messages that received
from source processors to their corresponding
destination local matrix positions; commT is the time for
an algorithm to send and receive data among every
processors. We said that compT and commT are the
computation and communication time of a data
redistribution algorithm, respectively.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1341

 For the Symmetric Redistribution Algorithm
(SRA), according to the above description, we can have
the following formulation,

 dscompt TDTSSRATSRAT ×+×+=)()(cos (2)

Where)(SRATcomp is the computation time of SRA to
perform ,*)(,*)(yBCxBC → data redistribution; A
detail analysis of this part will be discussed in next
section; S is the maximum number of processors that a
source processor needs to send data to, i.e., max{|DPS
[Pi]| | Pi <≤0 }; D is the maximum total message size
of a source processor Pi; sT is the startup time of the
interconnection network of a parallel machine; and dT
is the data transmission time of the interconnection
network of a parallel machine.

3.3 The Proposed Algorithm

Communication time is an important factor to the
overall performance of runtime data redistribution.
Several optimizations have been proposed to minimize
the communication overheads in various ways. For
example, the multi-phase redistribution method was
used to reduce message startup cost, the communication
scheduling approach was used to avoid node contention,
and the processor mapping technique was used to
minimize data transmission cost. In this paper, we
attempt to discuss the method that can reduce data
transmission cost in redistributing symmetric matrices.
Utilize the symmetrical attribute of matrix elements, the
desired destination data layout can be achieved via
reconfigured parts of elements in local space without
receiving remote data from other processors.
Consequently, the data transmission overheads during
runtime could be reduced.
3.3.1 Motivating Example

Figure 1 shows an example of
,*)2(,*)(BCBLOCKBC → on 1212×M over three

processors. Matrices figured in the upper and the
lower diagrams represent the layouts of the source and
the destination distributions, respectively.

According to the preliminary explication, the
communication sets of DPS and SPS for all processors
can be listed as follows,

DPS [0P] = { 10 , PP } SPS [0P] = { 10 , PP }

DPS [1P] = { 20 , PP } SPS [1P]= { 20 , PP }

DPS [2P] = { 21 , PP } SPS [2P] = { 21 , PP }

For the communication sets of RDS, we select 1P

as an example to illustrate the generation of
communication messages. Considering source local
matrix of 1P , i.e., 1SLM and the Receive Data Sets of

1P as listed follows, which can be determined by
mathematical close forms that described in [3]

RDS [01←P] = {1b, 2b, 0, 3c, 3d, 3e, 3f, 3g, 3h, 3i, 3j,

3k 1c, 2c, 3c, 0, 4d, 4e, 4f, 4g, 4h, 4i, 4j, 4k},
RDS [21←P] = {1h, 2h, 3h, 4h, 5h, 6h, 7h, 8h, 0, 9i, 9j,

9k 1i, 2i, 3i, 4i, 5i, 6i, 7i, 8i, 9i, 0, 0j, 0k },

1SLM = {1d, 2d, 3d, 4d, 0, 5e, 5f, 5g, 5h, 5i, 5j, 5k, 1e,
2e, 3e, 4e, 5e, 0, 6f, 6g, 6h, 6i, 6j, 6k, 1f, 2f, 3f,
4f, 5f, 6f, 0, 7g, 7h, 7i, 7j, 7k, 1g, 2g, 3g, 4g,
5g, 6g, 7g, 0, 8h, 8i, 8j, 8k}

We find that RDS [01←P] and RDS [21←P] have
some data which are the same with 1SLM , the boldface
fonts of above example show this situation.

Source Distribution

Destination Distribution

2

1

0

P

P

P

0P

0P

1P

1P

2P

2P

Figure 1: BC(BLOCK, *) to BC (2, *) data
re-decomposition on 1212×M over 3 processors.

3.3.2 BC(x, *) to BC(y, *) data redistribution on
symmetric matrix

To illustrate the symmetrical matrix redistribution

method, we use figure 2 as the follow-up example of

the motivating case. The first observation is made to

the source local matrix of P0 in source distribution as

shown in figure 2(a). Adjacent blocks)0,0(
)3,3(1

~
MSL and

)8,0(
)11,3(1

~
MSL are identical to the transposition of

)4,0(
)7,3(0

~
MSL and)4,0(

)7,3(2
~

MSL , respectively. This

relationship leads the following lemma.

Lemma 1：Given a ,*)(,*)(yBCxBC → redistribution

on an n×n symmetric matrix over P processors, for any

source processor p sends data to destination processor q,

in the source distribution,
),0(

),(

~ g

tspMSLU =
Tr

usqMSL)
~

(
),0(

),(
U , where Pxqg ×= , Pxpr ×= ,

1−= Pns , 1−+= xgt , 1−+= xgu , Pqp <≤ ,0 .

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1342

Proof: Due to page limitation, we omit the proof of

this lemma in this version. �

1SLM
1d 2d 3d 4d 0 5e 5f 5g 5h 5i 5j 5k

1e 2e 3e 4e 5e 0 6f 6g 6h 6i 6j 6k

1f 2f 3f 4f 5f 6f 0 7g 7h 7i 7j 7k

1g 2g 3g 4g 5g 6g 7g 0 8h 8i 8j 8k

0SLM

0 1a 1b 1c 1d 1e 1f 1g 1h 1i 1j 1k

1a 0 2b 2c 2d 2e 2f 2g 2h 2i 2j 2k

1b 2b 0 3c 3d 3e 3f 3g 3h 3i 3j 3k

1c 2c 3c 0 4d 4e 4f 4g 4h 4i 4j 4k

2SLM

1h 2h 3h 4h 5h 6h 7h 8h 0 9i 9j 9k

1i 2i 3i 4i 5i 6i 7i 8i 9i 0 0j 0k

1j 2j 3j 4j 5j 6j 7j 8j 9j 0j 0 ak

1k 2k 3k 4k 5k 6k 7k 8k 9k 0k ak 0

(a)

1DLM

1b 2b 0 3c 3d 3e 3f 3g 3h 3i 3j 3k

1c 2c 3c 0 4d 4e 4f 4g 4h 4i 4j 4k

1h 2h 3h 4h 5h 6h 7h 8h 0 9i 9j 9k

1i 2i 3i 4i 5i 5i 7i 8i 9i 0 0j 0k

0DLM

0 1a 1b 1c 1d 1e 1f 1g 1h 1i 1j 1k

1a 0 2b 2c 2d 2e 2f 2g 2h 2i 2j 2k

1f 2f 3f 4f 5f 6f 0 7g 7h 7i 7j 7k

1g 2g 3g 4g 5g 6g 7g 0 8h 8i 8j 8k

2DLM

1d 2d 3d 4d 0 5e 5f 5g 5h 5i 5j 5k

1e 2e 3e 4e 5e 0 6f 6g 6h 6i 6j 6k

1j 2j 3j 4j 5j 6j 7j 8j 9j 0j 0 ak

1k 2k 3k 4k 5k 6k 7k 8k 9k 0k ak 0

(b)
Figure 2: sSLM and sDLM in the BC(BLOCK, *) to
BC (2, *) data redistribution on 1212×M over 3
processors.

 The above example shows that two difference
processors might have the same data in the source
distribution. Since data is distributed over processors
in a regular block-cyclic manner, to accomplish data
exchange, it is possible for one to reuse data elements
that reside in local space if the data is necessary for next
computation in the target distribution phase.

A similar observation can be extracted from the

target distribution layout as shown in figure 2(b). As
the above example, we examine the destination local

matrix of P1. Adjacent blocks)0,0(
)1,3(1

~
MDL ∪

)6,0(
)7,3(1

~
MDL and)4,0(

)5,3(1
~

MDL ∪)10,0(
)11,3(1

~
MDL are

identical to the transposition of
)2,0(
)3,3(0

~
MDL ∪)8,0(

)9,3(0
~

MDL and)2,0(
)3,3(2

~
MDL ∪)10,0(

)11,3(2
~

MDL ,

respectively. We consequently obtain the following
two lemmas.

Lemma 2：Given ,*)(,*)(yBCxBC → redistribution

on an n×n symmetric matrix over P processors, for any

destination processor q receives data from source

processor p, in the target distribution,
),0(

),(

~ g

tspMDLU

=
Tr

usqMDL)
~

(),0(
),(

U , where Pyqg ×= ,

Pypr ×= , 1−= Pns , 1−+= ygt , 1−+= ygu ,

Pqp <≤ ,0 .
Lemma 3：Given ,*)(,*)(yBCxBC → redistribution
on an n×n symmetric matrix over P processors, if iP
needs to send jS elements to jP , then)1(PS j ×
elements within Sj exist originally in DLMj, where

Pji <≤ ,0 , ji ≠ .

3.3.3 Algorithms

 In general, data redistribution can be divided into
sending and receiving phases. The detailed operations
are performed in 6 steps.

Step 1：Indexing of source distribution. Calculate the
data sets of source local array that need to be
transmitted.

Step 2：Message packing. Gather the data according to
data sets that obtained in Step 1 and pack them
together into local buffers.

Step 3：Sending messages. Send all messages to
corresponding destination processors.

Step 4：Indexing of destination distribution. Calculate
the data sets of the destination local array that
need to be received.

Step 5：Receive data. Receive all messages from their
source processors into local buffers

Step 6：Message unpacking. Unpack messages from
receiving buffers to destination local array
according to the communication sets that
obtained in Step 4.

According to the descriptions in section 3.3.2, we add
two optimization phases into above operations. The
modified steps are given as follows and represented in
italic fonts.

Step 2：Minimize Sending Data Sets. Calculate the
index that destination processors already have
the same data; message packing, gather the
data according to data sets that obtained in this
step and pack them together into local buffers.

Step 4：Indexing of destination distribution. Calculate
the data sets of the destination local array that
need to be received. Minimize Receiving
Data Sets. Calculate the index that source
processors are already have the same data and
put the data into destination local matrix.

The algorithm for symmetrical matrix redistribution is
given as follows.

Algorithm_Symmetric_Redistribution

01. /*Indexing of Send*/

02. for i=0 to local_row{

03. golbal_row_index[i]= iP *x+(i%x)+((i/x)*((numproc-1)*x));

04. }

05. for i=0 to local_row{

06 send_index[i][*]=((golbal_row_index[i]/y)%numproc);

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1343

07. }

08./*Minimize Sending */

09. for j=0 to local_col {

10. brother_index[*][j]=j /x%P;

11. }

12. /* Message Packing*/

13. for i= 0 to local_row{

14. for j=0 to loca_col{

15. if send_index[i][j]!=brother_index[i][j]{

16. k=((gol_row_index[i]/y)%numproc);

17. kbuff [size]= ija

18. }}}

19. /*Send data*/

20. send data in kbuff to kP

21 /*indexing of Receive*/

22. for i=0 to local_row{

23. golbal_row_index[i]= iP *y+(i%y)+((i/y)*((numproc-1)*y));

24. }

25. for i=0 to local_row{

26 receive_index[i][*]=((golbal_row_index[i]/x)%numproc);

27. }

28./*Minimize Receiving */

29. for j=0 to local_col {

30. brother_index[*][j]=j /y%P;

31. }

32, if receive_index[i][j]!=brother_index[i][j]{

33]][[hgM i = ija ;//g=0 to n/P×x , h=n/P×y

34 }

35, transposition iM to T
iM ;

36, for k=1 to local_row {

37. for j= 1 to g {

38. if k/y% P=I {

39, ,*kb =][*][jMi ;

40. }}}

41. /*Receive data*/

42. receive data in kbuff to kP

43 /*Unpacking*/

44. for i= 0 to local_row{

45. for j=0 to loca_col{

46. if receive_index[i][j]!=brother_index[i][j]{

47. k=((gol_row_index[i]/x)%numproc);

48. ijb = kbuff [size]

49. }}}

50. end Algorithm_Symmetric_Redistribution

4. Performance Analysis and Experimental Results

4.1 Theoretical Analysis

To investigate the efficiency of the SRA method,
we select a traditional redistribution algorithm, denoted
as TR, to proceed our analysis. Given a BC(x, *) to
BC(y, *) redistribution on an n×n symmetric matrix
over P processors, the indexing cost of the traditional
redistribution algorithm (TR), according to [3], can be
defined as follow

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

),gcd(

),(
)(

yx

yxlcm
OTRTindex (3)

For packing/unpacking cost, since the size of local
matrix is Pn /2 , we can obtain that

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

P

n
OTRTTRT unpackpack

2

)()((4)

For the SRA method, in order to explore those
identical pairs of communication patterns, each
processor calculates the communication sets for matrix
elements in both dimensions. This is twice as
Tindex(TR), i.e., 2×)(TRTindex . After the indexing
phase, an intersection operation with asymptotic
complexity is ()PnO 2 should be carried out.
Therefore, we have

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

P

n
OSRATindex

2
)((5)

For the packing and unpacking process,
according to lemma 3, each processor only needs to
transmit))1((PPS j −× elements to destination

processors Pj, where Sj is the size of message that
should be sent to Pj. Therefore, the packing and
unpacking costs of SRA can be defined as

P

P
TRTSRAT packpack

1
)()(

−×= (6)

 For the communication costs, because the SRA
method minimizes the amount of data that need to be
communicated, the analysis of this part will be focused
on data transmission overheads. Since the data
transmission overheads is directly proportional to the
size of outgoing messages, therefore the communication
costs can be similarly obtained from equation (6).
Given the communication costs of TR method as
Tcomm(TR), then the communication cost of SRA can be
modeled as

P

P
TRTSRAT commcomm

1
)()(

−×= (7)

4.2 Experimental Result
To evaluate the performance of the proposed

method, we have implemented the SRA and TR methods.
Both methods were written in the single program
multiple data (SPMD) programming paradigm with
C+MPI codes and executed on an SMP/Linux cluster
consisted of 16 SMP nodes, which are interconnected
by 100M switch. Each SMP node has one AMD
Athlon XP2000+ CPU and 1GB main memory. The
operating system used is Linux kernel version 2.4.18.
The mpich and gcc compiler we used is version 1.2.4
and gcc 3.2.1, respectively.

Table 1 shows the results of SRA and TR
algorithms to perform a BC (BLOCK, *) to BC (CYCLIC,
*) data redistribution on different matrix size and
number of processors. In table 1, the terms
SRA_comm and TR_comm represent the communication
time of the algorithms; the terms SRA_comp and
TR_comp represent the computational time for message

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1344

generation, the terms SRA_total and TR_total represent
the overall execution time of SRA and TR algorithms,
respectively. From table 1, we observed that
SRA_comp is larger than TR_comp. Although the SRA
method reduces 1/P message packing and unpacking
costs, the SRA method constructs message sets twice in
its local space as described in last section, which is two
times to that of TR algorithm, i.e., O(2 × N/P);
Therefore, the SRA method has little extra
computational overheads.

For communication overheads, because SRA can
reduce 1/P transmission data, the SRA_comm is smaller
than TR_comm. Since the communication time plays
as the major factor to overall performance in runtime
data redistribution, the extra computational overheads
of SRA method will not offset the benefit of the reduced
communication costs. Consequently, we can observe
that SRA_total outperforms TR_total.

Table 1：Execution time of different algorithms to
perform BC(BLOCK, *) to BC(CYCLIC, *)

Processor # 3 6 9 12 15

Matrix Size N×N N=1500 N=3000 N=4500 N=6000 N=7500

SRA_comm 0.5079 0.8354 1.3608 1.8112 2.4085

TR_comm 0.7797 1.0479 1.5390 2.0859 2.6626

SRA_comp 0.0958 0.2421 0.3742 0.6808 0.9785

TR_comp 0.0393 0.1409 0.3022 0.4969 0.7644

SRA_total 0.6037 1.0775 1.735 2.4920 3.3870

TR_total 0.8190 1.1888 1.8412 2.5828 3.4271

single precision second

Another minor discovery is that the improvement
rate of the SRA method decreased as the number of
processors increased. This is because that the
improvement rate of data transmission cost for the SRA
algorithm is directly proportional to (1/P × matrix size).
Consequently, the SRA algorithm performs well when
matrix size is large or the number of processors is small.
These phenomena match our previous theoretical
demonstrations.

5. Conclusion

In this paper, we have presented an algorithm for
efficient symmetric matrices data redistribution.
Applying the attribute of symmetrical matrices, parts of
identical data that located in local space can be reused
to avoid inter-processor data exchange (as illustrated in
lemmas 1 and 2). The theoretical analysis of lemma 3
also proved that 1/P message packing/unpacking and
communication costs can be reduced. The
experimental results reflect small extra computational
overheads of the SRA algorithm will be incurred.
However, the SRA technique can still provide superior
overall performance. A shortcoming of our proposed
algorithm is that SRA can handle only one of the two
dimensions of a matrix at a redistribution phase, i.e., BC
(x, *) to BC (y, *) and BC (*, x) to BC (*, y).

There are some possible extensions could be made.
One of the issues would be to consider the problem

with generalized arbitrary source and destination
processor sets. Another important future research
direction would be to investigate the techniques in
irregular scientific computation problems. It would
also be interesting to extend this technique on
computational grid architectures.

Acknowledgments

The authors are grateful to the anonymous referees
whose insightful comments enabled us to make
significant improvements. The work of this paper was
supported in part by NSC of Taiwan under grant
number NSC92-2213-E-216-029.

Reference

[1]. Y.-C Chung, C.-H Hsu , S.-W Bai, A Basic-Cycle
Calculation Technique for Efficient Dynamic
Data Redistribution, IEEE Trans. on PDS, Vol. 9,
No. 4, pp. 359-377, April 1998.

[2]. Frederic Desprez, Jack Dongarra, and Antoine
Petitet,“ Scheduling Block-Cyclic Data
redistribution,” IEEE Trans. on PDS, Vol. 9, No.
2, pp. 192-205, Feb. 1998.

[3]. C.-H Hsu, S.-W Bai, Y.-C Chung, C.-S Yang, “A
Generalized Basic-Cycle Calculation Method for
Efficient Array Redistribution,” IEEE Trans. on
PDS, Vol. 11, No. 12, pp. 1201-1216, Dec. 2000.

[4]. Emmanuel Jeannot and Frédéric Wagner, “Two
Fast and Efficient Message Scheduling
Algorithms for Data Redistribution through a
Backbone,” Proceedings of the 18th International
Parallel and Distributed Processing Symposium,
April 2004.

[5]. Jens Knoop , Eduard Mehofer, “Distribution
Assignment Placement: Effective Optimization of
Redistribution Costs,” IEEE Trans. on PDS, Vol.
13 No. 6, pp. 628-647, June 2002.

[6]. Kaiser T.H., Baden S.B., “Overlapping
communication and computation with OpenMP
and MPI,” Scientific Programming, Vol. 9, No.
2-3, pp. 69-71(3) 2001.

[7]. Edgar T. Kalns, and Lionel M. Ni, “Processor
Mapping Technique Toward Efficient Data
Redistribution,” IEEE Trans. on PDS, Vol. 6, No.
12, December 1995.

[8]. S. Ramaswamy, B. Simons, and P. Banerjee,
"Optimization for Efficient Array Redistribution
on Distributed Memory Multicomputers," JPDC,
Vol. 38, pp. 217-228, 1996.

[9]. A.K. Somani and A.M. Sansano, Minimizing
Overhead in Parallel Algorithms through
Overlapping Communication/Computation, Tech.
Report 97-8, NASA ICASE, Langley, VA., Feb.
1997.

[10]. D.W. Walker and S.W. Otto, “Redistribution of
Block-Cyclic Data Distributions Using MPI,”
Concurrency: Practice and Experience, Vol. 8,
No. 9, pp. 707-728, 1996.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1345

