On the panconnected properties of the Augmented cubes

Pao-Lien Lai, Jei-Wei Hsue, Jimmy J. M. Tan, Department of Computer and Information Science
National Chiao Tung University
Hsinchu, Taiwan 300, R.O.C.
Lih-Hsing Hsu
Department of Information Engineering
Ta Hwa Institute of Technology
Qionglin, Hsinchu, Taiwan 307, R.O.C.

Abstract

Many topologies have been proposed to balance the performance and some cost parameters. Hypercubes are widely studied in interconnection networks [8], [9]. Augmented cubes are derivatives of hypercubes with good geometric nature and retain all the favorable properties of the hypercube. In this paper, we consider the path embedding problem with fixed endpoints in the Augmented cube $A Q_{n}$. For any two distinct vertices x, y in $A Q_{n}$, let $d_{A Q_{n}}(x, y)$ be the length of the shortest path between x and y. We show that there exists a path of length l joining x and y for every l satisfying $d_{A Q_{n}}(x, y) \leq$ $l \leq\left|V\left(A Q_{n}\right)\right|-1$. As a consequence of $\mathbf{i t}, A Q_{n}$ is edge pancyclic.

Keywords: panconnected, panconnectivity, Augmented cube, path embedding, ring embedding, pancyclic.

1. Introduction

For the graph definition and notation we follow [1]. $G=(V, E)$ is a graph if V is a finite set and E is a subset of $\{(u, v) \mid(u, v)$ is an unordered pair of $V\}$. We say that V is the vertex set and E is the edge set. Two vertices u and v are adjacent if $(u, v) \in E$. A path is a sequence of adjacent vertices, written as $\left\langle v_{0}, v_{1}, v_{2}, \ldots, v_{m}\right\rangle$, in which all the vertices $v_{0}, v_{1}, \ldots, v_{m}$ are distinct except possibly $v_{0}=$ v_{m}. We also write the path $\left\langle v_{0}, P, v_{m}\right\rangle$, where $P=$ $\left\langle v_{0}, v_{1} \ldots, v_{m}\right\rangle$. The length of a path P, denoted by len (P), is the number of edges in P. Let u and v be two

[^0]vertices of G. The distance between u and v, denoted by $d_{G}(u, v)$, is the length of the shortest path of G joining u and v.

A graph G is panconnected if each pair of distinct vertices u, v are joined by a path of length $l, d_{G}(u, v) \leq$ $l \leq|V(G)|-1$. Broersma [2], Kanetkar [7], and Seng [10] et al. studied this problem on some connected graphs. In this paper, we consider the path embedding problem with fixed endpoints in the Augmented cube $A Q_{n}$. We show that $A Q_{n}$ is panconnected for $n \geq 2$.

A cycle is a path with at least three vertices such that the first vertex is the same as the last one. The girth of $G, g(G)$, is the length of the shortest cycle in G. The ring embedding problem, which deals with all the possible lengths of the cycles, is investigated in a lot of interconnection networks [4], [5], [6]. A graph is pancyclic if it contains a cycle of every length from 3 to $|V(G)|$ inclusive. By definition, the girth of any pancyclic graph is 3 . Hence, a graph with large girth is not pancyclic. Furthermore, a graph is called edgepancyclic if every edge lies on a cycle of length l for all $l=3,4, \ldots,|V(G)|$.

2. Definitions and Notations

The following is the recursive definition of the n dimensional Augmented cube $A Q_{n}$.

Definition 1: [3] Let $n \geq 1$ be an integer. The aug-
mented cube $A Q_{n}$ of dimension n has 2^{n} vertices, each labelled by an n-bit binary string $a_{1} a_{2} \ldots a_{n}$. We define $A Q_{1}=K_{2}$. For $n \geq 2, A Q_{n}$ is obtained by taking two copies of the augmented cube $A Q_{n-1}$, denoted by $A Q_{n-1}^{0}$ and $A Q_{n-1}^{1}$, and adding $2 \times 2^{n-1}$ edges between the two as follows:

Let $V\left(A Q_{n-1}^{0}\right)=\left\{0 a_{n-2} a_{n-3} \ldots a_{0}: a_{i}=0\right.$ or $1,0 \leq i \leq n-2\}$ and $V\left(A Q_{n-1}^{1}\right)=\left\{1 b_{n-2} b_{n-3} \ldots b_{0}\right.$: $b_{i}=0$ or $\left.1,0 \leq i \leq n-2\right\}$. A vertex $a=$ $0 a_{n-2} a_{n-3} \ldots a_{0}$ of $A Q_{n-1}^{0}$ is joined to a vertex $b=$ $1 b_{n-2} b_{n-3} \ldots b_{0}$ of $A Q_{n-1}^{1}$ iff for every $i, 0 \leq i \leq$ $n-2$, either
(1) $a_{i}=b_{i}$; in this case, (a, b) is called a hypercube edge, or
(2) $a_{i}=\bar{b}_{i}$; in this case, (a, b) is called a complete edge.

The augmented cubes $A Q_{1}, A Q_{2}$, and $A Q_{3}$ are shown as Fig. 1.

Fig. 1. Augmented cubes $A Q_{1}, A Q_{2}$, and $A Q_{3}$.

We write this recursive construction of $A Q_{n}$ symbolically as $A Q_{n}=A Q_{n-1}^{0} \otimes A Q_{n-1}^{1}$. Let $u=$ $u_{n-1} u_{n-2} \ldots u_{1} u_{0}$ be an n-bits binary string. For $0 \leq$ $k \leq n-1$, we use u_{k}^{h} to denote the binary string $v_{n-1} v_{n-2} \ldots v_{1} v_{0}$ such that $v_{k}=\bar{u}_{k}$ and $u_{i}=v_{i}$ for all $i \neq k$. For $1 \leq k \leq n-1$, we use u_{k}^{c} to denote the binary string $w_{n-1} w_{n-2} \ldots w_{1} w_{0}$ such that $w_{j}=\bar{u}_{j}$ for $j \leq k$ and $w_{i}=v_{i}$ for $i \geq k+1$. Moreover, u_{k}^{h} and u_{k}^{c} are both k-dimensional neighbors of u. Also, $u^{h}\left(u^{c}\right)$ is used to represent $(n-1)$-dimensional neighbor u_{n-1}^{h} (respectively $\left.u_{n-1}^{c}\right)$ of u. And, (u, v) is called a edge of dimension i if $v=u_{i}^{h}$ or $v=u_{i}^{c}$.
Let u, v be two distinct vertices of $A Q_{n}$. There are some known properties for the shortest paths joining
them as follows.
Lemma 1: [3] Let (u, v) be an i-dimensional edge in $E\left(A Q_{n}\right), 0 \leq i \leq n-1$. Assume k be an integer such that $i \neq k$. Then
(1) $\left(u_{k}^{h}, v_{k}^{h}\right) \in E\left(A Q_{n}\right)$ for $0 \leq k \leq n-1$, and
(2) $\left(u_{k}^{c}, v_{k}^{c}\right) \in E\left(A Q_{n}\right)$ for $1 \leq k \leq n-1$.

Lemma 2: [3] Let $u, v \in A Q_{n}$.
(1) If $u, v \in A Q_{n-1}^{0}\left(A Q_{n-1}^{1}\right)$, then there exists a shortest path joining u and v in $A Q_{n}$ with all its vertices in $A Q_{n-1}^{0}$ (respectively, $A Q_{n-1}^{1}$).
(2) Let $u \in A Q_{n-1}^{0}$ and $v \in A Q_{n-1}^{1}$. Then,
(i) There exists a shortest path S joining u and v in $A Q_{n}$ with all its vertices (except u) in $A Q_{n-1}^{1}$.
(ii) There exists a shortest path S joining u and v in $A Q_{n}$ with all its vertices (except v) in $A Q_{n-1}^{0}$.

3. The panconnected property of $A Q_{n}$

For $A Q_{2}$, any two distinct vertices x, y are adjacent and there exists a path of length l between them for each $l, 1 \leq l \leq\left|V\left(A Q_{2}\right)\right|-1=3$. That is, $A Q_{2}$ is panconnected. Then, we show that $A Q_{n}$ is panconnected for $n \geq 2$.

Theorem 1: For $n \geq 2, A Q_{n}$ is panconnected.
Proof: We prove this theorem by induction on n. Clearly, this lemma holds for $n=2$. Assume that it holds for some $n-1 \geq 2$. We now show that it holds for n. For n-dimensional cube $A Q_{n}$, it is obtained from two ($n-1$)-dimensional cubes $A Q_{n-1}$'s, $A Q_{n-1}^{0}$ and $A Q_{n-1}^{1}$. Let $u=u_{n-1} u_{n-2} \ldots u_{1} u_{0}$ and $v=$ $v_{n-1} v_{n-2} \ldots v_{1} v_{0}$ be any two vertices in $A Q_{n}$. Without loss of generality, let $u \in V\left(A Q_{n-1}^{0}\right)$. We study two main cases: (1) $v \in V\left(A Q_{n-1}^{0}\right)$ and (2) $v \in V\left(A Q_{n-1}^{1}\right)$. Case 1: $v \in V\left(A Q_{n-1}^{0}\right)$.

By Lemma 2, there exists a shortest path joining u and v in $A Q_{n}$ with all its vertices in $A Q_{n-1}^{0}$. By the induction hypothesis, there exists a path joining u and v in $A Q_{n-1}^{0}$ for each $l, d_{A Q_{n-1}^{0}}(u, v) \leq l \leq 2^{n-1}-1$.

Suppose that $2^{n-1} \leq l \leq 2^{n}-1$. Let P_{0} be one of the longest paths of $A Q_{n-1}^{0}$ joining u and v, and let $l_{0}=\operatorname{len}\left(P_{0}\right)$. Then $l_{0}=2^{n-1}-1$. Let $l_{1}=l-l_{0}-1$. Let (x, y) be any edge on P_{0}. We can write P_{0} as $\left\langle u, P_{01}, x, y, P_{02}, v\right\rangle$. By definition, x^{h} and y^{h} are vertices in $A Q_{n-1}^{1}$; and, by Lemma 1 , $d_{A Q_{n-1}^{1}}\left(x^{h}, y^{h}\right)=1$. By induction hypothesis, there exists a path P_{1} of length l_{1} in $A Q_{n-1}^{1}$ joining x^{h} and y^{h}. Thus, $\left\langle u, P_{01}, x, x^{h}, P_{1}, y^{h}, y, P_{02}, v\right\rangle$ is a path of length l in $A Q_{n}$ joining u and v.
Case 2: $v \in V\left(A Q_{n-1}^{1}\right)$
Here, we divide this case into two subcases according to whether $(u, v) \in E\left(A Q_{n}\right)$.
Subcase 2.1: $v \in V\left(A Q_{n-1}^{1}\right)$ and $(u, v) \notin E\left(A Q_{n}\right)$.
Suppose that $d_{A Q_{n}}(x, y) \leq l \leq 2^{n-1}$. By Lemma 2, there exists a shortest path S joining u and v in $A Q_{n}$ with all its vertices (except v) in $A Q_{n-1}^{0}$. Let v^{\prime} be the neighbor vertex of v on S. That is, $v^{\prime} \in V\left(A Q_{n-1}^{0}\right)$. By the induction hypothesis, there exists a path P_{0} of length $l-1$ in $A Q_{n-1}^{0}$ joining u and v^{\prime}. Then $\left\langle u, P_{0}, v^{\prime}, v\right\rangle$ is a path of length l in $A Q_{n}$ joining u and v.

Suppose that $2^{n-1}+1 \leq l \leq 2^{n}-1$. Let y be a neighbor of v in $A Q_{n-1}^{1}$ and x be a neighbor of y in $A Q_{n-1}^{0}$ with $x \neq u$. Then $d_{A Q_{n}}(x, y)=d_{A Q_{n-1}^{1}}(y, v)=1$. Let P_{0} be one of the longest paths of $A Q_{n-1}^{0}$ joining u and x; and let $l_{0}=\operatorname{len}\left(P_{0}\right)$. Then $l_{0}=2^{n-1}-1$. Let $l_{1}=l-l_{0}-1$. By induction hypothesis, there exists a path P_{1} of length l_{1} in $A Q_{n-1}^{1}$ joining y and v. Thus, $\left\langle u, P_{0}, x, y, P_{1}, v\right\rangle$ is a path of length l in $A Q_{n}$ joining u and v.

Subcase 2.2: $v \in V\left(A Q_{n-1}^{1}\right)$ and $(u, v) \in E\left(A Q_{n}\right)$.
That is, $d_{A Q_{n}}(u, v)=1$. Without loss of generality, let $u=0^{n}$. Then $v=u^{h}=10^{n-1}$ or $v=u^{c}=1^{n}$. Let $x=u^{c}\left(u^{h}\right)$ if $v=u^{h}$ (respectively $v=u^{c}$). It is not difficult to verify that $d(x, v)=1$. Using the similar technique in case 2.1 , all paths of length $l, 2 \leq l \leq$ $2^{n}-1$, joining u and v can be found in $A Q_{n}$.

Hence, the theorem follows.
By Theorem 1, we have the following result.
Corollary 1: For $n \geq 2, A Q_{n}$ is edge-pancyclic.

4. Conclusions

Augmented cubes have other good properties that have been demonstrated like vertex symmetry, maximum connectivity ($2 n-1$, equals to degree), best possible wide diameter $\left(\left\lceil\frac{n}{2}\right\rceil+1\right)$, routing and broadcasting procedures with liner time complexity. The main result of this paper is embedding of paths of all lengths into the Augmented cubes. By the result, we observe that $A Q_{n}$, is edge pancyclic for $n \geq 2$. The question of embedding other important networks, like the Twisted cubes and Möbius cubes still remains open.

REFERENCES

[1] J.A. Bondy, and U.S.R. Murty, Graph Theory with Applications, North-Holland, New York, 1980.
[2] H. J. Broersma and H. J. Veldman, "3-Connected line graphs of triangular graphs are panconnected and 1-hamiltonian, " J. Graph Theory, 11(1987) 399-407.
[3] S. A. Choudum and V. Sunitha, "Augmented Cubes, " Networks, vol. 40, no. 2, pp. 399-407, 2002.
[4] K. Day, and A. Tripathi, "Embedding of cycles in arrangement graphs," IEEE Trans. Comput., 42(8)(1993) 1002-1006.
[5] A. Germa, M.C. Heydemann, and D. Sotteau, "Cycles in the cube-connected cycles graph," Descrete Appl. Math., 83(1998) 135-155.
[6] S.C. Hwang, and G.H. Chen, "Cycles in butterfly graphs, " Networks, 35(2)(2000) 161-171.
[7] S. V. Kanetkar and P. R. Rao, "Connected, locally 2-connected, $K_{1,3}$-free graphs are panconnected, " J. Graph Theory , 8(1984) 347-353.
[8] F. T. Leighton, Introduction to Parallel algorithms and architectures: arrays, Trees, Hypercubes, San Mateo, calif., Morgan Kaufmann, 1992.
[9] Y. Saad, and M. H. Schultz, "Topological properties of hypercubes, " IEEE Transactions on Computers, vol. 37, no. 7, pp. 253-260, 1988.
[10] Y. Seng, F. Tian, and B. Wei, "Panconnectivity of locally connected claw-free graphs, " Discrete Math. , 203(1999) 253-260.

[^0]: This work was supported in part by the National Science Council of the Republic of China under Contract NSC 93-2213-E-009-091.

 Correspondence to: Professor Jimmy J. M. Tan, Department of Computer and Information Science, National Chiao Tung University, Hsinchu, Taiwan 300, R.O.C. TEL: 886-3-5712121ext. 56618 FAX: 886-3-5721490 e-mail: jmtan@cc.nctu.edu.tw.

