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Abstract In this paper, we show that minimum
clique-transversal and maximum clique-independent
sets of a distance-hereditary graph have the same car-
dinality, and the clique-transversal set problem can be
solved in O(n + m) time and the clique-independent
set problem can be solved in O(n2) time for distance-
hereditary graphs.
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1. Introduction

Let G = (V,E) be a finite, simple, undirected graph
with |V | = n and |E| = m. A clique is a subset of
pairwise adjacent vertices of V . A maximal clique is a
clique that is not a proper subset of any other clique. A
clique-transversal set of G is a subset of vertices inter-
secting all maximal cliques of G. The clique-transversal
set problem is to find a clique-transversal set of G of
minimum cardinality. The cardinality τC(G) of a min-
imum clique-transversal set of G is called the clique-
transversal number of G. A clique-independent set of
G is a collection of pairwise disjoint maximal cliques.
The clique-independent set problem is to find a clique-
independent set of G of maximum cardinality. The car-
dinality αC(G) of a maximum clique-independent set
of G is called the clique-independence number of G. It
is clear that the weak duality inequality αC(G) ≤ τC(G)
holds for any graph G.

The clique-transversal set problem is a spe-
cial case of the generalized clique-transversal prob-
lem [9], the clique r-domination problem [7], and
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k-fold clique-transversal problem [11], respectively.
The clique-independent set problem is a special case
of the clique r-packing problem [7]. Following the al-
gorithm of [11] with k = 1, the clique-transversal
set problem is polynomial-time solvable on bal-
anced graphs. In [7], an efficient algorithm was
proposed to solve the clique r-domination prob-
lem and the clique r-packing problem on dually
chordal graphs. We can use this algorithm to solve the
clique-transversal and the clique-independent set prob-
lems on a dually chordal graph, but the time com-
plexity of this algorithm is proportional to the
sum of the sizes of all maximal cliques of a du-
ally chordal graph. Notice that a dually chordal
graph may have a exponential number of maxi-
mal cliques.

The clique-transversal set problem has been widely
studied in [1, 2, 3, 14, 19, 21]. Eades et al. [13]
showed that the problem of deciding whether a chordal
graph has two disjoint minimum clique-transversal sets
is NP-complete. Both the clique-transversal and the
clique-independent set problems are NP-hard for co-
comparability graphs, planar graphs, line graphs, to-
tal graphs, split graphs, undirected path graphs, and
k-trees with unbounded k [8, 9, 15]. Furthermore, both
problems are polynomial-time solvable for comparabil-
ity graphs, strongly chordal graphs, and Helly circular-
arc graphs [4, 8, 9, 15]. In [20], Sheu extended the
algorithm of [4] to solve the weighted version of the
clique-transversal set problem on weighted compara-
bility graphs in O(m

√
n + M(n)) time, where M(n) is

the complexity of multiplying two n × n matrices.

A graph G is clique-perfect if τC(F ) = αC(F ) for ev-
ery induced subgraph F of G [15]. The following are ex-
amples of clique-perfect graph classes: chordal graphs
without odd suns [18], strongly chordal graphs [8], and
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comparability graphs [4]. Durán [12] et al. demon-
strated that τC(G) and αC(G) can be computed in
polynomial time for any clique-perfect graph G by us-
ing integer linear programming. A graph G = (V,E) is
called distance-hereditary if every pair of vertices are
equidistant in every connected induced subgraph con-
taining them. For other features of distance-hereditary
graphs, please refer to [5, 6, 16]. It has been shown [17]
that finding a minimum-weighted clique-transversal
set on weighted distance-hereditary graphs can be
solved in O(n + m) time and the clique-independence
number of a distance-hereditary graph can be com-
puted in O(n3) time, but it remains open whether
distance-hereditary graphs are clique-perfect. In this
paper, we show that τC(G) = αC(G) for any distance-
hereditary graph G, and the clique-transversal set
problem can be solved in O(n+m) time and the clique-
independent set problem can be solved in O(n2) time
for distance-hereditary graphs. Following the definition
of distance-hereditary graphs, every induced subgraph
of a distance-hereditary graph is distance-hereditary ,
too. The equation τC(F ) = αC(F ) holds for every in-
duced subgraph F of G. Therefore, distance-hereditary
graphs are clique-perfect.

2. Preliminaries

The following theorem shows that distance-
hereditary graphs can be defined recursively.

Theorem 1. [10] Distance-hereditary graphs can be
defined recursively as follows:

1. A graph consisting of only one vertex is distance-
hereditary, and the twin set is the vertex itself.

2. If G1 and G2 are disjoint distance-hereditary
graphs with the twin sets TS(G1) and TS(G2),
respectively, then the graph G = G1 ∪ G2 is a
distance-hereditary graph and the twin set of G is
TS(G1) ∪ TS(G2). G is said to be obtained from
G1 and G2 by a false twin operation.

3. If G1 and G2 are disjoint distance-hereditary
graphs with the twin sets TS(G1) and TS(G2),
respectively, then the graph G obtained by con-
necting every vertex of TS(G1) to all vertices of
TS(G2) is a distance-hereditary graph, and the
twin set of G is TS(G1) ∪ TS(G2). G is said to
be obtained from G1 and G2 by a true twin oper-
ation.

4. If G1 and G2 are disjoint distance-hereditary
graphs with the twin sets TS(G1) and TS(G2),
respectively, then the graph G obtained by con-
necting every vertex of TS(G1) to all vertices of

TS(G2) is a distance-hereditary graph, and the
twin set of G is TS(G1). G is said to be ob-
tained from G1 and G2 by a pendant vertex op-
eration. (In the rest of the paper, we assume that
TS(G) = TS(G1) whenever we say that G is ob-
tained from G1 and G2 by a pendant vertex op-
eration.)

By Theorem 1, a distance-hereditary graph G has
its own twin set TS(G), the twin set TS(G) is a subset
of vertices of G, and it is defined recursively. The con-
struction of G from disjoint distance-hereditary graphs
G1 and G2 as described in Theorem 1 involves only the
twin sets of G1 and G2.

Following Theorem 1, a binary ordered decomposi-
tion tree can be obtained in linear-time [10]. In this de-
composition tree, each leaf is a single vertex graph, and
each internal node represents one of the three opera-
tions: pendant vertex operation (labelled by P), true
twin operation (labelled by T), and false twin opera-
tion (labelled by F). This ordered decomposition tree
is called a PTF-tree. It has 2n − 1 tree nodes. Fig-
ure 1 illustrates an example of a PTF-tree. Hence, a
PTF-tree of a distance-hereditary graph can be ob-
tained in linear-time [10].

3. Distance-Hereditary Graphs Are
Clique-Perfect

In this section, we will prove that distance-
hereditary graphs are clique-perfect by induction. We
observe that a graph G of a single vertex holds the du-
ality equality αC(G) = τC(G). Suppose that G1 and G2

are two distance-hereditary graphs that hold the dual-
ity equality. We will show that a graph G obtained from
G1 and G2 by any one of operations mentioned in The-
orem 1 always holds the duality equality. It will reveal

Figure 1. (a) A distance-hereditary graph G. (b)
A PTF-tree of G.
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that distance-hereditary graphs hold the duality equal-
ity. Since an induced subgraph of a distance-hereditary
graph is also distance-hereditary, it will follow that
distance-hereditary graphs are clique-perfect.

Throughout this section, we assume that G = (V,E)
is a distance-hereditary graph. For a subset V ′ of V ,
G[V ′] is the subgraph induced by V ′. Before proving
that distance-hereditary graphs are clique-perfect, we
give some observations about maximal cliques based
upon the recursive definition of distance-hereditary
graphs.

Definition 1. We use C(G) to denote the collection
of all maximal cliques of G. Hence C(G[TS(G)]) is
the collection of all maximal cliques of G[TS(G)]. We
use CTS(G) to denote the collection of all maximal
cliques of G which are maximal cliques of G[TS(G)]
and use CTS(G) to denote the collection of all max-
imal cliques of G which are not maximal cliques of
G[TS(G)]. Hence C(G) = CTS(G) ∪ CTS(G). Let
CE(G) = C(G) ∪ C(G[TS(G)]). CE(G) denotes the
collection of all maximal cliques of G and all maximal
cliques of G[TS(G)].

Remark 1. Suppose that G is a graph of single vertex
and v is the vertex of G. Then, C(G) = C(G[TS(G)]) =
CTS(G) = CE(G) = {{v}} and CTS(G) = ∅.
Remark 2. A maximal clique of G[TS(G)] is not nec-
essarily a maximal clique of G. If all maximal cliques
of G[TS(G)] are maximal cliques of G, then C(G) =
CE(G). On the other hand, if all maximal cliques of
G[TS(G)] are not maximal cliques of G, then C(G) =
CTS(G).

Lemma 1. Suppose that G is a graph obtained from two
disjoint distance-hereditary graphs G1 and G2 by a false
twin operation. Then, we have

(1) C(G[TS(G)]) = C(G1[TS(G1)]) ∪ C(G2[TS(G2)]),

(2) C(G) = C(G1) ∪ C(G2),

(3) CTS(G) = CTS(G1) ∪ CTS(G2),

(4) CTS(G) = CTS(G1) ∪ CTS(G2), and

(5) CE(G) = CE(G1) ∪ CE(G2).

Proof. By definition. �

Definition 2. Suppose that G is a graph obtained
from two disjoint distance-hereditary graphs G1 and
G2 by a true twin operation or a pendant vertex
operation. We use C12(G) to denote {c1 ∪ c2|c1 ∈
C(G1[TS(G1)]) and c2 ∈ C(G2[TS(G2)])}.
Lemma 2. Suppose that G is a graph obtained from two
disjoint distance-hereditary graphs G1 and G2 by a true
twin operation. Then, we have

(1) C(G[TS(G)]) = C12(G),

(2) C(G) = CTS(G1) ∪ CTS(G2) ∪ C12(G),

(3) CTS(G) = C(G[TS(G)]),

(4) CTS(G) = CTS(G1) ∪ CTS(G2), and

(5) CE(G) = C(G).

Proof. In the following, we just show the correctness
of statement (1). The other statements of this lemma
can be easily verified by definition. Notice that G is
obtained by connecting every vertex of TS(G1) to all
vertices of TS(G2), and TS(G) = TS(G1) ∪ TS(G2).
Clearly, every clique in C12(G) is also a clique of
G[TS(G)]. Let c be a maximal clique in C(G[TS(G)]),
c1 = c ∩ TS(G1), and c2 = c ∩ TS(G2). Suppose that
c1 is not a maximal clique of G1[TS(G1)]. There ex-
ists a maximal clique c′1 in C(G1[TS(G1)]) such that
c1 ⊂ c′1. Then c′1 ∪ c2 is a clique of G[TS(G)] and
c ⊂ (c′1 ∪ c2), which contradicts that c is a maximal
clique of G[TS(G)]. Therefore, c1 ∈ C(G1[TS(G1)].
Similarly, we can prove that c2 ∈ C(G2[TS(G2)]).
Hence, c ∈ C12(G). Conversely, let c1 be a maxi-
mal clique in C(G1[TS(G1)]) and c2 be a maximal
clique in C(G2[TS(G2)]). Then c = c1 ∪ c2 is a
clique in C12(G). Suppose that c is not a maximal
clique of G[TS(G)]. There exists a maximal clique
c′ ∈ C(G[TS(G)]) such that c ⊂ c′. Then either
c1 ⊂ (c′ ∩ TS(G1)) or c2 ⊂ (c′ ∩ TS(G2)). However,
either of them contradicts that c1 and c2 are maxi-
mal cliques of G[TS(G1)] and G[TS(G2)], respectively.
Therefore, (c1 ∪ c2) ∈ C(G[TS(G)]). Following the dis-
cussion above, C(G[TS(G)]) = C12(G). �

Lemma 3. Suppose that G is a graph obtained from two
disjoint distance-hereditary graphs G1 and G2 by a pen-
dant vertex operation. Then, we have

(1) C(G[TS(G)]) = C(G1[TS(G1)]),

(2) C(G) = CTS(G1) ∪ CTS(G2) ∪ C12(G),

(3) CTS(G) = ∅,
(4) CTS(G) = C(G),

(5) CE(G) = C(G) ∪ C(G1[TS(G1)]).

Proof. Notice that G is obtained by connecting ev-
ery vertex of TS(G1) to all vertices of TS(G2), but
TS(G) = TS(G1). By arguments similar to those for
proving Lemma 2, this lemma can be easily proved. �

Lemma 4. Suppose that G is a graph obtained from two
disjoint distance-hereditary graphs G1 and G2 by a true
twin operation or a pendant vertex operation. If S is a
clique-transversal set of G, then either S ∩ TS(G1) is a
clique-transversal set of G1[TS(G1)] or S ∩ TS(G2) is a
clique-transversal set of G2[TS(G2)].
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Proof. Assume for contrary that neither S∩TS(G1) is
a clique-transversal set of G1[TS(G1)] nor S ∩TS(G2)
is a clique-transversal set of G2[TS(G2)]. There ex-
ist maximal cliques c1 and c2 of G1[TS(G1)] and
G2[TS(G2)], respectively, such that S does not con-
tain any vertex in them. By Lemma 2 and Lemma 3,
c1 ∪ c2 is a maximal clique of G. However, S does not
contain any vertex in c1 ∪ c2, which contradicts the as-
sumption that S is a clique-transversal set of G. �

To prove that distance-hereditary graphs are clique-
perfect, we introduce the following definitions.

Definition 3. A strong clique-transversal set of G is a
subset of V that intersects all cliques in CE(G). We use
SCT (G) to represent a strong clique-transversal set of
G.

Definition 4. A weak clique-transversal set of G is
a subset of V that intersects all maximal cliques in
CTS(G). We use WCT (G) to represent a weak clique-
transversal set of G.

Definition 5. A weak clique-independent set of G is
a collection of pairwise disjoint cliques in CTS(G). We
use WCI(G) to represent a weak clique-independent
set of G.

Definition 6. An expanded clique-independent set of
G is a collection of pairwise disjoint cliques in CE(G).
We use ECI(G) to represent an expanded clique-
independent set of G.

Definition 7. Let CT (G) and CI(G) denote a clique-
transversal set and a clique-independent set of G, re-
spectively. We say that a distance-hereditary graph
G holds the strong duality if there exist a CT (G), a
CI(G), a WCT (G), a WCI(G), an SCT (G), and an
ECI(G) such that the following four conditions are sat-
isfied:

(1) |CT (G)| = |CI(G)|,
(2) |WCT (G)| = |WCI(G)|,
(3) |SCT (G)| = |ECI(G)|, and

(4) WCI(G) ⊆ ECI(G).

For simplicity, let XI(G) denote ECI(G) \ WCI(G).

Remark 3. Suppose that G holds the strong duality.
Since |WCT (G)| = |WCI(G)|, such a WCT (G) and
a WCI(G) are a minimum weak clique-transversal set
and a maximum weak clique-independent set of G, re-
spectively. Hence XI(G) ⊆ C(G[TS(G)]).

Remark 4. Since |CI(G)| ≤ αC(G) ≤ τC(G) ≤
|CT (G)|, G holds the duality equality if there ex-
ist a clique-transversal set CT (G) and a clique-
independent set CI(G) satisfying the condition that
|CT (G)| = |CI(G)|.

Instead of proving that distance-hereditary graphs
hold the duality equality, we prove that they hold the
strong duality. We will show how to find a CT (G), a
CI(G), a WCT (G), a WCI(G), an SCT (G), and an
ECI(G) such that the four conditions of strong duality
are satisfied.

Lemma 5. Assume that G is a graph of single vertex
and v is the vertex of G. There exist the following sets:

(1) CT (G) = {v},
(2) SCT (G) = {v},
(3) WCT (G) = ∅,
(4) WCI(G) = ∅,
(5) ECI(G) = {{v}}, and

(6) CI(G) = {{v}}
such that G holds the strong duality.

Proof. The lemma can be easily verified by the defi-
nition. �

Definition 8. Assume that S is a family of sets. Let
min S denote a set of minimum cardinality in S.

Lemma 6. Assume that G is formed from two dis-
joint distance-hereditary graphs G1 and G2 by a pen-
dant vertex operation, and both G1 and G2 hold the
strong duality. Suppose that XI(G1) = {c1, . . . , ck1},
XI(G2) = {d1, . . . , dk2}, and k = min{k1, k2}. Let
X = {ci ∪ di|1 ≤ i ≤ k}. Let X̃ = {ck+1, · · · , ck1} if
k1 > k and X̃ = ∅ otherwise. There exist the follow-
ing sets:

(1) CT (G) = min{SCT (G1) ∪ WCT (G2), SCT (G2) ∪
WCT (G1)},
(2) SCT (G) = SCT (G1) ∪ WCT (G2),

(3) WCT (G) = CT (G),

(4) WCI(G) = WCI(G1) ∪ WCI(G2) ∪ X,

(5) ECI(G) = WCI(G1) ∪ WCI(G2) ∪ X ∪ X̃, and

(6) CI(G) = WCI(G)
such that G holds the strong duality.

Proof.

(1) By (2) of Lemma 3, both SCT (G1) ∪ WCT (G2)
and SCT (G2) ∪ WCT (G1) are clique-transversal
sets of G. We let CT (G) = min{SCT (G1) ∪
WCT (G2), SCT (G2) ∪ WCT (G1)}.
(2) Notice that TS(G) = TS(G1). Since SCT (G1) in-
tersects all maximal cliques of C(G[TS(G1)]), it in-
tersects all maximal cliques of C(G[TS(G)]). Hence
SCT (G1)∪WCT (G2) is a strong clique-transversal set
of G. We let SCT (G) = SCT (G1) ∪ WCT (G2).
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(3) By (4) of Lemma 3, a weak clique-transversal
set of G is also a clique-transversal set of G. We let
WCT (G) = CT (G).

Suppose that XI(G1) = {c1, . . . , ck1}, XI(G2) =
{d1, . . . , dk2}, and k = min{k1, k2}. Let X = {ci ∪
di|1 ≤ i ≤ k} and X̃ = {ck+1, · · · , ck1}.
(4) By (2) and (4) of Lemma 3, X is a clique-
independent set of G and WCI(G1) ∪ WCI(G2) ∪ X
is a weak clique-independent set of G. We let
WCI(G) = WCI(G1) ∪ WCI(G2) ∪ X.

(5) It is easy to verify that WCI(G1) ∪ WCI(G2) ∪
X ∪ X̃ is an expanded clique-independent set of G. We
let ECI(G) = WCI(G1) ∪ WCI(G2) ∪ X ∪ X̃.

(6) By (4) of Lemma 3, a clique-independent set of
G is also a weak clique-independent set of G. We let
CI(G) = WCI(G).

In the following, we show that CT (G), CI(G),
WCT (G), WCI(G), SCT (G), and ECI(G) satisfy the
conditions of strong duality.

Since G1 and G2 hold the strong dual-
ity, by (2) and (3) of Definition 7, k1 =
|SCT (G1)| − |WCT (G1)| = |XI(G1)| and
k2 = |SCT (G2)| − |WCT (G2)| = |XI(G2)|.
Clearly |CT (G)| = |WCT (G)| = |WCT (G1)| +
|WCT (G2)| + k = |WCI(G1)| + |WCI(G2)| + k =
|WCI(G)| = |CI(G)|. Next we verify that
|SCT (G)| = |ECI(G)|. If k = k1, then X̃ is
empty, |SCT (G)| = k1 + |WCT (G1)| + |WCT (G2)|,
and |ECI(G)| = |WCI(G1)| + |WCI(G2)| + k1.
On the other hand, suppose that k = k2. We
have |SCT (G)| = |SCT (G1)| + |WCT (G2)| =
k1 + |WCT (G1)| + |WCT (G2)| and |ECI(G)| =
|WCI(G1)| + |WCI(G2)| + |X| + |X̃| =
|WCI(G1)| + |WCI(G2)| + k1. We can see that
|SCT (G)| = |ECI(G)| in both cases. Finally,
WCI(G) ⊆ ECI(G) is obvious. Thus G holds the
strong duality. �

Lemma 7. Assume that G is formed from two disjoint
distance-hereditary graphs G1 and G2 by a true twin
operation, and both G1 and G2 hold the strong dual-
ity. Suppose that XI(G1) = {c1, . . . , ck1}, XI(G2) =
{d1, . . . , dk2}, and k = min{k1, k2}. LetX = {ci∪di|1 ≤
i ≤ k}. There exist the following sets:

(1) CT (G) = min{SCT (G1) ∪ WCT (G2), SCT (G2) ∪
WCT (G1)},
(2) SCT (G) = CT (G),

(3) WCT (G) = WCT (G1) ∪ WCT (G2),

(4) WCI(G) = WCI(G1) ∪ WCI(G2),

(5) ECI(G) = WCI(G1) ∪ WCI(G2) ∪ X, and

(6) CI(G) = ECI(G)
such that G holds the strong duality.

Proof. By (2) and (5) of Lemma 2, we see that both
SCT (G1) ∪ WCT (G2) and SCT (G2) ∪ WCT (G1) are
not only clique-transversal sets of G but also strong
clique-transversal sets of G. Besides, X is a clique-
independent set of G and WCI(G1) ∪ WCI(G2) ∪ X
is not only a clique-independent set of G but also
an expanded clique-independent set of G. Further-
more, by (4) of Lemma 2, WCT (G1)∪WCT (G2) and
WCI(G1)∪WCI(G2) are a weak clique-transversal set
and a weak clique-independent set of G, respectively.
Therefore we let

(1) CT (G) = min{SCT (G1) ∪ WCT (G2), SCT (G2) ∪
WCT (G1)},
(2) SCT (G) = CT (G),

(3) WCT (G) = WCT (G1) ∪ WCT (G2),

(4) WCI(G) = WCI(G1) ∪ WCI(G2),

(5) ECI(G) = WCI(G1) ∪ WCI(G2) ∪ X, and

(6) CI(G) = ECI(G).
Since G1 and G2 hold the strong duality, by (2) and
(3) of Definition 7, k1 = |SCT (G1)| − |WCT (G1)| =
|XI(G1)| and k2 = |SCT (G2)| − |WCT (G2)| =
|XI(G2)|. Hence |CT (G)| = |SCT (G)| = |ECI(G)| =
|CI(G)| = k + |WCI(G1)| + |WCI(G2)|. Besides,
|WCT (G)| = |WCI(G)|. Finally, WCI(G) ⊆ ECI(G)
is obvious. Following the discussion above, G holds
the strong duality. �

Lemma 8. Assume that G is obtained from two disjoint
distance-hereditary graphs G1 and G2 by a false twin
operation, and both G1 and G2 hold the strong duality.
There exist the following sets:

(1) CT (G) = CT (G1) ∪ CT (G2),

(2) SCT (G) = SCT (G1) ∪ SCT (G2),

(3) WCT (G) = WCT (G1) ∪ WCT (G2),

(4) WCI(G) = WCI(G1) ∪ WCI(G2),

(5) ECI(G) = ECI(G1) ∪ ECI(G2), and

(6) CI(G) = CI(G1) ∪ CI(G2)
such that G holds the strong duality.

Proof. Following Lemma 1, CT (G1) ∪ CT (G2) is a
clique-transversal set of G, and SCT (G1) ∪ SCT (G2)
a strong clique-transversal set of G, . . . , etc. So we let

(1) CT (G) = CT (G1) ∪ CT (G2),

(2) SCT (G) = SCT (G1) ∪ SCT (G2),

(3) WCT (G) = WCT (G1) ∪ WCT (G2),

(4) WCI(G) = WCI(G1) ∪ WCI(G2),
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(5) ECI(G) = ECI(G1) ∪ ECI(G2), and

(6) CI(G) = CI(G1) ∪ CI(G2).
Since G1 and G2 hold the strong duality, it is easy to
verify that all four conditions of the strong duality are
satisfied. �

Now we are ready to prove the main theorem.

Theorem 2. Distance-hereditary graphs are clique-
perfect.

Proof. We have explained the reasons that distance-
hereditary graphs are clique-perfect if they hold the
strong duality. Based upon the recursive definition of
distance-hereditary graphs, and Lemmas 5, 6, 7, and
8, we can prove that distance-hereditary graphs hold
strong duality by induction. Hence, distance-hereditary
graphs are clique-perfect. �

4. Conclusion

We have shown distance-hereditary graphs are
clique-perfect graphs. The proof is based upon the re-
cursive definition of distance-hereditary graphs. Fur-
thermore, as a byproduct of the inductive proof, we
can design polynomial-time dynamic programming al-
gorithms to find a minimum clique-transversal set and
a maximum clique-independent set for a distance-
hereditary graph G. The constructive proofs of Lemma
6, 7, and 8 suggest that we build a CT (G) and a
CI(G) bottom up according to the PTF-tree of G. If
we store a clique-transversal set in a linked list and a
clique-independent set in a linked list of cliques, re-
spectively. Then, the union of two clique-transversal
sets or two clique-independent sets can be done in con-
stant time. We see that the clique-transversal set
problem can be solved in O(n + m) and the clique-
independent set problem can be solved in O(n2)
time for distance-hereditary graphs. We conjec-
ture that the algorithm for the clique-independent set
problem on distance-hereditary graphs can be imple-
mented in O(n + m) time.
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