The Clique-Transversal and the Clique-Independent Set Problems on Distance-Hereditary Graphs †

Chuan-Min Lee and Maw-Shang Chang

Department of Computer Science and Information Engineering National Chung Cheng University Ming-Hsiung, Chiayi 621, Taiwan, R.O.C (cmlee|mschang)@cs.ccu.edu.tw

Abstract In this paper, we show that minimum clique-transversal and maximum clique-independent sets of a distance-hereditary graph have the same cardinality, and the clique-transversal set problem can be solved in O(n + m) time and the clique-independent set problem can be solved in $O(n^2)$ time for distance-hereditary graphs.

Keywords: Algorithm, Clique-Transversal Set, Clique-Independent Set, Distance-Hereditary Graph.

1. Introduction

Let G = (V, E) be a finite, simple, undirected graph with |V| = n and |E| = m. A *clique* is a subset of pairwise adjacent vertices of V. A maximal clique is a clique that is not a proper subset of any other clique. A clique-transversal set of G is a subset of vertices intersecting all maximal cliques of G. The *clique-transversal* set problem is to find a clique-transversal set of G of minimum cardinality. The cardinality $\tau_C(G)$ of a minimum clique-transversal set of G is called the *clique*transversal number of G. A clique-independent set of G is a collection of pairwise disjoint maximal cliques. The *clique-independent set problem* is to find a cliqueindependent set of G of maximum cardinality. The cardinality $\alpha_C(G)$ of a maximum clique-independent set of G is called the *clique-independence number* of G. It is clear that the weak duality inequality $\alpha_C(G) \leq \tau_C(G)$ holds for any graph G.

The clique-transversal set problem is a special case of the generalized clique-transversal problem [9], the clique r-domination problem [7], and

k-fold clique-transversal problem [11], respectively. The clique-independent set problem is a special case of the clique r-packing problem [7]. Following the algorithm of [11] with k = 1, the clique-transversal set problem is polynomial-time solvable on balanced graphs. In [7], an efficient algorithm was proposed to solve the clique r-domination problem and the clique *r*-packing problem on dually chordal graphs. We can use this algorithm to solve the clique-transversal and the clique-independent set problems on a dually chordal graph, but the time complexity of this algorithm is proportional to the sum of the sizes of all maximal cliques of a dually chordal graph. Notice that a dually chordal graph may have a exponential number of maximal cliques.

The clique-transversal set problem has been widely studied in [1, 2, 3, 14, 19, 21]. Eades et al. [13] showed that the problem of deciding whether a chordal graph has two disjoint minimum clique-transversal sets is NP-complete. Both the clique-transversal and the clique-independent set problems are NP-hard for cocomparability graphs, planar graphs, line graphs, total graphs, split graphs, undirected path graphs, and k-trees with unbounded k [8, 9, 15]. Furthermore, both problems are polynomial-time solvable for comparability graphs, strongly chordal graphs, and Helly circulararc graphs [4, 8, 9, 15]. In [20], Sheu extended the algorithm of [4] to solve the weighted version of the clique-transversal set problem on weighted comparability graphs in $O(m\sqrt{n} + M(n))$ time, where M(n) is the complexity of multiplying two $n \times n$ matrices.

A graph G is clique-perfect if $\tau_C(F) = \alpha_C(F)$ for every induced subgraph F of G [15]. The following are examples of clique-perfect graph classes: chordal graphs without odd suns [18], strongly chordal graphs [8], and

[†] This research was partially supported by National Science Council, ROC, under contract number NSC-90-2213-E-194-034.

comparability graphs [4]. Durán [12] et al. demonstrand Odmouter (Symposium) (Decen 547.02004, et aipei, Taiwantwin set of G is $TS(G_1)$. G is said to be obpolynomial time for any clique-perfect graph G by using integer linear programming. A graph G = (V, E) is called distance-hereditary if every pair of vertices are equidistant in every connected induced subgraph containing them. For other features of distance-hereditary graphs, please refer to [5, 6, 16]. It has been shown [17]that finding a *minimum-weighted* clique-transversal set on weighted distance-hereditary graphs can be solved in O(n+m) time and the clique-independence number of a distance-hereditary graph can be computed in $O(n^3)$ time, but it remains open whether distance-hereditary graphs are clique-perfect. In this paper, we show that $\tau_C(G) = \alpha_C(G)$ for any distancehereditary graph G, and the clique-transversal set problem can be solved in O(n+m) time and the cliqueindependent set problem can be solved in $O(n^2)$ time for distance-hereditary graphs. Following the definition of distance-hereditary graphs, every induced subgraph of a distance-hereditary graph is *distance-hereditary*, too. The equation $\tau_C(F) = \alpha_C(F)$ holds for every induced subgraph F of G. Therefore, distance-hereditary graphs are clique-perfect.

2. Preliminaries

The following theorem shows that distancehereditary graphs can be defined recursively.

Theorem 1. [10] Distance-hereditary graphs can be defined recursively as follows:

- 1. A graph consisting of only one vertex is distancehereditary, and the twin set is the vertex itself.
- 2. If G_1 and G_2 are disjoint distance-hereditary graphs with the twin sets $TS(G_1)$ and $TS(G_2)$, respectively, then the graph $G = G_1 \cup G_2$ is a distance-hereditary graph and the twin set of G is $TS(G_1) \cup TS(G_2)$. G is said to be obtained from G_1 and G_2 by a *false twin* operation.
- 3. If G_1 and G_2 are disjoint distance-hereditary graphs with the twin sets $TS(G_1)$ and $TS(G_2)$, respectively, then the graph G obtained by connecting every vertex of $TS(G_1)$ to all vertices of $TS(G_2)$ is a distance-hereditary graph, and the twin set of G is $TS(G_1) \cup TS(G_2)$. G is said to be obtained from G_1 and G_2 by a *true twin* operation.
- 4. If G_1 and G_2 are disjoint distance-hereditary graphs with the twin sets $TS(G_1)$ and $TS(G_2)$, respectively, then the graph G obtained by connecting every vertex of $TS(G_1)$ to all vertices of

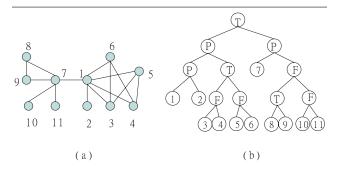
 $TS(G_2)$ is a distance-hereditary graph, and the tained from G_1 and G_2 by a pendant vertex operation. (In the rest of the paper, we assume that $TS(G) = TS(G_1)$ whenever we say that G is obtained from G_1 and G_2 by a pendant vertex operation.)

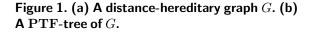
By Theorem 1, a distance-hereditary graph G has its own twin set TS(G), the twin set TS(G) is a subset of vertices of G, and it is defined recursively. The construction of G from disjoint distance-hereditary graphs G_1 and G_2 as described in Theorem 1 involves only the twin sets of G_1 and G_2 .

Following Theorem 1, a binary ordered decomposition tree can be obtained in linear-time [10]. In this decomposition tree, each leaf is a single vertex graph, and each internal node represents one of the three operations: pendant vertex operation (labelled by P), true twin operation (labelled by T), and false twin operation (labelled by F). This ordered decomposition tree is called a **PTF**-tree. It has 2n - 1 tree nodes. Figure 1 illustrates an example of a **PTF**-tree. Hence, a **PTF**-tree of a distance-hereditary graph can be obtained in linear-time [10].

3. Distance-Hereditary Graphs Are **Clique-Perfect**

In this section, we will prove that distancehereditary graphs are clique-perfect by induction. We observe that a graph G of a single vertex holds the duality equality $\alpha_C(G) = \tau_C(G)$. Suppose that G_1 and G_2 are two distance-hereditary graphs that hold the duality equality. We will show that a graph G obtained from G_1 and G_2 by any one of operations mentioned in Theorem 1 always holds the duality equality. It will reveal





that distance-hereditary graphs hold the duality equal- $\text{ity.I6tn} \textbf{Computer} \textbf{Symplosium}, \textbf{Decditsanze2004,} \textbf{iTaipei, Taipat}(G) = C_{\overline{TS}}(G_1) \cup C_{\overline{TS}}(G_2) \cup C_{12}(G), \\ \textbf{C}_{\overline{TS}}(G_2) \cup C_{12}(G), \\ \textbf{C}_{\overline{TS}}(G_2) \cup C_{12}(G), \\ \textbf{C}_{\overline{TS}}(G_2) \cup C_{12}(G), \\ \textbf{C}_{\overline{TS}}(G_2) \cup C_{\overline{TS}}(G_2) \cup C_{\overline{TS}}$ graph is also distance-hereditary, it will follow that distance-hereditary graphs are clique-perfect.

Throughout this section, we assume that G = (V, E)is a distance-hereditary graph. For a subset V' of V, G[V'] is the subgraph induced by V'. Before proving that distance-hereditary graphs are clique-perfect, we give some observations about maximal cliques based upon the recursive definition of distance-hereditary graphs.

Definition 1. We use C(G) to denote the collection of all maximal cliques of G. Hence C(G[TS(G)]) is the collection of all maximal cliques of G[TS(G)]. We use $C_{TS}(G)$ to denote the collection of all maximal cliques of G which are maximal cliques of G[TS(G)]and use $C_{\overline{TS}}(G)$ to denote the collection of all maximal cliques of G which are not maximal cliques of G[TS(G)]. Hence $C(G) = C_{TS}(G) \cup C_{\overline{TS}}(G)$. Let $C_E(G) = C(G) \cup C(G[TS(G)]). C_E(G)$ denotes the collection of all maximal cliques of G and all maximal cliques of G[TS(G)].

Remark 1. Suppose that G is a graph of single vertex and v is the vertex of G. Then, C(G) = C(G[TS(G)]) = $C_{TS}(G) = C_E(G) = \{\{v\}\} and C_{\overline{TS}}(G) = \emptyset.$

Remark 2. A maximal clique of G[TS(G)] is not necessarily a maximal clique of G. If all maximal cliques of G[TS(G)] are maximal cliques of G, then C(G) = $C_E(G)$. On the other hand, if all maximal cliques of G[TS(G)] are not maximal cliques of G, then C(G) = $C_{\overline{TS}}(G).$

Lemma 1. Suppose that G is a graph obtained from two disjoint distance-hereditary graphs G_1 and G_2 by a false twin operation. Then, we have

(1)
$$C(G[TS(G)]) = C(G_1[TS(G_1)]) \cup C(G_2[TS(G_2)]),$$

(2) $C(G) = C(G_1) \cup C(G_2),$

(3) $C_{TS}(G) = C_{TS}(G_1) \cup C_{TS}(G_2),$

(4) $C_{\overline{TS}}(G) = C_{\overline{TS}}(G_1) \cup C_{\overline{TS}}(G_2)$, and

(5) $C_E(G) = C_E(G_1) \cup C_E(G_2).$

Proof. By definition.

Definition 2. Suppose that G is a graph obtained from two disjoint distance-hereditary graphs G_1 and G_2 by a true twin operation or a pendant vertex operation. We use $C_{12}(G)$ to denote $\{c_1 \cup c_2 | c_1 \in$ $C(G_1[TS(G_1)])$ and $c_2 \in C(G_2[TS(G_2)])$.

Lemma 2. Suppose that G is a graph obtained from two disjoint distance-hereditary graphs G_1 and G_2 by a true twin operation. Then, we have

(1) $C(G[TS(G)]) = C_{12}(G),$ (3) $C_{TS}(G) = C(G[TS(G)]),$ (4) $C_{\overline{TS}}(G) = C_{\overline{TS}}(G_1) \cup C_{\overline{TS}}(G_2)$, and (5) $C_E(G) = C(G)$.

Proof. In the following, we just show the correctness of statement (1). The other statements of this lemma can be easily verified by definition. Notice that G is obtained by connecting every vertex of $TS(G_1)$ to all vertices of $TS(G_2)$, and $TS(G) = TS(G_1) \cup TS(G_2)$. Clearly, every clique in $C_{12}(G)$ is also a clique of G[TS(G)]. Let c be a maximal clique in C(G[TS(G)]), $c_1 = c \cap TS(G_1)$, and $c_2 = c \cap TS(G_2)$. Suppose that c_1 is not a maximal clique of $G_1[TS(G_1)]$. There exists a maximal clique c'_1 in $C(G_1[TS(G_1)])$ such that $c_1 \subset c'_1$. Then $c'_1 \cup c_2$ is a clique of G[TS(G)] and $c \in (c'_1 \cup c_2)$, which contradicts that c is a maximal clique of G[TS(G)]. Therefore, $c_1 \in C(G_1[TS(G_1)])$. Similarly, we can prove that $c_2 \in C(G_2[TS(G_2)])$. Hence, $c \in C_{12}(G)$. Conversely, let c_1 be a maximal clique in $C(G_1[TS(G_1)])$ and c_2 be a maximal clique in $C(G_2[TS(G_2)])$. Then $c = c_1 \cup c_2$ is a clique in $C_{12}(G)$. Suppose that c is not a maximal clique of G[TS(G)]. There exists a maximal clique $c' \in C(G[TS(G)])$ such that $c \subset c'$. Then either $c_1 \subset (c' \cap TS(G_1))$ or $c_2 \subset (c' \cap TS(G_2))$. However, either of them contradicts that c_1 and c_2 are maximal cliques of $G[TS(G_1)]$ and $G[TS(G_2)]$, respectively. Therefore, $(c_1 \cup c_2) \in C(G[TS(G)])$. Following the discussion above, $C(G[TS(G)]) = C_{12}(G)$.

Lemma 3. Suppose that G is a graph obtained from two disjoint distance-hereditary graphs G_1 and G_2 by a pendant vertex operation. Then, we have

- $(1) C(G[TS(G)]) = C(G_1[TS(G_1)]),$ (2) $C(G) = C_{\overline{TS}}(G_1) \cup C_{\overline{TS}}(G_2) \cup C_{12}(G),$ (3) $C_{TS}(G) = \emptyset$, $(4) C_{\overline{TS}}(G) = C(G),$
- (5) $C_E(G) = C(G) \cup C(G_1[TS(G_1)]).$

Proof. Notice that G is obtained by connecting every vertex of $TS(G_1)$ to all vertices of $TS(G_2)$, but $TS(G) = TS(G_1)$. By arguments similar to those for proving Lemma 2, this lemma can be easily proved. \Box

Lemma 4. Suppose that G is a graph obtained from two disjoint distance-hereditary graphs G_1 and G_2 by a true twin operation or a pendant vertex operation. If S is a clique-transversal set of G, then either $S \cap TS(G_1)$ is a clique-transversal set of $G_1[TS(G_1)]$ or $S \cap TS(G_2)$ is a clique-transversal set of $G_2[TS(G_2)]$.

Proof. Assume for contrary that neither $S \cap TS(G_1)$ is a clique computers Symposium (7566,1)5+67, 20045 (Kaidei, Taiwan the duality equality, we prove that they hold the is a clique-transversal set of $G_2[TS(G_2)]$. There exist maximal cliques c_1 and c_2 of $G_1[TS(G_1)]$ and $G_2[TS(G_2)]$, respectively, such that S does not contain any vertex in them. By Lemma 2 and Lemma 3, $c_1 \cup c_2$ is a maximal clique of G. However, S does not contain any vertex in $c_1 \cup c_2$, which contradicts the assumption that S is a clique-transversal set of G.

To prove that distance-hereditary graphs are cliqueperfect, we introduce the following definitions.

Definition 3. A strong clique-transversal set of G is a subset of V that intersects all cliques in $C_E(G)$. We use SCT(G) to represent a strong clique-transversal set of G.

Definition 4. A weak clique-transversal set of G is a subset of V that intersects all maximal cliques in $C_{\overline{TS}}(G)$. We use WCT(G) to represent a weak cliquetransversal set of G.

Definition 5. A weak clique-independent set of G is a collection of pairwise disjoint cliques in $C_{\overline{TS}}(G)$. We use WCI(G) to represent a weak clique-independent set of G.

Definition 6. An expanded clique-independent set of G is a collection of pairwise disjoint cliques in $C_E(G)$. We use ECI(G) to represent an expanded cliqueindependent set of G.

Definition 7. Let CT(G) and CI(G) denote a cliquetransversal set and a clique-independent set of G, respectively. We say that a distance-hereditary graph G holds the strong duality if there exist a CT(G), a CI(G), a WCT(G), a WCI(G), an SCT(G), and an ECI(G) such that the following four conditions are satisfied:

(1) |CT(G)| = |CI(G)|,

(2) |WCT(G)| = |WCI(G)|,

(3) |SCT(G)| = |ECI(G)|, and

(4) $WCI(G) \subseteq ECI(G)$.

For simplicity, let XI(G) denote $ECI(G) \setminus WCI(G)$.

Remark 3. Suppose that G holds the strong duality. Since |WCT(G)| = |WCI(G)|, such a WCT(G) and a WCI(G) are a minimum weak clique-transversal set and a maximum weak clique-independent set of G, respectively. Hence $XI(G) \subseteq C(G[TS(G)])$.

Remark 4. Since $|CI(G)| \leq \alpha_C(G) \leq \tau_C(G) \leq$ |CT(G)|, G holds the duality equality if there exist a clique-transversal set CT(G) and a cliqueindependent set CI(G) satisfying the condition that |CT(G)| = |CI(G)|.

Instead of proving that distance-hereditary graphs strong duality. We will show how to find a CT(G), a CI(G), a WCT(G), a WCI(G), an SCT(G), and an ECI(G) such that the four conditions of strong duality are satisfied.

Lemma 5. Assume that G is a graph of single vertex and v is the vertex of G. There exist the following sets:

(1) $CT(G) = \{v\},\$ (2) $SCT(G) = \{v\},\$ (3) $WCT(G) = \emptyset$, (4) $WCI(G) = \emptyset$, (5) $ECI(G) = \{\{v\}\}, and$ (6) $CI(G) = \{\{v\}\}\$ such that G holds the strong duality.

Proof. The lemma can be easily verified by the definition.

Definition 8. Assume that S is a family of sets. Let $\min S$ denote a set of minimum cardinality in S.

Lemma 6. Assume that G is formed from two disjoint distance-hereditary graphs G_1 and G_2 by a pen**dant vertex** operation, and both G_1 and G_2 hold the strong duality. Suppose that $XI(G_1) = \{c_1, \ldots, c_{k_1}\},\$ $XI(G_2) = \{d_1, \ldots, d_{k_2}\}, and k = \min\{k_1, k_2\}.$ Let $X = \{c_i \cup d_i | 1 \le i \le k\}.$ Let $\tilde{X} = \{c_{k+1}, \cdots, c_{k_1}\}$ if $k_1 > k$ and $X = \emptyset$ otherwise. There exist the following sets:

(1) $CT(G) = \min\{SCT(G_1) \cup WCT(G_2), SCT(G_2) \cup \}$ $WCT(G_1)$

(2) $SCT(G) = SCT(G_1) \cup WCT(G_2),$

(3) WCT(G) = CT(G),

(4) $WCI(G) = WCI(G_1) \cup WCI(G_2) \cup X$,

(5) $ECI(G) = WCI(G_1) \cup WCI(G_2) \cup X \cup \tilde{X}$, and

(6) CI(G) = WCI(G)

such that G holds the strong duality.

Proof.

(1) By (2) of Lemma 3, both $SCT(G_1) \cup WCT(G_2)$ and $SCT(G_2) \cup WCT(G_1)$ are clique-transversal sets of G. We let $CT(G) = \min\{SCT(G_1) \cup$ $WCT(G_2), SCT(G_2) \cup WCT(G_1)$.

(2) Notice that $TS(G) = TS(G_1)$. Since $SCT(G_1)$ intersects all maximal cliques of $C(G[TS(G_1)])$, it intersects all maximal cliques of C(G[TS(G)]). Hence $SCT(G_1) \cup WCT(G_2)$ is a strong clique-transversal set of G. We let $SCT(G) = SCT(G_1) \cup WCT(G_2)$.

(3) By (4) of Lemma 3, a weak clique-transversal set Inf. Completer Symposiums Decal 15:11 of 2004 Table i, Taiwanthat G holds the strong duality. WCT(G) = CT(G).

Suppose that $XI(G_1) = \{c_1, ..., c_{k_1}\}, XI(G_2) =$ $\{d_1, \ldots, d_{k_2}\}$, and $k = \min\{k_1, k_2\}$. Let $X = \{c_i \cup \}$ $d_i | 1 \le i \le k \}$ and $X = \{c_{k+1}, \cdots, c_{k_1}\}.$

(4) By (2) and (4) of Lemma 3, X is a cliqueindependent set of G and $WCI(G_1) \cup WCI(G_2) \cup X$ is a weak clique-independent set of G. We let $WCI(G) = WCI(G_1) \cup WCI(G_2) \cup X.$

(5) It is easy to verify that $WCI(G_1) \cup WCI(G_2) \cup$ $X \cup X$ is an expanded clique-independent set of G. We let $ECI(G) = WCI(G_1) \cup WCI(G_2) \cup X \cup X$.

(6) By (4) of Lemma 3, a clique-independent set of G is also a weak clique-independent set of G. We let CI(G) = WCI(G).

In the following, we show that CT(G), CI(G), WCT(G), WCI(G), SCT(G), and ECI(G) satisfy the conditions of strong duality.

Since G_1 and G_2 hold the strong duality, by (2) and (3) of Definition 7, k_1 $|SCT(G_1)| - |WCT(G_1)|$ $|XI(G_1)|$ =and $k_2 = |SCT(G_2)| - |WCT(G_2)| = |XI(G_2)|.$ Clearly $|CT(G)| = |WCT(G)| = |WCT(G_1)| +$ $|WCT(G_2)| + k = |WCI(G_1)| + |WCI(G_2)| + k =$ |WCI(G)| = |CI(G)|. Next we verify that |SCT(G)| = |ECI(G)|. If $k = k_1$, then \tilde{X} is empty, $|SCT(G)| = k_1 + |WCT(G_1)| + |WCT(G_2)|$, and $|ECI(G)| = |WCI(G_1)| + |WCI(G_2)| + k_1$. On the other hand, suppose that $k = k_2$. We have $|SCT(G)| = |SCT(G_1)| + |WCT(G_2)|$ = $k_1 + |WCT(G_1)| + |WCT(G_2)|$ and |ECI(G)|= $|WCI(G_1)| + |WCI(G_2)| + |X| + |X|$ = $|WCI(G_1)| + |WCI(G_2)| + k_1$. We can see that |SCT(G)| = |ECI(G)| in both cases. Finally, $WCI(G) \subseteq ECI(G)$ is obvious. Thus G holds the strong duality.

Lemma 7. Assume that G is formed from two disjoint distance-hereditary graphs G_1 and G_2 by a true twin operation, and both G_1 and G_2 hold the strong duality. Suppose that $XI(G_1) = \{c_1, \ldots, c_{k_1}\}, XI(G_2) =$ $\{d_1, \ldots, d_{k_2}\}, and k = \min\{k_1, k_2\}.$ Let $X = \{c_i \cup d_i | 1 \le i \le k_1, k_2\}$ $i \leq k$. There exist the following sets:

(1) $CT(G) = \min\{SCT(G_1) \cup WCT(G_2), SCT(G_2) \cup$ $WCT(G_1)\},\$

- (2) SCT(G) = CT(G),
- (3) $WCT(G) = WCT(G_1) \cup WCT(G_2),$
- (4) $WCI(G) = WCI(G_1) \cup WCI(G_2),$
- (5) $ECI(G) = WCI(G_1) \cup WCI(G_2) \cup X$, and

(6) CI(G) = ECI(G)

Proof. By (2) and (5) of Lemma 2, we see that both $SCT(G_1) \cup WCT(G_2)$ and $SCT(G_2) \cup WCT(G_1)$ are not only clique-transversal sets of G but also strong clique-transversal sets of G. Besides, X is a cliqueindependent set of G and $WCI(G_1) \cup WCI(G_2) \cup X$ is not only a clique-independent set of G but also an expanded clique-independent set of G. Furthermore, by (4) of Lemma 2, $WCT(G_1) \cup WCT(G_2)$ and $WCI(G_1) \cup WCI(G_2)$ are a weak clique-transversal set and a weak clique-independent set of G, respectively. Therefore we let

(1) $CT(G) = \min\{SCT(G_1) \cup WCT(G_2), SCT(G_2) \cup \}$ $WCT(G_1)\},\$

- (2) SCT(G) = CT(G),
- (3) $WCT(G) = WCT(G_1) \cup WCT(G_2),$
- (4) $WCI(G) = WCI(G_1) \cup WCI(G_2),$
- (5) $ECI(G) = WCI(G_1) \cup WCI(G_2) \cup X$, and
- (6) CI(G) = ECI(G).

Since G_1 and G_2 hold the strong duality, by (2) and (3) of Definition 7, $k_1 = |SCT(G_1)| - |WCT(G_1)| =$ $|XI(G_1)|$ and $k_2 = |SCT(G_2)| - |WCT(G_2)| =$ $|XI(G_2)|$. Hence |CT(G)| = |SCT(G)| = |ECI(G)| = $|CI(G)| = k + |WCI(G_1)| + |WCI(G_2)|$. Besides, |WCT(G)| = |WCI(G)|. Finally, $WCI(G) \subseteq ECI(G)$ is obvious. Following the discussion above, G holds the strong duality.

Lemma 8. Assume that G is obtained from two disjoint distance-hereditary graphs G_1 and G_2 by a false twin operation, and both G_1 and G_2 hold the strong duality. There exist the following sets:

- (1) $CT(G) = CT(G_1) \cup CT(G_2),$
- (2) $SCT(G) = SCT(G_1) \cup SCT(G_2),$
- (3) $WCT(G) = WCT(G_1) \cup WCT(G_2),$
- $(4) WCI(G) = WCI(G_1) \cup WCI(G_2),$
- (5) $ECI(G) = ECI(G_1) \cup ECI(G_2)$, and
- (6) $CI(G) = CI(G_1) \cup CI(G_2)$

such that G holds the strong duality.

Proof. Following Lemma 1, $CT(G_1) \cup CT(G_2)$ is a clique-transversal set of G, and $SCT(G_1) \cup SCT(G_2)$ a strong clique-transversal set of G, \ldots , etc. So we let

- (1) $CT(G) = CT(G_1) \cup CT(G_2),$
- (2) $SCT(G) = SCT(G_1) \cup SCT(G_2),$
- (3) $WCT(G) = WCT(G_1) \cup WCT(G_2),$
- (4) $WCI(G) = WCI(G_1) \cup WCI(G_2),$

(5) $ECI(G) = ECI(G_1) \cup ECI(G_2)$, and

(6) Intr Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwars raphs, J. of Combin. Theory, Ser. B 41 (1986) 182-208. Since G_1 and G_2 hold the strong duality, it is easy to verify that all four conditions of the strong duality are satisfied.

Now we are ready to prove the main theorem.

Theorem 2. Distance-hereditary graphs are cliqueperfect.

Proof. We have explained the reasons that distancehereditary graphs are clique-perfect if they hold the strong duality. Based upon the recursive definition of distance-hereditary graphs, and Lemmas 5, 6, 7, and 8, we can prove that distance-hereditary graphs hold strong duality by induction. Hence, distance-hereditary graphs are clique-perfect.

4. Conclusion

We have shown distance-hereditary graphs are clique-perfect graphs. The proof is based upon the recursive definition of distance-hereditary graphs. Furthermore, as a byproduct of the inductive proof, we can design polynomial-time dynamic programming algorithms to find a minimum clique-transversal set and a maximum clique-independent set for a distancehereditary graph G. The constructive proofs of Lemma 6, 7, and 8 suggest that we build a CT(G) and a CI(G) bottom up according to the PTF-tree of G. If we store a clique-transversal set in a linked list and a clique-independent set in a linked list of cliques, respectively. Then, the union of two clique-transversal sets or two clique-independent sets can be done in constant time. We see that the clique-transversal set problem can be solved in O(n+m) and the cliqueindependent set problem can be solved in $O(n^2)$ time for distance-hereditary graphs. We conjecture that the algorithm for the clique-independent set problem on distance-hereditary graphs can be implemented in O(n+m) time.

References

- [1] T. Andreae, M. Schughart, and Zs. Tuza, Clique transversal sets of line graphs and complements of line graphs, Discrete Math., 88 (1991) 11-20.
- T. Andreae, and C. Flotow, On covering all cliques of a [2]chordal graph, Discrete Math., 149 (1996) 299-302.
- [3] T. Andreae, On the clique-transversal number of chordal graphs, Discrete Math., 191 (1998) 3–11.
- [4] V. Balachandran, P. Nagavamsi, and C. P. Rangan, Clique transversal and clique independence on comparability graphs, Inform. Process. Lett. 58 (1996) 181-184.

- [5] H. J. Bandelt, and H. M. Mulder, Distance hereditary
- [6] A. Brandstädt, V. B. Le, and J. P. Spinrad, Graph classes-A Survey, SIAM Monographs on Discrete Math. and Applications (Philadelphia, 1999).
- [7] A. Brandstädt, V. D. Chepoi, and F. F. Dragan, Clique r-domination and clique r-packing problems on dually chordal graphs, SIAM J. Discrete Math., 10 (1) (1997) 109 - 127.
- [8] G. J. Chang, M. Farber, and Zs. Tuza, Algorithmic aspects of neighborhood numbers, SIAM J. Discrete Math., 6 (1993) 24-29.
- [9] M. S. Chang, Y. H. Chen, G. J. Chang, and J. H. Yan, Algorithmic aspects of the generalised clique transversal problem on chordal graphs, Discrete Appl. Math. 66 (1996) 189–203.
- [10] M. S. Chang, S. Y. Hsieh, and G. H. Chen, Dynamic programming on distance-hereditary graphs, Lecture Notes in Computer Science, Vol. 1350 (1997) 344-353.
- [11] E. Dahlhaus, P. D. Manuel, M. Miller, Maximum hcolourable subgraph problem in balanced graphs, Inform. Process. Lett., 65 (1998) 301-303.
- [12] G. Durán, M. C. Lin, and J. L. Szwarcfiter, On cliquetransversal and clique-independent sets, Ann. of Oper. Res. 116 (2002) 71-77.
- [13] P. Eades, M. Keil, P. D. Manuel, and M. Miller, Two minimum dominating sets with minimum intersection in chordal graphs, Nordic J. Comput., 3 (1996) 220-237.
- [14] P. Erdös, T. Gallai and Zs. Tuza, Covering the cliques of a graph with vertices, Discrete Math., 108 (1992) 279-289
- [15] V. Guruswami, and C. P. Rangan, Algorithmic aspects of clique-transversal and clique-independent sets, Discrete Appl. Math. 100 (2000) 183-202.
- [16] P. L. Hammer, and F. Maffray, Completely separable graphs, Discrete Appl. Math. 27 (1990) 85-90.
- [17] C. M. Lee, M. S. Chang, and S. C. Sheu, The Clique Transversal and Clique Independence of Distance Hereditary Graphs, in: Proceedings of the 19th Workshop on Combinatorial Mathematics and Computation Theory, Taiwan, (2002) 64-69.
- [18] J. Lehel and Zs. Tuza, Neighborhood perfect graphs, Discrete Math., 61 (1986) 93–101.
- [19] Z. Lonc, I. Rival, Chains, antichains and fibres, J. Combin. Theory Ser. A 44 (1987) 207-228.
- S. C. Sheu, The Weighted Clique Transversal Set Prob-[20]lem on Distance-Hereditary Graphs, Master Thesis, Department of Computer Science and Information Engineering, Chung Cheng University, Taiwan, 2001.
- [21] Zs. Tuza, Covering all cliques of a graph, Discrete Math., 86 (1990) 117-126.