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Abstract--Sources and services providing is a topi-
cal network application nowadays and in the future. 
Comparing with traditional wired networks, it is 
more important and difficult for ad hoc networks to 
design an applicable communication pattern to pro-
vide services. As the appearance of services becomes 
complex, some traditional group communication 
mechanisms such as multicast or anycast may not 
satisfy some kinds of services like NTP (Network 
Time Protocol). Manycast is a group communication 
paradigm in which one client communicates simulta-
neously with k of m equivalent servers in a group. 
Although some protocols like scoped-flood have been 
proposed to perform manycast delivery, while they 
still suffer from the problem of redundant transmis-
sion overhead. Hence, we propose a scalable cluster-
based manycast to reduce those overhead but still 
keep a high successful ratio of manycast delivery. 
 
Keywords: Ad Hoc Network, Manycast, Service, 
Clustering. 
 

1. Introduction 
A mobile ad hoc network (MANET) [9] is a 

network consisting of a number of wireless mobile 
hosts which can move around at will. The data 
transmission can be accomplished via the nearby 
mobile hosts interchanging messages. The kind of 
networks is specially important and useful in the 
regions without base station supporting such as in 
battlefield or disaster area. Recently, the network 
environment can offer a large number of services and 
resources to users such as the multimedia information 
service, file-sharing service, or print service, etc. Be-
sides, there are many applications which are to find 
some equivalent servers in the networks, such as the 
Network Information System (NIS) in UNIX system, 
Remote Procedure Call (RPC), Network Time Proto-
col (NTP) [10] which a client needs to discovery 
three optimal servers to synchronize its clock, the 
ITTC (Intrusion Tolerance via Threshold Cryptogra-
phy) project [6] which a client must contact several 
servers simultaneously to obtain a complete secret 
key , MOCA (Mobile Certificate Authority) [7], and 
COCA (Cornell On-line Certificate Authority) [8], 
etc. Hence, C. Cater et al. [2] proposed a novel group 

communication mechanism called manycast and de-
clared that manycast must be implemented in network 
layer to support the service-oriented group communi-
cation. Different to multicast, manycast is a group 
communication scheme where one client communi-
cates simultaneously with some threshold number k 
of servers from the m servers of a group. Moreover, 
manycast provides a simple request/reply communi-
cation between a client and servers. The activities of 
manycast transaction are shown in Fig. 1. 

 

Wireless link Service request 

MANET device MANET service provider 

Service reply 
 

Figure 1. The activity of manycast transaction 

Although flooding or some on-demand routing 
protocols in ad hoc networks can be modified to per-
form manycast delivery mechanisms. However, C. 
Cater et al. [2] recommended the scoped-flood 
mechanism because it keeps the merit of flooding 
which can resist mobility and save a number of re-
transmission overhead in their simulation environ-
ment. But the scoped-flood still suffers from some 
flaws including the embarrassment of the TTL (time-
to-live) setting (scoped area), the server reply implo-
sion, and the scalability problem. The scoped-flood 
uses flooding to the whole network to perform many-
cast delivery when a client sends a manycast request 
at the first time, and then to set TTL value for future 
usage. However, the flooding may cause the redun-
dant rebroadcasts, contentions, and collisions, which 
are known as the broadcast storm problem [5] in 
MANETs. A client may use the TTL value to limit the 
flood area at the next manycast request. Unfortu-
nately, it may occur that the evaluated TTL value be-
comes inaccurate due to the mobility of hosts. Second, 
the reply implosion problem will happen such as the 
ARP implosion [1] if there are too many servers re-
ceived a manycast request and reply it. Finally, con-
sidering the scalability of network environment, if the 
network size extends and the number of hosts and 
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servers increases, the performance of scoped-flood 
will dramatically drop due to the increase of redun-
dant transmission overhead. 

In order to improve the defects described above, 
we use the clustering technique to control the many-
cast request packets, and therefore propose an effi-
cient manycast scheme in this paper. The rest of the 
paper is constructed as follows. In section 2, we pro-
pose our cluster-based manycast algorithm, including 
the clustering we adapted and how the manycast 
works in the cluster. In section 3, we show the simu-
lated results to evaluate the performance of our 
scheme and compare with scoped-flood [2]. Finally, 
the conclusions are drawn and some directions for 
future work are presented in section 4. 
 
2. A Cluster-based Manycast 

If a client wants to use scoped-flood to perform 
manycast to reach the required m servers, there will 
be a large numbers of overheads because of the 
redundant transmissions and replies. Therefore, we 
adopt cluster hosts in the network to efficiently 
reduce manycast request packets and find the 
required m servers more accurately by the 
managemant of clusterheads. 
 
2.1 The Clustering 

Among most clustering algorithms, one of criteria 
to judge whether the clustering algorithm is good or 
not is the frequency of cluster changes. If the 
frequency of cluster changes is less, it means that the 
cluster structure is more stable. Hence, we adopt the 
Least Cluster Change Algorithm (LCC) proposed by 
C.-C. Chiang [3] to construct and maintain the cluster. 

The advantanges of LCC algorithm is that it 
improve the problem of the most common clustering 
algorithms such as Lowest-ID (LID) clustering or 
Highest-Connectivity (HCC) clustering, in which the 
numbe of clusterheads will increase as time goes by. 
Hence, the LCC algorithm not only has the merit of 
simpilicity and quick construction in LID or HCC 
clustering, but also decreases the variant frequences 
of these two algorithms. 
 
2.2 Our Manycast Scheme 

In the section, we introduce our cluster-based ma-
nycast in two phases. In the server request phase, we 
describe how to control server request packet propa-
gations, and how to find at least k servers. In the 
server reply phase, we describe how the servers reply 
to the client when receiving the request packets. 
 
2.2.1 Server Request 

Assume that a certain client in the network re-
quests k servers from m servers (k≦m) for service, 
and these servers who received the request must re-
spond a reply back to the client. First, we set K = k + 

kc where c is a constant, 0≦c＜1, to increase the 
probability of finding at least k servers. 

The client which wants to perform manycast will 
send a Server_Request(K) to its clusterhead. After 
the clusterhead received the Server_Request(K), it 
will check the number of servers, it dominates, say s. 
And then, the clusterhead will decide whether trans-
mit it by the following rules. 

Case 1: s ≧ K 
The number of requested servers is sufficient in 

the client’s cluster. The corresponding clusterhead no 
longer need to transmit the request to other clusters. It 
only informs all of the servers it dominates to respond 
a reply to the client. An example which assumed the 
number of requested servers is two is shown in Fig. 2. 

C

S

S
S 

S

 
C Client Server 

Clusterhead Normal node Server Request 
S

 
Figure 2. The number of requested servers is 
enough in the intra cluster. 

Case 2：s ＜ K 
The situation means that there are not enough 

servers in the client’s cluster. Hence, the clusterhead 
will inform the servers in its cluster to reply to the 
client and also exchange the information by gateways 
to obtain the number of servers in its neighbor clus-
ters. Assume that the total number of servers in the 
neighbor clusters is g. 

(i) s + g ≧ K 
The required number of servers is sufficient 

among the client’s cluster and neighbor clusters. At 
this time, the clusterhead informs all its neighbor 
clusterheads, and then they will inform all the servers 
in their clusters to reply to the client as soon as possi-
ble. For example, in the Fig. 3, we assume the num-
ber of requested servers is 6. After examining the 
number of servers, among its cluster and neighbor 
clusters, which is 9, the client’s clusterhead will in-
form the servers within it and transmit the request 
with T = 0 to its neighbor clusterheads. 

(ii) s + g ＜ K 
The required number of servers is not satisfied 

both in the client’s cluster and the neighbor clusters. 
The responsibility for searching the remainder insuf-
ficient servers will be took by the neighbor clusters. 
Let ( )T K s g p⎡ ⎤= − −⎢ ⎥ , where p is the number of 
neighbor clusters of the client’s cluster. The cluster-
head of the client will inform its neighbor cluster-
heads with piggybacked T. As receiving the request, 
the clusterheads will firstly inform the servers in their 
clusters to reply to the client. And then they exchange  
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the information with gateways to decide whether the 
transmission is necessary and avoid the replicated 
assignment to the same neighbors if the transmission 
is necessary. Finally, neighbor clusters will recom-
pute the T based on their unmarked neighbor clusters 
to distribute the responsibility to these clusters to find 
the T servers. If an unmarked neighbor clusterheads 
receive the request, it will repeat the steps described 
above. In the example of Fig. 4, because the number 
of requested servers is equal to 14 which is larger 
than total servers in the client’s cluster and its 
neighbor clusters. The cluster, then, will transmit the 
request with T=2 to its neighbor clusters. After cluster 
1, 2, and 3 received the request, they then investigate 
the number of its unmarked neighbor clusters and 
transmit the request packet to them with the recom-
puted T. Consequently, these clusters will decide 
what to do depending on the cases described above. 
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Figure 3. The number of requested servers is 
enough in the intra cluster and neighbor ones. 
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Figure 4. The number of requested servers is not 
enough in the inter cluster and neighbor ones. 

The detailed algorithm about our scalable cluster-
based manycast as explained in the following para-
graph. We first define some terms that will be used in 
the algorithms. 

 Server_Request(K)：a request which is initial-
ized by a client. The K value means the requested 

k servers adding to a parameter (kc) to increase 
the likelihood of reliable manycast delivery. 

 Response_Request ： when a clusterhead x re-
ceive the Server_Request(K), the clusterhead use 
the packet to inform the servers it dominates and 
the gateways to exchange informations. 

 dom_s(x)：the number of servers a clusterhead x 
dominates. 

 P(x)：for a clusterhead x, the set of its neighbor 
clusters which have not been marked. 

 dom_s(P(x))： the summation of the number of 
servers which are dominated by the nodes of P(x). 

 mark(x)：it record the state of the clusterhead x 
whether has been assigned to search servers. The 
state is marked as M if the assignment is true. 
Otherwise, it is marked as U. 
While the clusterhead x receives the 

Server_Request(K) from a client, it will perform the 
algorithm I described in Fig. 5. 

 received_server_request(K)
{ 

If (mark(x) == M) 
 Discard Server_Request(K) packet; 
Else 
{ 

mark(x) = M; 
If (dom_s(x)≧K) 
{ 

Transmit Response_Request to all servers in cluster x;
Discard Server_Request(K) packet; 

 }  
  Else 

 { 

  K dom _ s( x ) dom _ s( P( x ))T
P( x )

⎡ ⎤− −= ⎢ ⎥
⎢ ⎥⎢ ⎥

; 

 Transmit Response_Request to all servers in cluster x;
 Transmit Server_Request(T) to P(x);  

 } 
 } 
}  

Figure 5. Algorithm I of manycast for server re-
quest phase. 

While the clusterhead x receives the Server_ Re-
quest(T) from its neighbor clusters, it will perform 
the algorithm II described in Fig. 6. 

 received_server_request(T)
{ 

If (mark(x) == M) 
 Discard Server_Request(T) packet; 
Else 
{ 

mark(x) = M; 
If (T == 0) 

{ 
Transmit Response_Request to all servers in cluster x;
Discard Server_Request(T) packet; 

 }  
  Else 

 { 

  TT
P( x )

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎢ ⎥

; 

 Transmit Response_Request to all servers in cluster x;
 Transmit Server_Request(T) to P(x);  

 } 
 } 
} 

 
Figure 6. Algorithm II of manycast for server re-
quest phase. 
 
2.2.2 Server Reply 

As receiving the Response_Request packet, a 
server must reply a packet back to the client. In our 
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work, we assume that the data communication be-
tween the client and servers is reactive and brief. If 
the communication is constant, it is worth to find an 
efficient path between them, but it is not our issue. 

We just use a simple method like DSR [4] unicast 
routing to implement the server reply phase. When-
ever a host (a clusterhead or a gateway) transmits the 
server request to it neighbor clusters, its ID will pig-
gyback in the packet header. After a server received 
this packet, the reply can traverse the reverse path 
recorded in the header back to the client. However, 
because in our scheme, the traversing path is only 
along in the cluster structure, the path must be a form 
of cluster to gateway and gateway to cluster. Hence 
the reply path will be longer as well as response time. 
For this reason, the path shorten is applied in our 
scheme. As receiving a reply, the host will check its 
neighbor and the packet header to see if there is a 
neighbor which is closer to the next hop recorded in 
the header. If it is true, the path can be shorten. 

For example, in Fig. 7, client C initializes a ma-
nycast request. After the request traverses along the 
path and reach a certain server, the server replies the 
request by the reverse path which is recorded in the 
header of request packet. In the example, the reverse 
path is S-4-3-2-1-C. However, it is clear that host S 
can directly communicate with host 3 without the 
relay by node 4, and so does host 2. 

C 

1 

4 

S 

2 

3 

 
 

Server Request C Client Server 

Clusterhead  

S 

Server Reply Normal node
 

Figure 7. Shorten the reply path. 
 
3. Simulation Results 

In this section, we compare our scalable cluster-
based manycast(SCM) with scoped-flood by the 
following metrics:(1)Successful Ratio-the percentage 
of total successful replies over the total manycast 
requests issued. (2)Manycast Overhead-the average 
numbers of transmissions per manycast request. 
(3)Average Servers Replied-the average number of 
total replies from servers per manycast request. 
(4)Average Hop Count-the average number of total 
hop counts in the first k shortest replying paths per 
manycast request. The simulation environment is as 
follows: 

 Simulation area: 1000m×1000m~2400m×2400m. 
 Number of mobile hosts: 200~1150. 
 Transmission range: 250m. 
 Number of requested servers: 5~30. 
 Number of manycast request issued: 400~2300. 
 Simulation time: 200s~1150s. 
 Mobility speed: 0~20 m/s. 

 Mobility Model: Random waypoint with pause time 
10s. 

 K: k+1(in scoped-flood). 
 Percentage of c: (1) fixed 0%. (2) fixed 10%.   (3) 

initially, c＝0 % for all host. Once a request fails, it ad-
justs to 10% for the next time. 
According to the parameters set above, we ex-

periment several different scenarios as shown in Ta-
ble 1. 

Table 1. Simulation parameters in three scenarios. 

 
3.1 Scenario I 

As shown in Fig. 8, because scoped-flood sets the 
TTL relying on a beforehand flooding, the inaccurate 
TTL caused by host mobility will make the successful 
ratio drop. Besides, Fig. 9 shows that, depending on 
the clustering, our SCM has better improvement on 
manycast overhead. On the contrary, scoped-flood 
needs beforehand flooding and has no management of 
clusterheads to limit the disseminations of request 
packets. The manycast overhead is greatly higher 
than our SCM. In addition, more request packets 
propagation to servers also incurs many servers reply, 
which causes the manycast overhead increase. This 
phenomenon is presented in Fig. 10. However, the 
scoped-flood performs better in the average hop 
count metric because shortest paths are traversed, but 
the difference is not too much, as shown in Fig. 11. 
 
3.2 Scenario II 

In this section, we simulate in a smaller environ-
ment to examine whether our SCM is scalable or not. 
The experimental results are presented in Fig. 12 ~ 
Fig. 15. For successful ratio, the performance is simi-
lar to the large size of network environment However, 
in smaller network areas; the cluster brings fewer 
advantages into the manycast because the constructed 
cluster numbers are fewer. The savings of manycast 
overhead does not outperform well in the area com-
pared to the larger network size. 
 
3.3 Scenario III 

In Fig. 16, the simulation result indicates that the 
successful ratio is not affected by the network scale in 
SCM. In Fig. 17, because the scoped-flood algorithm 
need all of the nodes within the TTL range to transmit 
or relay manycast packets, the manycast overhead 
metric become greater with the growth of network 
size and server density. Besides, the numbers of re-
plied servers also substantially increase since the us-
age of flooding to calculate the TTL value in Fig. 18. 

 
 
 

Area 
(m2) 

Number 
of Hosts

Number 
of 

Servers 

Number 
of 

Requested 
Servers 

Velocity
(m/s) 

I 2000×2000 800 200 5~30 10 

II 1000×1000 250 50 5~30 10 

III
1000×1000

~ 
2400×2400

200 
~ 

1150 

50 
~ 

300 
20 10 
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However, in our SCM, manycast packets are only 
transmitted or relayed by servers, clusterheads, and 
gateways. The manycast overhead only has a little 
increase when network size becomes larger, and so as 
the average replied servers. The average hop count 
metric of SCM just has a little larger than scoped-
flood as shown in Fig. 19. 
 
4. Conclusions and Future Work 

We propose a scalable cluster-based manycast to 
perform manycast delivery. First, based on the struc-
ture of cluster, our scheme saves a large number of 
extra overheads in comparison with scoped-flood 
without losing the reachability of servers reply. The 
simulation results show that our SCM scheme per-
forms well when the network environment is dense 
(higher node/server density). In the future, we will 
investigate the server reply phase of manycast when 
the communication between the client and servers is 
constant. Under these considerations, stable paths 
should be established rather than using the reverse 
path that the server request packet traverses. 
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Figure 8. Successful ratio vs. requested servers in 
scenario I. 

2000×2000, 800 Nodes, 200 Servers, Request 1000 times

0
100
200
300
400
500
600
700
800
900

1000
1100

5 10 15 20 25 30
Requested Servers

M
an

yc
as

t O
ve

rh
ea

d

SCM Scoped-Flood
SCM 0 to 10% SCM 10%

 
Figure 9. Manycast overhead vs. requested serv-
ers in scenario. 
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Figure 10. Average servers replied vs. requested 
servers in scenario I. 
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Figure 11. Average hop count vs. requested servers 
in scenario I. 
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Figure 12. Successful ratio vs. requested servers in 
scenario II. 
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Figure 13. Manycast overhead vs. requested serv-
ers in scenario II. 
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Figure 14.Average servers replied vs. requested 
servers in scenario II. 
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Figure 15. Average hop count vs. requested serv-
ers in scenario II. 
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Figure 16. Successful ratio vs. square network size 
in scenario III. 

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1000×1000 1200×1200 1400×1400 1600×1600 1800×1800 2000×2000 2200×2200 2400×2400
Network Size(m2)

M
an

yc
as

t 
O

ve
rh

ea
d

SCM Scoped-Flood
SCM 0 to 10% SCM 10%

 
Figure17. Manycast overhead vs. square network 
size in scenario III. 
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Figure 18. Average servers replied vs. square net-
work size in scenario III. 
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Figure 19. Average hop count vs. square network 
size in scenario III. 
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