
A Scalable Cluster-based Manycast in Ad Hoc Networks

Shiow-Fen Hwang+, Jiang-Jiun Lin*, Kun-Hsien Lu*, and Chyi-Ren Dow+
Department of Information Engineering and Compuetr Science

Feng Chia Unverisity, Taichung, Taiwan 407, R.O.C.
+Email: {sfhwang, crdow@fcu.edu.tw}

*Email: {m9113224, p9217988@knight.fcu.edu.tw}

Abstract--Sources and services providing is a topi-
cal network application nowadays and in the future.
Comparing with traditional wired networks, it is
more important and difficult for ad hoc networks to
design an applicable communication pattern to pro-
vide services. As the appearance of services becomes
complex, some traditional group communication
mechanisms such as multicast or anycast may not
satisfy some kinds of services like NTP (Network
Time Protocol). Manycast is a group communication
paradigm in which one client communicates simulta-
neously with k of m equivalent servers in a group.
Although some protocols like scoped-flood have been
proposed to perform manycast delivery, while they
still suffer from the problem of redundant transmis-
sion overhead. Hence, we propose a scalable cluster-
based manycast to reduce those overhead but still
keep a high successful ratio of manycast delivery.

Keywords: Ad Hoc Network, Manycast, Service,
Clustering.

1. Introduction
A mobile ad hoc network (MANET) [9] is a

network consisting of a number of wireless mobile
hosts which can move around at will. The data
transmission can be accomplished via the nearby
mobile hosts interchanging messages. The kind of
networks is specially important and useful in the
regions without base station supporting such as in
battlefield or disaster area. Recently, the network
environment can offer a large number of services and
resources to users such as the multimedia information
service, file-sharing service, or print service, etc. Be-
sides, there are many applications which are to find
some equivalent servers in the networks, such as the
Network Information System (NIS) in UNIX system,
Remote Procedure Call (RPC), Network Time Proto-
col (NTP) [10] which a client needs to discovery
three optimal servers to synchronize its clock, the
ITTC (Intrusion Tolerance via Threshold Cryptogra-
phy) project [6] which a client must contact several
servers simultaneously to obtain a complete secret
key , MOCA (Mobile Certificate Authority) [7], and
COCA (Cornell On-line Certificate Authority) [8],
etc. Hence, C. Cater et al. [2] proposed a novel group

communication mechanism called manycast and de-
clared that manycast must be implemented in network
layer to support the service-oriented group communi-
cation. Different to multicast, manycast is a group
communication scheme where one client communi-
cates simultaneously with some threshold number k
of servers from the m servers of a group. Moreover,
manycast provides a simple request/reply communi-
cation between a client and servers. The activities of
manycast transaction are shown in Fig. 1.

Wireless link Service request

MANET device MANET service provider

Service reply

Figure 1. The activity of manycast transaction

Although flooding or some on-demand routing
protocols in ad hoc networks can be modified to per-
form manycast delivery mechanisms. However, C.
Cater et al. [2] recommended the scoped-flood
mechanism because it keeps the merit of flooding
which can resist mobility and save a number of re-
transmission overhead in their simulation environ-
ment. But the scoped-flood still suffers from some
flaws including the embarrassment of the TTL (time-
to-live) setting (scoped area), the server reply implo-
sion, and the scalability problem. The scoped-flood
uses flooding to the whole network to perform many-
cast delivery when a client sends a manycast request
at the first time, and then to set TTL value for future
usage. However, the flooding may cause the redun-
dant rebroadcasts, contentions, and collisions, which
are known as the broadcast storm problem [5] in
MANETs. A client may use the TTL value to limit the
flood area at the next manycast request. Unfortu-
nately, it may occur that the evaluated TTL value be-
comes inaccurate due to the mobility of hosts. Second,
the reply implosion problem will happen such as the
ARP implosion [1] if there are too many servers re-
ceived a manycast request and reply it. Finally, con-
sidering the scalability of network environment, if the
network size extends and the number of hosts and

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

833

servers increases, the performance of scoped-flood
will dramatically drop due to the increase of redun-
dant transmission overhead.

In order to improve the defects described above,
we use the clustering technique to control the many-
cast request packets, and therefore propose an effi-
cient manycast scheme in this paper. The rest of the
paper is constructed as follows. In section 2, we pro-
pose our cluster-based manycast algorithm, including
the clustering we adapted and how the manycast
works in the cluster. In section 3, we show the simu-
lated results to evaluate the performance of our
scheme and compare with scoped-flood [2]. Finally,
the conclusions are drawn and some directions for
future work are presented in section 4.

2. A Cluster-based Manycast

If a client wants to use scoped-flood to perform
manycast to reach the required m servers, there will
be a large numbers of overheads because of the
redundant transmissions and replies. Therefore, we
adopt cluster hosts in the network to efficiently
reduce manycast request packets and find the
required m servers more accurately by the
managemant of clusterheads.

2.1 The Clustering

Among most clustering algorithms, one of criteria
to judge whether the clustering algorithm is good or
not is the frequency of cluster changes. If the
frequency of cluster changes is less, it means that the
cluster structure is more stable. Hence, we adopt the
Least Cluster Change Algorithm (LCC) proposed by
C.-C. Chiang [3] to construct and maintain the cluster.

The advantanges of LCC algorithm is that it
improve the problem of the most common clustering
algorithms such as Lowest-ID (LID) clustering or
Highest-Connectivity (HCC) clustering, in which the
numbe of clusterheads will increase as time goes by.
Hence, the LCC algorithm not only has the merit of
simpilicity and quick construction in LID or HCC
clustering, but also decreases the variant frequences
of these two algorithms.

2.2 Our Manycast Scheme

In the section, we introduce our cluster-based ma-
nycast in two phases. In the server request phase, we
describe how to control server request packet propa-
gations, and how to find at least k servers. In the
server reply phase, we describe how the servers reply
to the client when receiving the request packets.

2.2.1 Server Request

Assume that a certain client in the network re-
quests k servers from m servers (k≦m) for service,
and these servers who received the request must re-
spond a reply back to the client. First, we set K = k +

kc where c is a constant, 0≦c＜1, to increase the
probability of finding at least k servers.

The client which wants to perform manycast will
send a Server_Request(K) to its clusterhead. After
the clusterhead received the Server_Request(K), it
will check the number of servers, it dominates, say s.
And then, the clusterhead will decide whether trans-
mit it by the following rules.

Case 1: s ≧ K
The number of requested servers is sufficient in

the client’s cluster. The corresponding clusterhead no
longer need to transmit the request to other clusters. It
only informs all of the servers it dominates to respond
a reply to the client. An example which assumed the
number of requested servers is two is shown in Fig. 2.

C

S

S
S

S

C Client Server

Clusterhead Normal node Server Request
S

Figure 2. The number of requested servers is
enough in the intra cluster.

Case 2：s ＜ K
The situation means that there are not enough

servers in the client’s cluster. Hence, the clusterhead
will inform the servers in its cluster to reply to the
client and also exchange the information by gateways
to obtain the number of servers in its neighbor clus-
ters. Assume that the total number of servers in the
neighbor clusters is g.

(i) s + g ≧ K
The required number of servers is sufficient

among the client’s cluster and neighbor clusters. At
this time, the clusterhead informs all its neighbor
clusterheads, and then they will inform all the servers
in their clusters to reply to the client as soon as possi-
ble. For example, in the Fig. 3, we assume the num-
ber of requested servers is 6. After examining the
number of servers, among its cluster and neighbor
clusters, which is 9, the client’s clusterhead will in-
form the servers within it and transmit the request
with T = 0 to its neighbor clusterheads.

(ii) s + g ＜ K
The required number of servers is not satisfied

both in the client’s cluster and the neighbor clusters.
The responsibility for searching the remainder insuf-
ficient servers will be took by the neighbor clusters.
Let ()T K s g p⎡ ⎤= − −⎢ ⎥ , where p is the number of
neighbor clusters of the client’s cluster. The cluster-
head of the client will inform its neighbor cluster-
heads with piggybacked T. As receiving the request,
the clusterheads will firstly inform the servers in their
clusters to reply to the client. And then they exchange

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

834

the information with gateways to decide whether the
transmission is necessary and avoid the replicated
assignment to the same neighbors if the transmission
is necessary. Finally, neighbor clusters will recom-
pute the T based on their unmarked neighbor clusters
to distribute the responsibility to these clusters to find
the T servers. If an unmarked neighbor clusterheads
receive the request, it will repeat the steps described
above. In the example of Fig. 4, because the number
of requested servers is equal to 14 which is larger
than total servers in the client’s cluster and its
neighbor clusters. The cluster, then, will transmit the
request with T=2 to its neighbor clusters. After cluster
1, 2, and 3 received the request, they then investigate
the number of its unmarked neighbor clusters and
transmit the request packet to them with the recom-
puted T. Consequently, these clusters will decide
what to do depending on the cases described above.

S

C

S

S

S

S

S
S

S

S

Server Request
C Client Server

Clusterhead Normal node

S

Figure 3. The number of requested servers is
enough in the intra cluster and neighbor ones.

C

S
S

S

S
S

S

S

S

S

1

2

3

S

S

T=2

T=2

T=2
T=2

T=2

T=1

Server Request
C Client Server

Clusterhead Normal node

S

Figure 4. The number of requested servers is not
enough in the inter cluster and neighbor ones.

The detailed algorithm about our scalable cluster-
based manycast as explained in the following para-
graph. We first define some terms that will be used in
the algorithms.

 Server_Request(K)：a request which is initial-
ized by a client. The K value means the requested

k servers adding to a parameter (kc) to increase
the likelihood of reliable manycast delivery.

 Response_Request ： when a clusterhead x re-
ceive the Server_Request(K), the clusterhead use
the packet to inform the servers it dominates and
the gateways to exchange informations.

 dom_s(x)：the number of servers a clusterhead x
dominates.

 P(x)：for a clusterhead x, the set of its neighbor
clusters which have not been marked.

 dom_s(P(x))： the summation of the number of
servers which are dominated by the nodes of P(x).

 mark(x)：it record the state of the clusterhead x
whether has been assigned to search servers. The
state is marked as M if the assignment is true.
Otherwise, it is marked as U.
While the clusterhead x receives the

Server_Request(K) from a client, it will perform the
algorithm I described in Fig. 5.

 received_server_request(K)
{

If (mark(x) == M)
 Discard Server_Request(K) packet;
Else
{

mark(x) = M;
If (dom_s(x)≧K)
{

Transmit Response_Request to all servers in cluster x;
Discard Server_Request(K) packet;

 }
 Else

 {

 K dom _ s(x) dom _ s(P(x))T
P(x)

⎡ ⎤− −= ⎢ ⎥
⎢ ⎥⎢ ⎥

;

 Transmit Response_Request to all servers in cluster x;
 Transmit Server_Request(T) to P(x);

 }
 }
}

Figure 5. Algorithm I of manycast for server re-
quest phase.

While the clusterhead x receives the Server_ Re-
quest(T) from its neighbor clusters, it will perform
the algorithm II described in Fig. 6.

 received_server_request(T)
{

If (mark(x) == M)
 Discard Server_Request(T) packet;
Else
{

mark(x) = M;
If (T == 0)

{
Transmit Response_Request to all servers in cluster x;
Discard Server_Request(T) packet;

 }
 Else

 {

 TT
P(x)

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎢ ⎥

;

 Transmit Response_Request to all servers in cluster x;
 Transmit Server_Request(T) to P(x);

 }
 }
}

Figure 6. Algorithm II of manycast for server re-
quest phase.

2.2.2 Server Reply

As receiving the Response_Request packet, a
server must reply a packet back to the client. In our

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

835

work, we assume that the data communication be-
tween the client and servers is reactive and brief. If
the communication is constant, it is worth to find an
efficient path between them, but it is not our issue.

We just use a simple method like DSR [4] unicast
routing to implement the server reply phase. When-
ever a host (a clusterhead or a gateway) transmits the
server request to it neighbor clusters, its ID will pig-
gyback in the packet header. After a server received
this packet, the reply can traverse the reverse path
recorded in the header back to the client. However,
because in our scheme, the traversing path is only
along in the cluster structure, the path must be a form
of cluster to gateway and gateway to cluster. Hence
the reply path will be longer as well as response time.
For this reason, the path shorten is applied in our
scheme. As receiving a reply, the host will check its
neighbor and the packet header to see if there is a
neighbor which is closer to the next hop recorded in
the header. If it is true, the path can be shorten.

For example, in Fig. 7, client C initializes a ma-
nycast request. After the request traverses along the
path and reach a certain server, the server replies the
request by the reverse path which is recorded in the
header of request packet. In the example, the reverse
path is S-4-3-2-1-C. However, it is clear that host S
can directly communicate with host 3 without the
relay by node 4, and so does host 2.

C

1

4

S

2

3

Server Request C Client Server

Clusterhead

S

Server Reply Normal node

Figure 7. Shorten the reply path.

3. Simulation Results

In this section, we compare our scalable cluster-
based manycast(SCM) with scoped-flood by the
following metrics:(1)Successful Ratio-the percentage
of total successful replies over the total manycast
requests issued. (2)Manycast Overhead-the average
numbers of transmissions per manycast request.
(3)Average Servers Replied-the average number of
total replies from servers per manycast request.
(4)Average Hop Count-the average number of total
hop counts in the first k shortest replying paths per
manycast request. The simulation environment is as
follows:

 Simulation area: 1000m×1000m~2400m×2400m.
 Number of mobile hosts: 200~1150.
 Transmission range: 250m.
 Number of requested servers: 5~30.
 Number of manycast request issued: 400~2300.
 Simulation time: 200s~1150s.
 Mobility speed: 0~20 m/s.

 Mobility Model: Random waypoint with pause time
10s.

 K: k+1(in scoped-flood).
 Percentage of c: (1) fixed 0%. (2) fixed 10%. (3)

initially, c＝0 % for all host. Once a request fails, it ad-
justs to 10% for the next time.
According to the parameters set above, we ex-

periment several different scenarios as shown in Ta-
ble 1.

Table 1. Simulation parameters in three scenarios.

3.1 Scenario I

As shown in Fig. 8, because scoped-flood sets the
TTL relying on a beforehand flooding, the inaccurate
TTL caused by host mobility will make the successful
ratio drop. Besides, Fig. 9 shows that, depending on
the clustering, our SCM has better improvement on
manycast overhead. On the contrary, scoped-flood
needs beforehand flooding and has no management of
clusterheads to limit the disseminations of request
packets. The manycast overhead is greatly higher
than our SCM. In addition, more request packets
propagation to servers also incurs many servers reply,
which causes the manycast overhead increase. This
phenomenon is presented in Fig. 10. However, the
scoped-flood performs better in the average hop
count metric because shortest paths are traversed, but
the difference is not too much, as shown in Fig. 11.

3.2 Scenario II

In this section, we simulate in a smaller environ-
ment to examine whether our SCM is scalable or not.
The experimental results are presented in Fig. 12 ~
Fig. 15. For successful ratio, the performance is simi-
lar to the large size of network environment However,
in smaller network areas; the cluster brings fewer
advantages into the manycast because the constructed
cluster numbers are fewer. The savings of manycast
overhead does not outperform well in the area com-
pared to the larger network size.

3.3 Scenario III

In Fig. 16, the simulation result indicates that the
successful ratio is not affected by the network scale in
SCM. In Fig. 17, because the scoped-flood algorithm
need all of the nodes within the TTL range to transmit
or relay manycast packets, the manycast overhead
metric become greater with the growth of network
size and server density. Besides, the numbers of re-
plied servers also substantially increase since the us-
age of flooding to calculate the TTL value in Fig. 18.

Area
(m2)

Number
of Hosts

Number
of

Servers

Number
of

Requested
Servers

Velocity
(m/s)

I 2000×2000 800 200 5~30 10

II 1000×1000 250 50 5~30 10

III
1000×1000

~
2400×2400

200
~

1150

50
~

300
20 10

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

836

However, in our SCM, manycast packets are only
transmitted or relayed by servers, clusterheads, and
gateways. The manycast overhead only has a little
increase when network size becomes larger, and so as
the average replied servers. The average hop count
metric of SCM just has a little larger than scoped-
flood as shown in Fig. 19.

4. Conclusions and Future Work

We propose a scalable cluster-based manycast to
perform manycast delivery. First, based on the struc-
ture of cluster, our scheme saves a large number of
extra overheads in comparison with scoped-flood
without losing the reachability of servers reply. The
simulation results show that our SCM scheme per-
forms well when the network environment is dense
(higher node/server density). In the future, we will
investigate the server reply phase of manycast when
the communication between the client and servers is
constant. Under these considerations, stable paths
should be established rather than using the reverse
path that the server request packet traverses.

References
[1] C. Carter, S. Yi, and R. Kravets, “ARP consid-

ered harmful: manycast transactions in ad hoc
networks,” in Proc. of the IEEE wireless Com-
munications and Networking Conference, Vol.
3, pp. 1801-1806, 2003.

[2] C. Carter, S. Yi, and R. Kravets, “Manycast:
exploring the space between anycast and multi-
cast in ad hoc networks,” in Proc. of the 9th an-
nual international conference on Mobile com-
puting and networking, pp. 273-285, 2003.

[3] C.-C. Chiang, H.-K. Wu, W. Liu and M. Gerla,
Routing in clustered multihop, mobile wireless
networks with fading channel, in Proc. of IEEE
Singapore Int. Conf. on Networks, pp. 197-211.

[4] D. B. Johnson, D. A. Maltz, and Y.-C. Hu, “The
Dynamic Source Routing Protocol for Mobile
Ad Hoc Networks (DSR)” Mobile Ad-hoc Net-
works (manet) working group of IETF,
http://www.ietf.org/internet-drafts/draft-ietf-ma
net-dsr- 09.txt, April 2003.

[5] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P.
Sheu, “The broadcast storm problem in a mobile
ad hoc network,” Wireless Networks, Vol. 8, No.
2, pp. 153-167, March 2002.

[6] T. Wu, M. Malkin, and D. Boneh, “Building
intrusion tolerant applications,” in Proc. of the
8th USENIX Security Symposium, pp. 79-91,
1999.

[7] S. Yi and R. Kravets, “MOCA: Mobile certifi-
cate authority for wireless ad hoc networks,” in
Proc. of the 2nd Annual PKI Research Work-
shop, April 2003.

[8] L. Zhou, F. B. Schneider, and R. van Renesse,
“COCA: A secure distributed on-line certifica-

tion authority,” in Proc. of ACM Transactions
on Computer Systems, Vol. 20, No. 4, pp.329-
368, Nov. 2002.

[9] Mobile Ad-hoc Networks (manet) working
group of IETF, http://www.ietf.org/html.chart
ers/manet-charter .html.

[10] Network Time Protocol (NTP) Version 4,
http://www.ntp.org.

2000×2000, 800 Nodes, 200 Servers, Request 1000 times

0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

5 10 15 20 25 30
Requested Servers

Su
cc

es
fu

l R
at

io

SCM Scoped-Flood
SCM 0 to 10% SCM 10%

Figure 8. Successful ratio vs. requested servers in
scenario I.

2000×2000, 800 Nodes, 200 Servers, Request 1000 times

0
100
200
300
400
500
600
700
800
900

1000
1100

5 10 15 20 25 30
Requested Servers

M
an

yc
as

t O
ve

rh
ea

d

SCM Scoped-Flood
SCM 0 to 10% SCM 10%

Figure 9. Manycast overhead vs. requested serv-
ers in scenario.

2000×2000, 800 Nodes, 200 Servers, Request 1000 times

0

20

40

60

80

100

120

5 10 15 20 25 30
Requested Servers

 A
ve

ra
ge

 S
er

ve
rs

 R
ep

lie
d

SCM Scoped-Flood
SCM 0 to 10% SCM 10%

Figure 10. Average servers replied vs. requested
servers in scenario I.

2000×2000, 800 Nodes, 200 Servers, Request 1000 times

0.0

0.5

1.0

1.5

2.0

2.5

5 10 15 20 25 30
Requested Servers

A
ve

ra
ge

 H
op

 C
ou

nt

SCM Scoped-Flood
SCM 0 to 10% SCM 10%

Figure 11. Average hop count vs. requested servers
in scenario I.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

837

1000×1000, 250 Nodes, 50 Servers, Request 500 times

0.88
0.89
0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

5 10 15 20 25 30
Requested Servers

Su
cc

es
fu

l R
at

io

SCM Scoped-Flood
SCM 0 to 10% SCM 10%

Figure 12. Successful ratio vs. requested servers in
scenario II.

1000×1000, 250 Nodes, 50 Servers, Request 500 times

0

50

100

150

200

250

300

350

5 10 15 20 25 30
Requested Servers

M
an

yc
as

t
O

ve
rh

ea
d

SCM Scoped-Flood
SCM 0 to 10% SCM 10%

Figure 13. Manycast overhead vs. requested serv-
ers in scenario II.

1000×1000, 250 Nodes, 50 Servers, Request 500 times

0
5

10
15
20
25
30
35
40
45

5 10 15 20 25 30
Requested Servers

A
ve

ra
ge

 S
er

ve
rs

 R
ep

lie
d

SCM Scoped-Flood
SCM 0 to 10% SCM 10%

Figure 14.Average servers replied vs. requested
servers in scenario II.

1000×1000, 250 Nodes, 50 Servers, Request 500 times

0.0

0.5

1.0

1.5

2.0

2.5

5 10 15 20 25 30
Requested Servers

A
ve

ra
ge

 H
op

 C
ou

nt

SCM Scoped-Flood
SCM 0 to 10% SCM 10%

Figure 15. Average hop count vs. requested serv-
ers in scenario II.

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1000×1000 1200×1200 1400×1400 1600×1600 1800×1800 2000×2000 2200×2200 2400×2400
Network Size(m2)

Su
cc

es
fu

l R
at

io

SCM Scoped-Flood
SCM 0 to 10% SCM 10%

Figure 16. Successful ratio vs. square network size
in scenario III.

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1000×1000 1200×1200 1400×1400 1600×1600 1800×1800 2000×2000 2200×2200 2400×2400
Network Size(m2)

M
an

yc
as

t
O

ve
rh

ea
d

SCM Scoped-Flood
SCM 0 to 10% SCM 10%

Figure17. Manycast overhead vs. square network
size in scenario III.

0

10

20

30

40

50

60

70

80

90

100

110

120

130

1000×1000 1200×1200 1400×1400 1600×1600 1800×1800 2000×2000 2200×2200 2400×2400
Network Size(m2)

A
ve

ra
ge

 S
er

ve
rs

 R
ep

lie
d

SCM Scoped-Flood
SCM 0 to 10% SCM 10%

Figure 18. Average servers replied vs. square net-
work size in scenario III.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

1000×1000 1200×1200 1400×1400 1600×1600 1800×1800 2000×2000 2200×2200 2400×2400
Network Size(m2)

A
ve

ra
ge

 H
op

 C
ou

nt

SCM Scoped-Flood
SCM 0 to 10% SCM 10%

Figure 19. Average hop count vs. square network
size in scenario III.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

838

